绵阳市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绵阳市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知函数()2sin()f x x ωϕ=+(0)2
π
ϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最
小距离为
2
π
,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .
6π B .3π C .2
π
D .23π
2. 已知点A (0,1),B (3,2),C (2,0),若AD →=2DB →,则|CD →
|为( )
A .1 B.4
3
C.53
D .2 3. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣1
4.
为得到函数的图象,只需将函数y=sin2x 的图象( )
A
.向左平移个长度单位 B
.向右平移个长度单位 C
.向左平移个长度单位 D
.向右平移
个长度单位
5. 在
中,角


所对应的边分别为、、,若角


依次成等差数列,且

,则
等于( )
A .
B .
C .
D .2
6. 设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )
A.18
B.12
C.9
D.0
【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.
7. f
()
=,则f (2)=( ) A .3
B .1
C .2
D

8. 设,,a b c R ∈,且a b >,则( ) A .ac bc > B .
11
a b
< C .22a b > D .33a b > 9. 下列哪组中的两个函数是相等函数( ) A .(
)(
)4
f x x =
g B .()()24
=
,22
x f x g x x x -=-+ C .()()1,01,1,0
x f x g x x >⎧==⎨
<⎩ D .()(
)=f x x x =,g 班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
10.已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( ) A .1或﹣3 B .﹣1或3 C .1或3 D .﹣1或﹣3
11.设p 、q 是两个命题,若()p q ⌝∨是真命题,
那么( )
A .p 是真命题且q 是假命题
B .p 是真命题且q 是真命题
C .p 是假命题且q 是真命题
D .p 是假命题且q 是假命题
12.圆心为(1,1)且过原点的圆的方程是( )
A .2=1
B .2=1
C .2=2
D .2=2
二、填空题
13.已知双曲线116322
2=-p
y x 的左焦点在抛物线px y 22=的准线上,则=p .
14.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等
于__________.
15.【泰州中学2018届高三10月月考】设二次函数()2
f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',
对任意x R ∈,不等式()()f x f x ≥'恒成立,则222
b a c
+的最大值为__________. 16.已知直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),则ab 的最大值是 . 17.数据﹣2,﹣1,0,1,2的方差是 .
18.方程22x ﹣1=的解x= .
三、解答题
19.已知{}{}
22
,1,3,3,31,1A a a B a a a =+-=--+,若{}3A
B =-,求实数的值.
20.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;
(2)若()f x 在区间[]2,1a a +上不单调,求实数的取值范围; (3)在区间[]1,1-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围.
21.已知点F (0,1),直线l 1:y=﹣1,直线l 1⊥l 2于P ,连结PF ,作线段PF 的垂直平分线交直线l 2于点H .设点H 的轨迹为曲线r . (Ⅰ)求曲线r 的方程;
(Ⅱ)过点P 作曲线r 的两条切线,切点分别为C ,D , (ⅰ)求证:直线CD 过定点;
(ⅱ)若P (1,﹣1),过点O 作动直线L 交曲线R 于点A ,B ,直线CD 交L 于点Q ,试探究+

否为定值?若是,求出该定值;不是,说明理由.
阿啊阿
22.(本小题满分12分)
如图(1),在三角形PCD 中,AB 为其中位线,且2BD PC =,若沿AB 将三角形PAB 折起,使
PAD θ∠=,构成四棱锥P ABCD -,且
2PC CD
PF CE
==. (1)求证:平面 BEF ⊥平面PAB ; (2)当 异面直线BF 与PA 所成的角为
3
π
时,求折起的角度.
23.已知椭圆:,离心率为,焦点F1(0,﹣c),F2(0,c)过F1的直线交椭圆
于M,N两点,且△F2MN的周长为4.
(Ⅰ)求椭圆方程;
(Ⅱ)直线l与y轴交于点P(0,m)(m≠0),与椭圆C交于相异两点A,B且.若,求m的取值范围.
24.已知函数f(x)=﹣x2+ax﹣lnx(a∈R).
(I)当a=3时,求函数f(x)在[,2]上的最大值和最小值;
(Ⅱ)函数f(x)既有极大值又有极小值,求实数a的取值范围.
绵阳市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】A 【解析】

点:三角函数的图象性质. 2. 【答案】
【解析】解析:选C.设D 点的坐标为D (x ,y ), ∵A (0,1),B (3,2),AD →=2DB →

∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),
∴⎩
⎪⎨⎪⎧x =6-2x ,y -1=4-2y 即x =2,y =53

∴CD →
=(2,53)-(2,0)=(0,53
),
∴|CD →
|=02+(53)2=53,故选C.
3. 【答案】D
【解析】解:函数y=e x
的图象关于y 轴对称的图象的函数解析式为y=e ﹣x

而函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x
的图象关于y 轴对称,
所以函数f (x )的解析式为y=e ﹣(x+1)
=e ﹣x ﹣1.即f (x )=e ﹣x ﹣1.
故选D .
4. 【答案】A
【解析】解:∵

只需将函数y=sin2x 的图象向左平移个单位得到函数
的图象.
故选A .
【点评】本题主要考查诱导公式和三角函数的平移.属基础题.
5. 【答案】C
【解析】 因为角


依次成等差数列,所以
由余弦定理知,即,解得
所以
, 故选C
答案:C
6. 【答案】A.
【解析】(3)(3)()(6)f x f x f x f x +=-⇔=-,∴()f x 的图象关于直线3x =对称, ∴6个实根的和为3618⋅=,故选A. 7. 【答案】A
【解析】解:∵f ()=,
∴f (2)=f (
)=
=3.
故选:A .
8. 【答案】D 【




点:不等式的恒等变换. 9. 【答案】D111] 【解析】

点:相等函数的概念. 10.【答案】A
【解析】解:两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,
所以
=


解得 a=﹣3,或a=1. 故选:A .
11.【答案】D 12.【答案】D
【解析】解:由题意知圆半径
r=

∴圆的方程为2
=2.
故选:D .
【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.
二、填空题
13.【答案】4
【解析】223()162
p p
+=,∴4p =. 14.【答案】120
【解析】

点:解三角形.
【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据
sin :sin :sin 3:5:7A B C =
,根据正弦定理,可设3,5,7a b ===,即可利用余弦定理求解最大角的余弦,
熟记正弦、余弦定理的公式是解答的关键.
15.
【答案】2
【解析】试题分析:根据题意易得:()'2f x ax b =+,由()()'f x f x ≥得:()2
20ax b a x c b +-+-≥在R
上恒成立,等价于:0{ 0a >≤,可解得:()22444b ac a a c a ≤-=-,则:22
2222241441c b ac a a
a c a c c a ⎛⎫
- ⎪-⎝⎭≤=++⎛⎫
+ ⎪⎝⎭

令1,(0)c t t a =->
,2442222t y t t t t
==≤=++++,故22
2b a c +
的最大值为2. 考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用
16.【答案】.
【解析】解:∵直线l:ax﹣by﹣1=0(a>0,b>0)过点(1,﹣1),
∴a+b﹣1=0,即a+b=1,
∴ab≤=
当且仅当a=b=时取等号,
故ab的最大值是
故答案为:
【点评】本题考查基本不等式求最值,属基础题.
17.【答案】2.
【解析】解:∵数据﹣2,﹣1,0,1,2,
∴=,
∴S2=[(﹣2﹣0)2+(﹣1﹣0)2+(0﹣0)2+(1﹣0)2+(2﹣0)2]=2,
故答案为2;
【点评】本题考查方差的定义与意义:一般地设n个数据,x
1
,x2,…x n的平均数,是一道基础题;
18.【答案】﹣.
【解析】解:22x﹣1==2﹣2,
∴2x﹣1=﹣2,
解得x=﹣,
故答案为:﹣
【点评】本题考查了指数方程的解法,属于基础题.
三、解答题
19.【答案】
2
3 a=-.
【解析】
考点:集合的运算.
20.【答案】(1)2()243f x x x =-+;(2)1
02
a <<
;(3)1m <-.

题解析:
(1)由已知,设2
()(1)1f x a x =-+,
由(0)3f =,得2a =,故2()243f x x x =-+.
(2)要使函数不单调,则211a a <<+,则102
a <<. (3)由已知,即2243221x x x m -+>++,化简得2
310x x m -+->,
设2
()31g x x x m =-+-,则只要min ()0g x >, 而min ()(1)1g x g m ==--,得1m <-. 考点:二次函数图象与性质.
【方法点晴】利用待定系数法求二次函数解析式的过程中注意选择合适的表达式,这是解题的关键所在;另外要注意在做题过程中体会:数形结合思想,方程思想,函数思想的应用.二次函数的解析式(1)一般式:
()()20f x ax bx c a =++≠;(2)顶点式:若二次函数的顶点坐标为(),h k ,则其解析式为
()()()2
0f x a x h k a =-+≠;(3)两根式:若相应一元二次方程的两根为()12,x x ,则其解析式为
()()()()120f x a x x x x a =--≠.
21.【答案】
【解析】满分(13分).
解:(Ⅰ)由题意可知,|HF|=|HP|,
∴点H 到点F (0,1)的距离与到直线l 1:y=﹣1的距离相等,…(2分)
∴点H 的轨迹是以点F (0,1)为焦点,直线l 1:y=﹣1为准线的抛物线,…(3分)
∴点H 的轨迹方程为x 2
=4y .…(4分)
(Ⅱ)(ⅰ)证明:设P (x 1,﹣1),切点C (x C ,y C ),D (x D ,y D ).
由y=
,得

∴直线PC :y+1=x C (x ﹣x 1),…(5分)
又PC 过点C ,y C =,
∴y C +1=x C (x ﹣x 1)=x C x 1,
∴y C +1=,即.…(6分)
同理

∴直线CD 的方程为
,…(7分)
∴直线CD 过定点(0,1).…(8分)
(ⅱ)由(Ⅱ)(ⅰ)P (1,﹣1)在直线CD 的方程为,
得x 1=1,直线CD 的方程为.
设l :y+1=k (x ﹣1),
与方程
联立,求得x Q =
.…(9分) 设A (x A ,y A ),B (x B ,y B ).
联立y+1=k (x ﹣1)与x 2
=4y ,得
x 2﹣4kx+4k+4=0,由根与系数的关系,得 x A +x B =4k .x A x B =4k+4…(10分) ∵x Q ﹣1,x A ﹣1,x B ﹣1同号,
∴+
=|PQ|
=
=
…(11分)
=
=

∴+为定值,定值为2.…(13分)
【点评】本题主要考查直线、抛物线、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、化归与转化思想,考查考生分析问题和解决问题的能力.
22.【答案】(1)证明见解析;(2)23
πθ=
. 【解析】 试题分析:(1)可先证BA PA ⊥,BA AD ⊥从而得到BA ⊥平面PAD ,再证CD FE ⊥,CD BE ⊥可得CD ⊥
平面BEF ,由//CD AB ,可证明平面BEF ⊥平面PAB ;(2)由PAD θ∠=,取BD 的中点G ,连接,FG AG ,可得PAG ∠即为异面直线BF 与PA 所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1 试题解析:
(2)因为PAD θ∠=,取BD 的中点G ,连接,FG AG ,所以//FG CD ,12
FG CD =,又//AB CD ,12
AB CD =,所以//FG AB ,FG AB =,从而四边形ABFG 为平行四边形,所以//BF AG ,得;同时,因为PA AD =,PAD θ∠=,所以PAD θ∠=,故折起的角度23
πθ=.
考点:点、线、面之间的位置关系的判定与性质.
23.【答案】
【解析】解:(Ⅰ)由题意,4a=4,=,
∴a=1,c=,
∴=,
∴椭圆方程方程为;
(Ⅱ)设l与椭圆C交点为A(x1,y1),B(x2,y2)
由得(k2+2)x2+2kmx+(m2﹣1)=0
△=(2km)2﹣4(k2+2)(m2﹣1)=4(k2﹣2m2+2)>0(*)
∴x1+x2=﹣,x1x2=,
∵,,
∴λ=3
∴﹣x1=3x2
∴x1+x2=﹣2x2,x1x2=﹣3x22,
∴3(x1+x2)2+4x1x2=0,
∴3(﹣)2+4•=0,
整理得4k2m2+2m2﹣k2﹣2=0
m2=时,上式不成立;m2≠时,,
由(*)式得k2>2m2﹣2
∵k≠0,
∴>0,
∴﹣1<m<﹣或<m<1
即所求m的取值范围为(﹣1,﹣)∪(,1).
【点评】本题主要考查椭圆的标准方程、基本性质和直线与椭圆的综合问题.直线和圆锥曲线的综合题是高考的重点题目,要强化学习.
24.【答案】
【解析】解:(Ⅰ)a=3时,f′(x)=﹣2x+3﹣=﹣=﹣,
函数f(x)在区间(,2)仅有极大值点x=1,故这个极大值点也是最大值点,
故函数在[,2]最大值是f(1)=2,
又f(2)﹣f()=(2﹣ln2)﹣(+ln2)=﹣2ln2<0,故f(2)<f(),
故函数在[,2]上的最小值为f(2)=2﹣ln2.
(Ⅱ)若f(x)既有极大值又有极小值,则必须f′(x)=0有两个不同正根x1,x2,即2x2﹣ax+1=0有两个不同正根.
故a应满足⇒⇒,
∴函数f(x)既有极大值又有极小值,实数a的取值范围是.。

相关文档
最新文档