牟平区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牟平区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 双曲线的渐近线方程是( )A .B .
C .
D .
2. 已知点是双曲线C :左支上一点,,是双曲线的左、右两个焦点,且
P 22
221(0,0)x y a b a b
-=>>1F 2F ,与两条渐近线相交于,两点(如图),点恰好平分线段,则双曲线的离心率
12PF PF ⊥2PF M N N 2PF 是( )
A.
B.2
D.5
2
【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.3. 函数f (x )=﹣x 的图象关于(
)
A .y 轴对称
B .直线y=﹣x 对称
C .坐标原点对称
D .直线y=x 对称
4. 点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )A .B .
C .
D .
5. 在三棱柱中,已知平面,此三棱
111ABC A B C -1AA ⊥1=22
ABC AA BC BAC π
=∠=,, 柱各个顶点都在一个球面上,则球的体积为( )
A .
B .
C.
D .
323
π
16π253
π
312
π6. 单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则(
)
A .该几何体体积为
B .该几何体体积可能为
C .该几何体表面积应为+
D .该几何体唯一
7. 若命题p :∃x 0∈R ,sinx 0=1;命题q :∀x ∈R ,x 2+1<0,则下列结论正确的是(
)
A .¬p 为假命题
B .¬q 为假命题
C .p ∨q 为假命题
D .p ∧q 真命题
8. 函数在区间上的最大值为5,最小值为1,则的取值范围是( )2
()45f x x x =-+[]0,m m A .
B .
C .
D .[2,)+∞[]2,4(,2]-∞[]
0,29. 已知函数f (x )=x 3+(1﹣b )x 2﹣a (b ﹣3)x+b ﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组所确定的平面区域在x 2+y 2=4内的面积为( )
A .
B .
C .π
D .2π
10.设x ,y ∈R ,且满足,则x+y=(
)
A .1
B .2
C .3
D .4
11.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为(
)
A .钱
B .钱
C .钱
D .钱12.在二项式的展开式中,含x 4的项的系数是( )A .﹣10B .10
C .﹣5
D .5
二、填空题
13.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。
14.长方体中,对角线与棱、、所成角分别为、、,1111ABCD A B C D -1A C CB CD 1CC αβ则 .
2
22sin
sin sin αβγ++=15.若的展开式中含有常数项,则n 的最小值等于 .
16.如图为长方体积木块堆成的几何体的三视图,此几何体共由 块木块堆成.
17.命题“若a >0,b >0,则ab >0”的逆否命题是 (填“真命题”或“假命题”.)
18.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .
三、解答题
19.(本小题满分10分)已知函数.
()|||2|f x x a x =++-(1)当时,求不等式的解集;3a =-()3f x ≥(2)若的解集包含,求的取值范围.
()|4|f x x ≤-[1,2]20.已知抛物线C :x 2=2y 的焦点为F .
(Ⅰ)设抛物线上任一点P (m ,n ).求证:以P 为切点与抛物线相切的方程是mx=y+n ;
(Ⅱ)若过动点M (x 0,0)(x 0≠0)的直线l 与抛物线C 相切,试判断直线MF 与直线l 的位置关系,并予以证明.
21.某农户建造一座占地面积为36m2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x 不得超过7m,墙高为2m,鸡舍正面的造价为40元/m2,鸡舍侧面的造价为20元/m2,地面及其他费用合计为1800元.
(1)把鸡舍总造价y表示成x的函数,并写出该函数的定义域.
(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?
22.已知等差数列{a n},等比数列{b n}满足:a1=b1=1,a2=b2,2a3﹣b3=1.
(Ⅰ)求数列{a n},{b n}的通项公式;
(Ⅱ)记c n=a n b n,求数列{c n}的前n项和S n.
23.已知椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),P是椭圆C上任意一
点,且椭圆的离心率为.
(1)求椭圆C的方程;
(2)直线l1,l2是椭圆的任意两条切线,且l1∥l2,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,求出点B的坐标;若不存在,请说明理由.
24.已知函数f(x)=ax2+2x﹣lnx(a∈R).
(Ⅰ)若a=4,求函数f(x)的极值;
(Ⅱ)若f′(x)在(0,1)有唯一的零点x0,求a的取值范围;
(Ⅲ)若a∈(﹣,0),设g(x)=a(1﹣x)2﹣2x﹣1﹣ln(1﹣x),求证:g(x)在(0,1)内有唯一的零点x1,且对(Ⅱ)中的x0,满足x0+x1>1.
牟平区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】B
【解析】解:∵双曲线标准方程为,
其渐近线方程是=0,
整理得y=±x.
故选:B.
【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题.
2.【答案】A.
【解析】
3.【答案】C
【解析】解:∵f(﹣x)=﹣+x=﹣f(x)
∴是奇函数,所以f(x)的图象关于原点对称
故选C.
4.【答案】A
【解析】解:点集{(x,y)|(|x|﹣1)2+y2=4}表示的图形是一条封闭的曲线,关于x,y轴对称,如图所示.
由图可得面积S==+=+2.
故选:A.
【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想.
5.【答案】A
【解析】
考点:组合体的结构特征;球的体积公式.
【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.
6.【答案】C
【解析】解:由已知中三视图可得该几何体是由一个边长为1的正方体,截掉一个角(三棱锥)得到
且该三棱锥有条过同一顶点且互相垂直的棱长均为1
该几何体的表面积由三个正方形,有三个两直角边为1的等腰直角三角形和一个边长为的正三角形组成
故其表面积S=3•(1×1)+3•(×1×1)+•()2=.
故选:C.
【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键.
7.【答案】A
【解析】解:时,sinx0=1;
∴∃x0∈R,sinx0=1;
∴命题p是真命题;
由x2+1<0得x2<﹣1,显然不成立;
∴命题q是假命题;
∴¬p为假命题,¬q为真命题,p∨q为真命题,p∧q为假命题;
∴A正确.
故选A.
【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对∀∈R满足x2≥0,命题¬p,p∨q,p∧q的真假和命题p,q真假的关系.
8.【答案】B
【解析】
m m 试题分析:画出函数图象如下图所示,要取得最小值为,由图可知需从开始,要取得最大值为,由图可知m[]2,4
的右端点为,故的取值范围是.
考点:二次函数图象与性质.
9.【答案】B
【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2.
则f(x)=x3﹣x2+ax,
函数的导数f′(x)=x2﹣2x+a,
因为原点处的切线斜率是﹣3,
即f′(0)=﹣3,
所以f′(0)=a=﹣3,
故a=﹣3,b=2,
所以不等式组为
则不等式组确定的平面区域在圆x2+y2=4内的面积,
如图阴影部分表示,
所以圆内的阴影部分扇形即为所求.
∵k OB=﹣,k OA=,
∴tan∠BOA==1,
∴∠BOA=,
∴扇形的圆心角为,扇形的面积是圆的面积的八分之一,
∴圆x2+y2=4在区域D内的面积为×4×π=,
故选:B
【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键.
10.【答案】D
【解析】解:∵(x﹣2)3+2x+sin(x﹣2)=2,
∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2,
∵(y﹣2)3+2y+sin(y﹣2)=6,
∴(y﹣2)3+2(y﹣2)+sin(y﹣2)=6﹣4=2,
设f(t)=t3+2t+sint,
则f(t)为奇函数,且f'(t)=3t2+2+cost>0,
即函数f(t)单调递增.
由题意可知f(x﹣2)=﹣2,f(y﹣2)=2,
即f(x﹣2)+f(y﹣2)=2﹣2=0,
即f(x﹣2)=﹣f(y﹣2)=f(2﹣y),
∵函数f(t)单调递增
∴x﹣2=2﹣y,
即x+y=4,
故选:D.
【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f(t)是解决本题的关键,综合考查了函数的性质.
11.【答案】B
【解析】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,
则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,
又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,∴a=1,
则a﹣2d=a﹣2×=.
故选:B .
12.【答案】B
【解析】解:对于
,
对于10﹣3r=4,
∴r=2,
则x 4的项的系数是C 52(﹣1)2=10
故选项为B
【点评】二项展开式的通项是解决二项展开式的特定项问题的工具.
二、填空题13.【答案】
【解析】设l 1与l 2的夹角为2θ,由于l 1与l 2的交点A (1,3)在圆的外部,
且点A 与圆心O 之间的距离为OA=
=,
圆的半径为r=,∴sin θ==,
∴cos θ=,tan θ==,
∴tan2θ===,
故答案为:。
14.【答案】
【解析】试题分析:以为斜边构成直角三角形:,由长方体的对角线定理可得:
1AC 1111,,AC D AC B AC A ∆∆∆
.222222
1111222111sin sin sin BC DC A C AC AC AC αβγ++=++2221212()2AB AD AA AC ++=
=考点:直线与直线所成的角.
【方法点晴】本题主要考查了空间中直线与直线所成的角的计算问题,其中解答中涉及到长方体的结构特征、直角三角形中三角函数的定义、长方体的对角线长公式等知识点的考查,着重考查学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直角三角形中三角函数的定义和长方体的对角线长定理是解答的关键.
15.【答案】5
【解析】解:由题意
的展开式的项为T r+1=C n r (x 6)n ﹣r ()r =C n
r =C n
r 令=0,得n=,当r=4时,n 取到最小值5
故答案为:5.
【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条件转化成指数为0,得到n 的表达式,推测出它的值.
16.【答案】 4
【解析】解:由三视图可以看出此几何体由两排两列,前排有一个方块,后排左面一列有两个木块右面一列有一个,
故后排有三个,故此几何体共有4个木块组成.
故答案为:4.
17.【答案】 真命题
【解析】解:若a >0,b >0,则ab >0成立,即原命题为真命题,
则命题的逆否命题也为真命题,
故答案为:真命题.
【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.
18.【答案】 cm2 .
【解析】解:如图所示,是正六棱台的一部分,
侧面ABB1A1为等腰梯形,OO1为高且OO1=1cm,AB=1cm,A1B1=2cm.
取AB和A1B1的中点C,C1,连接OC,CC1,O1C1,
则C1C为正六棱台的斜高,且四边形OO1C1C为直角梯形.
根据正六棱台的性质得OC=,O1C1==,
∴CC1==.
又知上、下底面周长分别为c=6AB=6cm,c′=6A1B1=12cm.
∴正六棱台的侧面积:
S=.
=
=(cm2).
故答案为:cm2.
【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养.
三、解答题
19.【答案】(1)或;(2).
{|1x x ≤8}x ≥[3,0]-【解析】
试
题解析:(1)当时,,当时,由得,解得;3a =-25,2()1,
2325,3x x f x x x x -+≤⎧⎪=<<⎨⎪-≥⎩
2x ≤()3f x ≥253x -+≥1x ≤当时,,无解;当时,由得,解得,∴的解集为23x <<()3f x ≥3x ≥()3f x ≥253x -≥8x ≥()3f x ≥或.
{|1x x ≤8}x ≥(2),当时,,
()|4||4||2|||f x x x x x a ≤-⇔---≥+[1,2]x ∈|||4|422x a x x x +≤-=-+-=∴,有条件得且,即,故满足条件的的取值范围为.22a x a --≤≤-21a --≤22a -≥30a -≤≤[3,0]-考点:1、绝对值不等式的解法;2、不等式恒成立问题.
20.【答案】
【解析】证明:(Ⅰ)由抛物线C :x 2=2y 得,y=x 2,则y ′=x ,
∴在点P (m ,n )切线的斜率k=m ,
∴切线方程是y ﹣n=m (x ﹣m ),即y ﹣n=mx ﹣m 2,
又点P (m ,n )是抛物线上一点,
∴m 2=2n ,
∴切线方程是mx ﹣2n=y ﹣n ,即mx=y+n …
(Ⅱ)直线MF 与直线l 位置关系是垂直.
由(Ⅰ)得,设切点为P (m ,n ),则切线l 方程为mx=y+n ,
∴切线l 的斜率k=m ,点M (,0),
又点F (0,),
此时,k MF
===
= …
∴k •k MF =m ×()=﹣1,
∴直线MF ⊥直线l
…
【点评】本题考查直线与抛物线的位置关系,导数的几何意义,直线垂直的条件等,属于中档题.
21.【答案】
【解析】解:(1)…
=…
定义域是(0,7]…
(2)∵,…
当且仅当即x=6时取=…
∴y≥80×12+1800=2760…
答:当侧面长度x=6时,总造价最低为2760元.…
22.【答案】
【解析】解:(I)设等差数列{a n}的公差为d,等比数列{b n}的公比为q:∵a1=b1=1,a2=b2,2a3﹣b3=1.
∴1+d=q,2(1+2d)﹣q2=1,解得或.
∴a n=1,b n=1;
或a n=1+2(n﹣1)=2n﹣1,b n=3n﹣1.
(II)当时,c n=a n b n=1,S n=n.
当时,c n=a n b n=(2n﹣1)3n﹣1,
∴S n=1+3×3+5×32+…+(2n﹣1)3n﹣1,
3S n=3+3×32+…+(2n﹣3)3n﹣1+(2n﹣1)3n,
∴﹣2S n=1+2(3+32+…+3n﹣1)﹣(2n﹣1)3n=﹣1﹣(2n﹣1)3n=(2﹣2n)3n﹣2,
∴S n=(n﹣1)3n+1.
【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.
23.【答案】
【解析】解:(1)∵椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),
P是椭圆C上任意一点,且椭圆的离心率为,
∴=,解得,
∴椭圆C的方程为.…
(2)①当l1,l2的斜率存在时,设l1:y=kx+m,l2:y=kx+n(m≠n)
,
△=0,m2=1+2k2,同理n2=1+2k2m2=n2,m=﹣n,
设存在,
又m2=1+2k2,则|k2(2﹣t2)+1|=1+k2,k2(1﹣t2)=0或k2(t2﹣3)=2(不恒成立,舍去)
∴t2﹣1=0,t=±1,点B(±1,0),
②当l1,l2的斜率不存在时,
点B(±1,0)到l1,l2的距离之积为1.
综上,存在B(1,0)或(﹣1,0).…
24.【答案】
【解析】满分(14分).
解法一:(Ⅰ)当a=4时,f(x)=4x2+2x﹣lnx,x∈(0,+∞),
.…(1分)
由x∈(0,+∞),令f′(x)=0,得.
当x变化时,f′(x),f(x)的变化如下表:
x
f′(x)﹣0+
f(x)↘极小值↗
故函数f(x)在单调递减,在单调递增,…(3分)f(x)有极小值,无极大值.…(4分)
(Ⅱ),
令f′(x)=0,得2ax2+2x﹣1=0,设h(x)=2ax2+2x﹣1.
则f′(x)在(0,1)有唯一的零点x0等价于h(x)在(0,1)有唯一的零点x0
当a=0时,方程的解为,满足题意;…(5分)
当a>0时,由函数h(x)图象的对称轴,函数h(x)在(0,1)上单调递增,
且h(0)=﹣1,h(1)=2a+1>0,所以满足题意;…(6分)
当a<0,△=0时,,此时方程的解为x=1,不符合题意;
当a<0,△≠0时,由h(0)=﹣1,
只需h(1)=2a+1>0,得.…(7分)
综上,.…(8分)
(说明:△=0未讨论扣1分)
(Ⅲ)设t=1﹣x,则t∈(0,1),p(t)=g(1﹣t)=at2+2t﹣3﹣lnt,…(9分)
,
由,故由(Ⅱ)可知,
方程2at2+2t﹣1=0在(0,1)内有唯一的解x0,
且当t∈(0,x0)时,p′(t)<0,p(t)单调递减;t∈(x0,1)时,p′(t)>0,p(t)单调递增.…(11分)
又p(1)=a﹣1<0,所以p(x0)<0.…(12分)
取t=e﹣3+2a∈(0,1),
则p(e﹣3+2a)=ae﹣6+4a+2e﹣3+2a﹣3﹣lne﹣3+2a=ae﹣6+4a+2e﹣3+2a﹣3+3﹣2a=a(e﹣6+4a﹣2)+2e﹣3+2a>0,
从而当t∈(0,x0)时,p(t)必存在唯一的零点t1,且0<t1<x0,
即0<1﹣x1<x0,得x1∈(0,1),且x0+x1>1,
从而函数g(x)在(0,1)内有唯一的零点x1,满足x0+x1>1.…(14分)
解法二:(Ⅰ)同解法一;…(4分)
(Ⅱ),
令f′(x)=0,由2ax2+2x﹣1=0,得.…(5分)
设,则m∈(1,+∞),,…(6分)
问题转化为直线y=a与函数的图象在(1,+∞)恰有一个交点问题.
又当m∈(1,+∞)时,h(m)单调递增,…(7分)
故直线y=a与函数h(m)的图象恰有一个交点,当且仅当.…(8分)
(Ⅲ)同解法一.
(说明:第(Ⅲ)问判断零点存在时,利用t→0时,p(t)→+∞进行证明,扣1分)
【点评】本题考查函数与导数等基本知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力.。