环山林场初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环山林场初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)下列图中∠1和∠2不是同位角的是()
A. B. C. D.
【答案】C
【考点】同位角、内错角、同旁内角
【解析】【解答】解:A图中,∠1与∠2有一边在同一条直线上,另一条边在被截线的同一方,是同位角,B图中,∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,
C图中,∠1与∠2的两条边都不在同一条直线上,不是同位角,
D图中,∠1与∠2有一边在同一条直线上,另一条边在被截线的同一方,是同位角.故答案为:C.
【分析】同位角是由两条直线被第三条直线所截形成的两个角,它们在前两条直线的同旁,在第三条直线的同旁,C不是同位角.
2、(2分)若方程mx+ny=6有两个解,则m,n的值为()
A. 4,2
B. 2,4
C. -4,-2
D. -2,-4
【答案】C
【考点】解二元一次方程组
【解析】【解答】解:把,代入mx+ny=6中,
得:,
解得:.
故答案为:C.
【分析】将x、y的两组值分别代入方程,建立关于m、n的方程组,再利用加减消元法求出m、n的值。
3、(2分)不等式x-2>1的解集是()
A.x>1
B.x>2
C.x>3
D.x>4
【答案】C
【考点】解一元一次不等式
【解析】【解答】解:x>1+2,x>3.故答案为:C.
【分析】直接利用一元一次不等式的解法得出答案.一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.
4、(2分)如图所示,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上的“0 cm”和“15 cm”分别对应数轴上的-3.6和x,则()
A. 9<x<10
B. 10<x<11
C. 11<x<12
D. 12<x<13
【答案】C
【考点】一元一次不等式组的应用,一元一次方程的实际应用-几何问题
【解析】【解答】解:根据题意得:x+3.6=15,
解得:x=11.4 ;
故答案为:C
【分析】根据数轴上两点间的距离得出原点右边的线段长度+原点左边的线段长度=15,列出方程,求解得出x
的值,从而得出答案。
5、(2分)若k< <k+l(k是整数),则k的值为()
A.6
B.7
C.8
D.9
【答案】C
【考点】估算无理数的大小
【解析】【解答】解:∵64<80<81,
∴8<<9,
又∵k<<k+1,
∴k=8.
故答案为:C.
【分析】由64<80<81,开根号可得8<<9,结合题意即可求得k值.
6、(2分)估计的值应在()
A. 1和2之间
B. 2和3之间
C. 3和4之间
D. 4和5之间【答案】B
【考点】估算无理数的大小
【解析】【解答】解:∵
∴
∴在2和3之间。
故答案为:B
【分析】由,可求出的取值范围。
7、(2分)如图,AB∥CD,EF⊥CD,FG平分∠EFC,则()
A.∠1<∠2
B.∠1>∠2
C.∠1=∠2
D.不能确定
【答案】C
【考点】对顶角、邻补角,平行线的性质
【解析】【解答】解:∵AB∥CD,
∴∠2=∠CFG,
又∵FG平分∠EFC,
∴∠1=∠CFG,
∴∠1=∠2,
故答案为:C.
【分析】根据平行线性质可得∠2=∠CFG,由角平分线性质得∠1=∠CFG,等量代换即可得证.
8、(2分)所有和数轴上的点组成一一对应的数组成()
A. 整数
B. 有理数
C. 无理数
D. 实数【答案】D
【考点】实数在数轴上的表示
【解析】【解答】解:∵实数与数轴上的点成一一对应。
故答案为:D
【分析】根据实数与数轴上的点成一一对应,即可得出答案。
9、(2分)在数,,,,0中,无理数的个数是()
A.1
B.2
C.3
D.4
【答案】B
【考点】无理数的认识
【解析】【解答】在数,,,,0中,
,是无理数,
故答案为:B.
【分析】无理数是指无限不循环小数。
根据无理数的定义即可求解。
10、(2分)如图,直线a∥b,直线l分别与a、b相交于A、B两点,AC⊥a于点A,交直线b于点C.已知∠1=42°,则∠2的度数是()
A. 38°
B. 42°
C. 48°
D. 58°
【答案】C
【考点】平行线的性质
【解析】【解答】解:∵直线a∥b,
∴∠1=∠BCA,
∵∠1=42°,
∴∠BCA=42°,
∵AC⊥AB,
∴∠2+∠BCA=90°,
∴∠2=48°,
故答案为:C
【分析】利用平角的特征即可求出∠2的值.
11、(2分)如图,已知直线EF⊥MN垂足为F,且∠1=140°,则当∠2等于()时,AB∥CD.
A. 50°
B. 40°
C. 30°
D. 60°
【答案】A
【考点】垂线,平行线的判定
【解析】【解答】解:∵AB∥CD,
∴∠3=∠4(两直线平行,同位角相等);
又∵∠1+∠3=180°(平角的定义),
∠1=140°(已知),
∴∠3=∠4=40°;
∵EF⊥MN,
∴∠2+∠4=90°,
∴∠2=50°;
故答案为:A.
【分析】根据AB∥CD,可得出∠3=∠4,再根据平角的定义,可求出∠3、∠4的度数,再根据垂直的定义得出就可求出∠2的度数,从而可得出正确的选项。
12、(2分)下列各式中是二元一次方程的是()
A.x+3y=5
B.﹣xy﹣y=1
C.2x﹣y+1
D.
【答案】A
【考点】二元一次方程的定义
【解析】【解答】解:A. x+3y=5,是二元一次方程,符合题意;
B.﹣xy﹣y=1,是二元二次方程,不是二元一次方程,不符合题意;
C. 2x﹣y+1,不是方程,不符合题意;
D. ,不是整式方程,不符合题意,
故答案为:A.
【分析】含有两个未知数,未知数项的最高次数是1的整式方程,就是二元一次方程,根据定义即可一一判断:A、是二元一次方程符合题意;B、是二元二次方程,不符合题意;C、不是方程,不符合题意;D、是分式方程,不是整式方程,不符合题意。
二、填空题
13、(3分)已知a、b、c满足,则a=________,b=________,c=________.
【答案】2;2;-4
【考点】三元一次方程组解法及应用
【解析】【解答】解:①﹣②,得:3a﹣3b=0④
①﹣③,得:﹣4b=﹣8,解得:b=2,
把b=2代入④,得:3a﹣3×2=0,解得:a=2,
把a=2,b=2代入②,得2+2+c=0,解得:c=﹣4,
∴原方程组的解是.
故答案为:2,2,﹣4.
【分析】观察方程组中同一未知数的系数特点:三个方程中c的系数都是1,因此①﹣②和①﹣③,就可求出b 的值,再代入计算求出a、c的值。
14、(1分)关于x,y的方程组中,若的值为,则m=________。
【答案】2
【考点】解二元一次方程组
【解析】【解答】解:
由得:3mx=9
∴3×m=9
解之:m=2
故答案为:2
【分析】观察方程组中同一未知数的系数的特点:y的系数互为相反数,因此将两方程相加,可得出3mx=9,再将x的值代入方程求出m的值。
15、(1分)如图,某煤气公司安装煤气管道,他们从点A处铺设到点B处时,由于有一个人工湖挡住了去路,需要改变方向经过点C,再拐到点D,然后沿与AB平行的DE方向继续铺设.已知∠ABC=135°,∠BCD =65°,则∠CDE=________.
【答案】110°
【考点】平行公理及推论,平行线的性质
【解析】【解答】解:过点C作CF∥AB,如图:
∵AB∥DE,CF∥AB,
∴DE∥CF,
∴∠CDE=∠FCD,
∵AB∥CF,∠ABC=135°,
∴∠BCF=180°-∠ABC=45°,
又∵∠FCD=∠BCD+∠BCF,∠BCD=65°,
∴∠FCD=110°,
∴∠CDE=110°.
故答案为:110°.
【分析】过点C作CF∥AB,由平行的传递性得DE∥CF,由平行线性质得∠CDE=∠FCD,由AB∥CF得∠BCF=45°,由∠FCD=∠BCD+∠BCF即可求得答案.
16、(4分)如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:
解:∵AD∥BC(已知),
∴∠1=∠3(________).
∵∠1=∠2(已知),
∴∠2=∠3.
∴BE∥________(________).
∴∠3+∠4=180°(________).
【答案】两直线平行,内错角相等;DF;同位角相等,两直线平行;两直线平行,同旁内角互补
【考点】平行线的判定与性质
【解析】【分析】根据平行线性质:两直线平行,内错角相等;
根据平行线判定:同位角相等,两直线平行;
根据平行线性质:两直线平行,同旁内角互补.
17、(1分)我们知道的整数部分为1,小数部分为,则的小数部分是________.
【答案】
【考点】估算无理数的大小
【解析】【解答】解:∵,
∴的整数部分为2,
∴的小数部分为,
故答案为:.
【分析】由于的被开方数5介于两个相邻的完全平方数4与9之间,根据算数平方根的性质,被开方数越大,其算数平方根就越大即可得出,从而得出的整数部分是2,用减去其整数部分即可得出其小数部分。
18、(1分)如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=________.
【答案】53°
【考点】对顶角、邻补角
【解析】【解答】解:∵∠2和∠COE为对顶角
∴∠2=∠COE=32°
∵∠1+∠COE+∠BOE=180°
即95°+32°+∠BOE=180°
∴∠BOE=53°
故答案为:53°。
【分析】根据对顶角相同,可求∠COE的度数,因为∠AOB为平角,根据平角等于180度,即可求得∠1+∠COE+∠BOE的和为180°,从而得出∠BOE的度数。
三、解答题
19、(5分)如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.
【答案】解:∵∠AFE=90°,
∴∠AEF=90°﹣∠A=90°﹣35°=55°,
∴∠CED=∠AEF=55°,
∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°.
答:∠ACD的度数为83°
【考点】余角、补角及其性质,对顶角、邻补角,三角形内角和定理
【解析】【分析】先根据两角互余得出∠AEF =55°,再根据对顶角相等得出∠CED=∠AEF=55° ,最后根据三角形内角和定理得出答案。
20、(5分)如图,∠ABC+∠BCD+∠EDC=360°.求证:AB∥ED.
【答案】证明:过C作AB∥CF,
∴∠ABC+∠BCF=180°,
∵∠ABC+ ∠BCD+ ∠EDC=360°,
∴∠DCF+ ∠EDC=180°,
∴CF∥DE,
∴ABF∥DE.
【考点】平行公理及推论,平行线的判定与性质
【解析】【分析】过C作AB∥CF,根据两直线平行,同旁内角互补,得∠ABC+∠BCF=180°,再结合已知条件得∠DCF+ ∠EDC=180°,由平行线的判定得CF∥DE,结合平行公理及推论即可得证.
21、(15分)学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:
(1)求该校七年一班此次预选赛的总人数;
(2)补全条形统计图,并求出书法所在扇形圆心角的度数;
(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?
【答案】(1)解:6÷25%=24(人).故该校七年一班此次预选赛的总人数是24人
(2)解:24﹣6﹣4﹣6=8(人),书法所在扇形圆心角的度数8÷24×360°=120°;
补全条形统计图如下:
(3)解:480÷24×2=20×2
=40(名)
故本次比赛全学年约有40名学生获奖
【考点】扇形统计图,条形统计图
【解析】【分析】(1)先根据版画人数除以所占的百分比可得总人数;
(2)先根据(1)中的总人数减去其余的人数可得书法参赛的人数,然后计算圆心角,补全统计图即可;(3)根据总数计算班级数量,然后乘以2可得获奖人数.
22、(10分)
(1)如图AB∥CD,∠ABE=120°,∠EC D=2 5°,求∠E的度数。
(2)小亮的一张地图上有A、B、C三个城市,但地图上的C城市被墨迹污染了(如图),但知道∠BAC=∠1,∠ABC=∠2,请你用尺规作图法帮他在如图中确定C城市的具体位置.(用尺规作图,保留作图痕迹,不写作法)
【答案】(1)解:过点E作EF∥AB,∵AB∥CD,∠ABE=120°
∴∠FEB=60°,EF∥CD
∴∠FEC=25°
∴∠BEC=25°+60°=85°
(2)解:连接AB,以AB为边,作∠BAC=∠1,作∠ABC=∠2,则两个弧相交的点即为点C的位置。
【考点】平行线的性质,作图—复杂作图
【解析】【分析】(1)根据直线平行的性质,两直线平行,内错角相等,同旁内角互补,即可得到∠E的值。
(2)根据作一个角等于已知角的方法进行操作即可,可得最后两个直线的交点即为C点所在的位置。
23、(5分)如图,在△ABC中,∠ABC与∠ACB的平分线相交于O.过点O作EF∥BC分别交AB、AC 于E、F.若∠BOC=130°,∠ABC:∠ACB=3:2,求∠AEF和∠EFC.
【答案】解:∵∠ABC:∠ACB=3:2,
∴设∠ABC=3x,∠ACB=2x,
∵BO、CO分别平分∠ ABC、∠ ACB,
∴∠ABO=∠CBO=x,∠ACO=∠BCO=x,
又∵∠BOC=130°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
∴130°+x+x=180°,
解得:x=20°,
∴∠ABC=3x=60°,∠ACB=2x=40°,
∵EF∥BC,
∴∠AEF=∠ABC=60°,
∠EFC+∠ACB=180°,
∴∠EFC=140°.
【考点】平行线的性质
【解析】【分析】根据已知条件设∠ABC=3x,∠ACB=2x,由角平分线性质得∠ABO=∠CBO=x,∠ACO=∠BCO=x,在△BOC中,根据三角形内角和定理列出方程,解之求得x值,从而得∠ABC=60°,∠ACB=40°,再由平行线性质同位角相等得∠AEF=60°,同旁内角互补得∠EFC=140°.
24、(5分)小明在甲公司打工.几个月后同时又在乙公司打工.甲公司每月付给他薪金470元,乙公司每月付给他薪金350元.年终小明从这两家公司共获得薪金7620元.问他在甲、乙两公司分别打工几个月? 【答案】解:设他在甲公司打工x个月,在乙公司打工y个月,依题可得:
470x+350y=7620,
化简为:47x+35y=762,
∴x==16-y+,
∵x是整数,
∴47|10+12y,
∴y=7,x=11,
∴x=11,y=7是原方程的一组解,
∴原方程的整数解为:(k为任意整数),
又∵x>0,y>0,
∴,
解得:-<k<,
k=0,
∴原方程正整数解为:.
答:他在甲公司打工11个月,在乙公司打工7个月.
【考点】二元一次方程的解
【解析】【分析】设他在甲公司打工x个月,在乙公司打工y个月,根据等量关系式:甲公司乙公司+乙公司乙公司=总工资,列出方程,此题转换成求方程47x+35y=762的整数解,求二元一次不定方程的正整数解时,可先求出它的通解。
然后令x>0,y>0,得不等式组.由不等式组解得k的范围.在这范围内取k的整数值,代人通解,即得这个不定方程的所有正整数解.
25、(5分)已知数a、b、c在数轴上的位置如图所示,化简:|a+b|-|a-b|+|a+c|.
【答案】解:由数轴可知:c<a<0<b,|c|>|b|>|a|,
∴a+b>0,a-b<0,a+c<0,∴|a+b|-|a-b|+|a+c|=a+b-[-(a-b)]+[-(a+c)],
=a+b+a-b-a-c,
=a-c.
【考点】实数在数轴上的表示,实数的绝对值
【解析】【分析】根据数轴可知c<a<0<b,从而可得a+b>0,a-b<0,a+c<0,再由绝对值的性质化简、计算即可.
26、(10分)近年来,由于乱砍滥伐,掠夺性使用森林资源,我国长江、黄河流域植被遭到破坏,土地沙
化严重,洪涝灾害时有发生,沿黄某地区为积极响应和支持“保护母亲河”的倡议,建造了长100千米,宽0.5千米的防护林.有关部门为统计这一防护林共有多少棵树,从中选出10块防护林(每块长1km、宽0.5km)进行统计.
(1)在这个问题中,总体、个体、样本各是什么?
(2)请你谈谈要想了解整个防护林的树木棵数,采用哪种调查方式较好?说出你的理由.
【答案】(1)解:总体:建造的长100千米,宽0.5千米的防护林中每块长1km、宽0.5km的树的棵树;个体:一块(每块长1km、宽0.5km)防护林的树的棵树;
样本:抽查的10块防护林的树的棵树
(2)解:采用抽查的方式较好,因为数量较大,不容易调查
【考点】全面调查与抽样调查,总体、个体、样本、样本容量
【解析】【分析】(1)总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量,根据总体、个体和样本的定义即可解答;
(2)一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,根据抽样调查和普查的定义及特征进行选择即可.。