浑南区第三中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浑南区第三中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1.在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于,则的值为()
A. B. C. D.
2.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,这三天中恰有两天下雨的概率近似为()
A.0.35 B.0.25 C.0.20 D.0.15
3.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.4 B.8 C.12 D.20
【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.
4.“”是“一元二次方程x2+x+m=0有实数解”的()
A.充分非必要条件B.充分必要条件
C.必要非充分条件D.非充分非必要条件
5. 双曲线()22
2210,0x y a b a b
-=>>的左右焦点分别为12F F 、,过2F 的直线与双曲线的右支交于
A B 、两点,若1F AB ∆是以A 为直角顶点的等腰直角三角形,则2e =( )
A .1+
B .4-
C .5-
D .3+
6. 设i 是虚数单位,是复数z 的共轭复数,若z
=2(+i ),则z=( )
A .﹣1﹣i
B .1+i
C .﹣1+i
D .1﹣i
7. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )
A .只有一条,不在平面α内
B .只有一条,在平面α内
C .有两条,不一定都在平面α内
D .有无数条,不一定都在平面α内
8. 已知a=21.2,b=(﹣)﹣0.8,c=2log 52,则a ,b ,c 的大小关系为( ) A .c <b <a B .c <a <b C .b <a <c D .b <c <a 9. 下列推断错误的是( )
A .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为“若x ≠1则x 2﹣3x+2≠0”
B .命题p :存在x 0∈R ,使得x 02+x 0+1<0,则非p :任意x ∈R ,都有x 2+x+1≥0
C .若p 且q 为假命题,则p ,q 均为假命题
D .“x <1”是“x 2﹣3x+2>0”的充分不必要条件
10.抛物线x=﹣4y 2的准线方程为( )
A .y=1
B .y=
C .x=1
D .x=
11.已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )
A .
B .
C .1:
D (1 12.函数f (x )=3x +x ﹣3的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2.3) D .(3,4)
二、填空题
13.函数()x f x xe =在点()()
1,1f 处的切线的斜率是 . 14.给出下列四个命题:
①函数f (x )=1﹣2sin 2的最小正周期为2π; ②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;
③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题; ④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0. 其中正确命题的序号是 .
15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sinAsinB+sinBsinC+cos2B=1.若C=,则= .
16.执行如图所示的程序框图,输出的所有值之和是 .
【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.
17.8
1()x x
的展开式中,常数项为___________.(用数字作答)
【命题意图】本题考查用二项式定理求指定项,基础题.
18.设复数z 满足z (2﹣3i )=6+4i (i 为虚数单位),则z 的模为 .
三、解答题
19.如图,在直三棱柱ABC ﹣A 1B 1C 1中,AC=3,BC=4,AA 1=4,AB=5,点D 是AB 的中点.
(1)求证:AC ⊥BC 1; ( 2)求证:AC 1∥平面CDB 1.
20.已知集合A={x|2≤x≤6},集合B={x|x≥3}.
(1)求C R(A∩B);
(2)若C={x|x≤a},且A C,求实数a的取值范围.
21.在极坐标系中,圆C的极坐标方程为:ρ2=4ρ(cosθ+sinθ)﹣6.若以极点O为原点,极轴所在直线为x 轴建立平面直角坐标系.
(Ⅰ)求圆C的参数方程;
(Ⅱ)在直角坐标系中,点P(x,y)是圆C上动点,试求x+y的最大值,并求出此时点P的直角坐标.
22.如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.
23.已知函数y=f(x)的图象与g(x)=log a x(a>0,且a≠1)的图象关于x轴对称,且g(x)的图象过(4,2)点.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若f(x﹣1)>f(5﹣x),求x的取值范围.
24.已知函数f(x)=a﹣,
(1)若a=1,求f(0)的值;
(2)探究f(x)的单调性,并证明你的结论;
(3)若函数f(x)为奇函数,判断|f(ax)|与f(2)的大小.
浑南区第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】B
【解析】【知识点】线性规划 【试题解析】作可行域:
由题知:
所以
故答案为:B 2. 【答案】B
【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数, 在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,
∴所求概率为.
故选B .
3. 【答案】C
【解析】由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,所以此四棱锥体积为
123123
1
=⨯⨯,故选C.
4. 【答案】A
【解析】解:由x 2
+x+m=0知,
⇔
.
(或由△≥0得1﹣4m ≥0,∴
.)
,
反之“一元二次方程x 2
+x+m=0有实数解”必有
,未必有
,
因此“”是“一元二次方程x 2+x+m=0有实数解”的充分非必要条件.
故选A .
【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系.
5. 【答案】C 【解析】
试题分析:设
1A F A B m
==,则12
,
2,
22B F m A F m B F m a
==--,因为
22AB AF BF m =+=,所以22m a a m --=,解得4a =
,所以212AF m ⎛⎫
=- ⎪ ⎪⎝
⎭,在直角
三角形12AF F 中,由勾股定理得22542c m ⎛= ⎝,因为4a =,所以22
5482c a ⎛=⨯ ⎝,所以
25e =-考点:直线与圆锥曲线位置关系.
【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方] 6. 【答案】B
【解析】解:设z=a+bi (a ,b ∈R ),则=a ﹣bi ,
由z
=2(+i ),得(a+bi )(a ﹣bi )=2[a+(b ﹣1)i],
整理得a 2+b 2
=2a+2(b ﹣1)i .
则
,解得.
所以z=1+i . 故选B .
【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.
7.【答案】B
【解析】解:假设过点P且平行于l的直线有两条m与n
∴m∥l且n∥l
由平行公理4得m∥n
这与两条直线m与n相交与点P相矛盾
又因为点P在平面内
所以点P且平行于l的直线有一条且在平面内
所以假设错误.
故选B.
【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.8.【答案】A
【解析】解:∵b=(﹣)﹣0.8=20.8<21.2=a,且b>1,
又c=2log52=log54<1,
∴c<b<a.
故选:A.
9.【答案】C
【解析】解:对于A,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1则x2﹣3x+2≠0”,正确;
对于B,命题p:存在x0∈R,使得x02+x0+1<0,则非p:任意x∈R,都有x2+x+1≥0,正确;
对于C,若p且q为假命题,则p,q至少有一个为假命题,故C错误;
对于D,x2﹣3x+2>0⇒x>2或x<1,故“x<1”是“x2﹣3x+2>0”的充分不必要条件,正确.
综上所述,错误的选项为:C,
故选:C.
【点评】本题考查命题的真假判断与应用,着重考查全称命题与特称命题的理解与应用,考查复合命题与充分必要条件的真假判断,属于中档题.
10.【答案】D
【解析】解:抛物线x=﹣4y2即为
y2=﹣x,
可得准线方程为x=.
故选:D.
11.【答案】D
【解析】
考点:1、抛物线的定义;2、抛物线的简单性质.
【方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M到焦点的距离转化为到准线的距离后进行解答的.
12.【答案】A
【解析】解:∵f(0)=﹣2<0,f(1)=1>0,
∴由零点存在性定理可知函数f(x)=3x+x﹣3的零点所在的区间是(0,1).
故选A
【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题.
二、填空题
13.【答案】2e 【解析】 试题分析:
()(),'x x x f x xe f x e xe =∴=+,则()'12f e =,故答案为2e .
考点:利用导数求曲线上某点切线斜率. 14.【答案】 ①③④ .
【解析】解:①∵
,∴T=2π,故①正确;
②当x=5时,有x 2﹣4x ﹣5=0,但当x 2﹣4x ﹣5=0时,不能推出x 一定等于5,故“x=5”是“x 2﹣4x ﹣5=0”成立
的充分不必要条件,故②错误;
③易知命题p 为真,因为>0,故命题q 为真,所以p ∧(¬q )为假命题,故③正
确;
④∵f ′(x )=3x 2﹣6x ,∴f ′(1)=﹣3,∴在点(1,f (1))的切线方程为y ﹣(﹣1)=﹣3(x ﹣1),即3x+y ﹣2=0,故④正确.
综上,正确的命题为①③④. 故答案为①③④.
15.【答案】=
.
【解析】解:在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,
∵已知sinAsinB+sinBsinC+cos2B=1,
∴sinAsinB+sinBsinC=2sin 2
B .
再由正弦定理可得 ab+bc=2b 2
,即 a+c=2b ,故a ,b ,c 成等差数列.
C=,由a ,b ,c 成等差数列可得c=2b ﹣a , 由余弦定理可得 (2b ﹣a )2=a 2+b 2﹣2abcosC=a 2+b 2
+ab .
化简可得 5ab=3b 2
,∴ =.
故答案为:.
【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题.
【解析】根据程序框图可知循环体共运行了9次,输出的x 是1,3,5,7,9,11,13,15, 17中不是3的倍数的数,所以所有输出值的和54171311751=+++++. 17.【答案】70
【解析】81
()x x -的展开式通项为8821881()(1)r r r r r r
r T C x C x x
--+=-=-,所以当4r =时,常数项为
448(1)70C -=.
18.【答案】 2 .
【解析】解:∵复数z 满足z (2﹣3i )=6+4i (i 为虚数单位),
∴z=
,∴|z|=
=
=2,
故答案为:2. 【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的
模,属于基础题.
三、解答题
19.【答案】
【解析】解:(1)∵ABC ﹣A 1B 1C 1为直三棱柱,
∴CC 1⊥平面ABC ,AC ⊂平面ABC ,
∴CC 1⊥AC …
∵AC=3,BC=4,AB=5,
∴AB 2=AC 2+BC 2
,∴AC ⊥CB …
又C 1C ∩CB=C ,
∴AC ⊥平面C 1CB 1B ,又BC 1⊂平面C 1CB 1B ,
∴AC ⊥BC 1…
(2)设CB 1∩BC 1=E ,∵C 1CBB 1为平行四边形,
∴E 为C 1B 的中点…
又D 为AB 中点,∴AC 1∥DE … DE ⊂平面CDB 1,AC 1⊄平面CDB 1,
∴AC 1∥平面CDB 1…
【点评】本题考查直线与平面垂直,直线与直线垂直,直线与平面平行的证明,考查逻辑推理能力.
【解析】解:(1)由题意:集合A={x|2≤x≤6},集合B={x|x≥3}.
那么:A∩B={x|6≥x≥3}.
∴C R(A∩B)={x|x<3或x>6}.
(2)C={x|x≤a},
∵A C,
∴a≥6
∴故得实数a的取值范围是[6,+∞).
【点评】本题主要考查集合的基本运算,比较基础.
21.【答案】
【解析】(本小题满分10分)选修4﹣4:坐标系与参数方程
解:(Ⅰ)因为ρ2=4ρ(cosθ+sinθ)﹣6,
所以x2+y2=4x+4y﹣6,
所以x2+y2﹣4x﹣4y+6=0,
即(x﹣2)2+(y﹣2)2=2为圆C的普通方程.…
所以所求的圆C的参数方程为(θ为参数).…
(Ⅱ)由(Ⅰ)可得,…
当时,即点P的直角坐标为(3,3)时,…x+y取到最大值为6.…
22.【答案】
【解析】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.
又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,
∴AA1⊥平面ABC.
(II)解:由AC=4,BC=5,AB=3.
∴AC2+AB2=BC2,∴AB⊥AC.
建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),
∴,,.
设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).
则,令y1=4,解得x1=0,z1=3,∴.
,令x2=3,解得y2=4,z2=0,∴.
===.
∴二面角A1﹣BC1﹣B1的余弦值为.
(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,
∴=,=(0,3,﹣4),
∵,∴,
∴,解得t=.
∴.
【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.
23.【答案】
【解析】解:(Ⅰ)∵g(x)=log a x(a>0,且a≠1)的图象过点(4,2),∴log a4=2,a=2,则g(x)=log2x.…
∵函数y=f(x)的图象与g(X)的图象关于x轴对称,
∴.…
(Ⅱ)∵f(x﹣1)>f(5﹣x),
∴,
即,解得1<x<3,
所以x的取值范围为(1,3)…
【点评】本题考查对数函数的性质的应用,注意真数大于零,属于基础题.24.【答案】
【解析】解:(1)a=1时:f(0)=1﹣=;
(2)∵f(x)的定义域为R∴任取x1x2∈R且x1<x2
则f(x1)﹣f(x2)=a﹣﹣a+=.
∵y=2x在R是单调递增且x1<x2
∴0<2x1<2x2,∴2x1﹣2x2<0,
2x1+1>0,2x2+1>0,
∴f(x1)﹣f(x2)<0
即f(x1)<f(x2),
∴f(x)在R上单调递增.
(3)∵f(x)是奇函数∴f(﹣x)=﹣f(x),
即a﹣=﹣a+,
解得:a=1.
∴f(ax)=f(x)
又∵f(x)在R上单调递增
∴x>2或x<﹣2时:|f(x)|>f(2),
x=±2时:|f(x)|=f(2),
﹣2<x<2时:|f(x)|<f(2).
【点评】本题考查的是函数单调性、奇偶性等知识的综合问题.在解答的过程当中充分体现了计算的能力、单调性定义的应用以及问题转化的能力.值得同学们体会和反思.。