【教学设计】 分式的混合运算(3)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式的混合运算
教材分析掌握约分和通分,理解通分的意义,理解最简公分母的意义;掌握分式的通分法则,能熟练2010掌握通分运算。

在这个基础上利用法则正确进行分式的加减运算;掌握运算顺序,进行分式的四则混合运算.学生系统了解本章的知识体系及知识内容的同时,使学生在掌握通分、约分的基础上进一步掌握分式的四则运算及它们之间的内在联系,在熟练掌握分式四则运算。

培养学生对知识综合掌握、综合运用的能力,提高学生的运算能力,培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取。

学情分析学生在约分和通分的基础上利用法则正确进行分式的加减运算,掌握运算顺序,进行分式的四则混合运算针对学生的现状和教学内容的特点,调整改进教学方法,减少教学内容,使学生能够由简入深,逐步掌握学习技巧,增强学习兴趣。

适应素质教育的要求,培养探究式的学习方法,做典型习题,教会学生方法,循序渐进,打好基础培养学生对知识综合掌握、综合运用的能力,提高学生的运算能力,培养学生乐于探究、合作学习的习惯。

教学目标一、知识目标:利用法则正确进行分式的加减运算;掌握运算顺序,进行分式的四则混合运算.理解通分的意义,理解最简公分母的意义;掌握分式的通分法则,能熟练掌握通分运算。

二、能力目标: 在学生掌握基本概念、基本方法的基本上将知识融会贯通,通过反思、反馈、的方法进一步提高运算能力。

培养学生的分析和归纳能力。

三、情感与态度:培养学生对知识综合掌握、综合运用的能力,提高学生的运算能力,培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取。

进一步发展符号感,通过类比分数研究分式的教学,引导学生运用类比转化的思想方法研究解决问题.


熟练而准确地掌握分式四则混合运算。



掌握运算顺序,熟练进行分式的四则混合运算.




充分掌握法则和运算顺序,为学好分式的混合运算做好课前准备。

教学流程
分课时
环节
与时间
教师活动学生活动
△设计意图
◇资源准备
□评价○反思
第一课时
一、复习
提问
5分
二、例题
讲解:
15分
三、练习
16分
四、小结
2′
五、布置作
业2分
六、预习
2分
提问:1.分式混合运算的顺序.2.注
意问题
x
x
x
x
x
x
x
x-
÷
+
-
-
-
-
+4
)
4
4
1
2
2
(
2
2
解:x
x
x
x
x
x
x
x-
÷
+
-
-
-
-
+4
)
4
4
1
2
2
(
2
2
=)4
(
]
)2
(
1
)2
(
2
[
2-
-

-
-
-
-
+
x
x
x
x
x
x
x
=
)4
(
]
)2
(
)1
(
)2
(
)2
)(
2
(
[
2
2-
-

-
-
-
-
-
+
x
x
x
x
x
x
x
x
x
x
=)4
(
)2
(
4
2
2
2
-
-

-
+
-
-
x
x
x
x
x
x
x
=4
4
1
2+
-
-
x
x
多媒体展示习题1.已知:x+y+
32z,求z
y
x
x
+
+的值。

2.已知:x
1
-y
1
=3,求y
xy
x
y
xy
x
-
-
-
+
2
2
3
2
的值。

通过本节课的学习,你学到了
哪些知识和方法?合运算注意问题
有哪些?你还有什么疑问没有解决?
完成练习册
学生分成小
组,选派代表回
答问题
多媒体展示
习题
锻炼培养学
生创新能力
引导学生总

△熟练掌握分
式的混合运算,
知道运算后的
结果分子、分母
要进行约分注
意最后的结果
要是最简分式
或整式.分式的
加、减、乘、除
混合运算注意
按分式的运算
顺序法则进行
计算,但恰当地
使用运算律会
使运算简便。

□注意分子、分
母可进行因式
分解的式子,以
备约分或通分
时备用,可避免
运算烦琐。

.
教学流程
分课时
环节
与时间
教师活动学生活动
△设计意图
◇资源准备
□评价○反思
七、板书
设计
分式的混合运算
x
x
x
x
x
x
x
x-
÷
+
-
-
-
-
+4
)
4
4
1
2
2
(
2
2
解:x
x
x
x
x
x
x
x-
÷
+
-
-
-
-
+4
)
4
4
1
2
2
(
2
2
=)4
(
]
)2
(
1
)2
(
2
[
2-
-

-
-
-
-
+
x
x
x
x
x
x
x
=
)4
(
]
)2
(
)1
(
)2
(
)2
)(
2
(
[
2
2-
-

-
-
-
-
-
+
x
x
x
x
x
x
x
x
x
x
=)4
(
)2
(
4
2
2
2
-
-

-
+
-
-
x
x
x
x
x
x
x
=4
4
1
2+
-
-
x
x
教学流程
分课时
环节
与时间
教师活动学生活动
△设计意图
◇资源准备
□评价○反思
第二课时
一、找出
问题所

5分
二、巩固
练习
15分
16分
五、小结
2′
六、布置作
业2分
七、预习
典型错解:(1)b
a
5.0
解:原式=10
5.0
10


b
a
=b
a
5
10
(2)b
a
a
--b
a
b
-
解:
原式)
)(
(
)
(
b
a
b
a
b
a
a
+
-
+
)
)(
(
)
(
b
a
b
a
b
a
b
+
-
-
=2
2
2
2
b
a
b
ab
ab
a
-
+
-
+
=2
2
2
2
b
a
b
a
-
+
=1
计算(1)2
2
3
2
4
35
8
15
4
n
b
a
n
b
a-
÷
;(2)
2
2
2
2
50
10
3
3
b
a
b
a
ab
b
a
-

-

小结:让学生归纳总结:
1、对分式运算中出现的问题进
行了反思、纠正。

2、通过大量习题的练习,基本
巩固了分式运算。

预习:整数指数幂的运算
学生出示习
题本找出典型
错解
请学生到黑板
做,其余做在练
习本上,纠正学
生容易出现的错

引导学生总结
锻炼学生表达能

△. 掌握分式
的混合运算顺
序:先算乘方,
再算乘除,后算
加减,如果有括
号,就先强调分
式的混合运算:
先算乘方,再算
乘除,后算加
减,如果有括
号,就先算括号
里面的。

◇复习课的主
要目的的是巩
固和深化,主要
的方法是进行
有效的训练。


学生反思错误
的基础上进行
有重点的反馈
练习是非常有
不要的。

教学流程
分课时
环节
与时间
教师活动学生活动
△设计意图
◇资源准备
□评价○反思
八、板书设计
分式的混合运算
错例(1)b
a
5.0
解:原式=10
5.0
10


b
a
=b
a
5
10
错例(2)b
a
a
--b
a
b
-
解:
原式)
)(
(
)
(
b
a
b
a
b
a
a
+
-
+
)
)(
(
)
(
b
a
b
a
b
a
b
+
-
-
=2
2
2
2
b
a
b
ab
ab
a
-
+
-
+
=2
2
2
2
b
a
b
a
-
+
=1
教学流程
分课时
环节
与时间
教师活动学生活动
△设计意图
◇资源准备
□评价○反思
第三课时
一、课堂
引入
5分
二、讲解
新课
15分
三、练习
15分
四、总结
3
五、布置作
业3
六、预习
1分
回忆正整数指数幂的运算性质:
(1)n
m
n
m a
a
a+
=
⋅(是正整数)
(2)mn
n
m a
a=
)
((是正整数)
(3)n
n
n b
a
ab=
)
((n是正整数)
讨论5
3
a
a
2
3
3
a
a
a
⋅2
1
a
当n是正整数时,n
a-=n a
1
(a≠0).
(注意:适用于m、n可以是全体整
数.)
1.填空
(1)-22= (2)(-2)2=
(3)(-2) 0=
(4)20= (5)2 -3=
(6)(-2) -3=
2.计算
(1) (x32)2(2)x22·(2y)3
(3)(3x22) 2÷(2y)3
总结:负整数指数幂的运算性质:
到负指数幂的引入可以使
课后作业
1. 用科学计数法表示下列各数:
0.000 04, -0. 034, 0.000
000 45, 0. 003 009
2.计算
(1) (3×10-8)×(4×103)
(2) (2×10-3)2÷(10-3)3
提问
学生探究
请学生到黑
板做,纠正错误
引导学生总结锻
炼学生表达能力
△. 掌握
整数指数幂的
运算性质.会用
科学计数法表
示小于1的数.
回忆同底数的
幂的乘法:
n
m
n
m a
a
a+
=
⋅,
理解这条性质
适用于是任意
整数的结论,明
白正整数指数
幂的运算性质
具有延续性.其
它的正整数指
数幂的运算性
质,在整数范围
里也都适用
◇明白正整数
指数幂的运算
性质具有延续
性.其它的正整
数指数幂的运
算性质,在整数
范围里也都适

教学流程
分课时
环节
与时间
教师活动学生活动
△设计意图
◇资源准备
□评价○反思
七、板
书设计
整数指数幂
正整数指数幂的运算性质:
(1)n
m
n
m a
a
a+
=
⋅(是正整数)
(2)mn
n
m a
a=
)
((是正整数)
(3)n
n
n b
a
ab=
)
((n是正整数)
1.填空
(1)-22= (2)(-2)2=
(3)(-2) 0=
(4)20= (5)2 -3=
(6)(-2) -3=
2.计算
(1) (x32)2(2)x22·(2y)3
(3)(3x22) 2÷(2y)3
教学设计
题目分式方程总课时 4
学校长岗一

教者袁晓范年级八年学科数学
设计来源自我设计教学时间2010年3月19日— 3月24日
教材分析教材是以一元一次方程的解法为基础解可化为一元一次方程的分式方程,只是需把分式方程化成整式方程,注意重新旧知识的联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的解法。

至于解分式方程时产生增根的原因只让学生了解就可以了,重要的是应让学生掌握验根的方法.要使学生掌握解分式方程的基本思路是将分式方程转化整式方程,具体的方法是“去分母”,即方程两边统称最简公分母.
学情分析
使学生能够由简入深,逐步掌握列分式方程解决实际问题,增强学习兴趣。

适应素质教育的要求,培养探究式的学习方法,在课堂上为学生自己动手、动脑解题搭建了一些提示的平台,给了设未知数、解题思路和解题格式,但教学目标要求学生还是要独立地分析、解决实际问题,让学生发挥他们的才能,找到解题的思路,能够独立地完成任务.特别是题目中的数量关系清晰,放手让学生做,以提高学生分析问解决问题的能力.
教学目标知识目标:经历分式方程概念、分式方程的解法过程,会解可化为一元一次方程的分式方程的解法,会检验根的合理性,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.了解分式方程的概念, 和产生增根的原因.能力目标: 在学生掌握基本概念、基本方法的基本上将知识融会贯通,通过反思、反馈、的方法进一步提高运算能力。

培养学生的分析和归纳能力。

情感与态度:培养学生对知识综合掌握、综合运用的能力,提高学生的运算能力,培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取。

进一步发展符号感,通过类比分数研究分式的教学,引导学生运用类比转化的思想方法研究解决问题.
重点
会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.
难点
会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.




课前充分预习一元一次方程的解法,注重新旧知识的联系.
教学流程
分课时
环节
与时间
教师活动学生活动
△设计意图
◇资源准备
□评价○反思
第一课时
一、情景


5分
二、例题
讲解:
15分
三、练习
16分
四、小结
2′
五、布置作
业2分
六、预习
2分
1.回忆一元一次方程的解法
2.引言的问题:一艘轮船在静
水中的最大航速为20千米/时,它
沿江以最大航速顺流航行100千米
所用时间,与以最大航速逆流航行
60千米所用时间相等,江水的流速
为多少?
分析:设江水的流速为v千米/
时,根据“两次航行所用时间相同”
这一等量关系,得到方程
v
v-
=
+20
60
20
100
.
像这样分母中含未知数的方程
叫做分式方程,引出出课题。

例. (1)
5
1
3
1
=
-
+
-
x
x
解:(1)方程两边同乘以)3
(5+
x,

)3
(
)1
(5=
+
-
-x
x,解得 2
检验:把2代入方程左边,
得.
∵左边=右边,
∴2是原方程的解.
练习:解方程(1)
6
2
3
-
=
x
x
(2)
1
6
1
3
1
2
2-
=
-
+
+x
x
x
(1) 0
1
1
5
2
=
+
-
+x
x
分式方程的解法以及产生增根的原

作业
x
x
x3
8
7
4
1
8
3
6
-
-
-
=
-
1
4
3
2
2
2
2
=
-
-
-
+
+x
x
x
x
x
学生分成小
组,选派代表回
答问题
小组研究
锻炼培养学生创
新能力
引导学生总

△考提出
问题,引发学生
的思考,从而引
出解分式方程
的解法以及产
生增根的原因.
及时总结了解
分式方程的基
本思路和做法.
讲清楚产生增
根的原因及检
验增根的方法.
□点拨解题的
思路1.会分析
题意找出等量
关系.会列出可
化为一元一次
方程的分式方
程解决实际问
题.2.掌握分式
方程的解法,会
解可化为一元
一次方程的分
式方程,会检验
一个数是不是
原方程的增根.
教学流程
分课时
环节
与时间
教师活动学生活动
△设计意图
◇资源准备
□评价○反思
七、板书
设计
分式方程
定义:
分母中含未知数的方程叫做分式方

例. (1)
5
1
3
1
=
-
+
-
x
x
解:(1)方程两边同乘以)3
(5+
x,

)3
(
)1
(5=
+
-
-x
x,解得 2
检验:把2代入方程左边,
得.
∵左边=右边,
∴2是原方程的解.
教学流程
分课时
环节
与时间
教师活动学生活动
△设计意图
◇资源准备
□评价○反思
第二课时
一、提问
8分
二、习题


30分
五、小结
5′
六、布置作
业1分
七、预习
1分
1、解分式方程的基本思路:
把分式方程“转化”为整式方程,
再利用整式方程的解法求解
2、解分式方程的方法:
4
1
4
5
1
-
=
-
-
+
x
x
x
解:方程两边同乘以(4),得
.∴
检验:把5代入方程左边,
得;
把5代入方程右边,
得1
4
5
1
4
1
=
-
=
-
x

∵左边=右边,
∴5是原方程的解.
练习
练习册对应习题
总结:
解分式方程的一般步骤:
1.在方程的两边都乘最简公分母,
约去分母,化成整式方程;――化

2.解这个整式方程;――解整
3.把整式方程的根代入最简公
分母,看结果是不是零,使最简
公分母为零的根是原方程的增
根,必须舍去。

——验根
X为何值时,代数式
x
x
x
x2
3
1
3
9
2
-
-
-
+
+
的值等于2?
提问
观看老师解题总
结方法然后练习
本上做题
学生总结锻炼学
生表达能力
△. 通过复习
分式方程的解
法深入理解把
分式方程“转
化”为整式方
程,再利用整式
方程的解法求
解的一般思路
◇在方程变形
时,有时可能产
生不适合原方
程的根,这种根
叫做原方程的
增根产生增根
的原因:在把分
式方程转化为
整式方程时,分
式的两边同时
乘以了零验根:
把求得的根代
入最简公分母,
看它的值是否
为零。

使最简公
分母值为零的
根是增根。

教学流程
分课时
环节
与时间
教师活动学生活动
△设计意图
◇资源准备
□评价○反思
八、板书
设计
分式方程
4
1
4
5
1
-
=
-
-
+
x
x
x
解:方程两边同乘以(4),得
.∴
检验:把5代入方程左边,
得;
把5代入方程右边,
得1
4
5
1
4
1
=
-
=
-
x

∵左边=右边,
∴5是原方程的解.
教学流程
分课时
环节
与时间
教师活动学生活动
△设计意图
◇资源准备
□评价○反思
第三课时
一、问题
探究
8分
二、例题


20分
三、小结
5′
四、练习
10
五、预习
2分
问题:甲、乙两人做某种机器零件。

已知甲每小时比乙多做6个,甲做
90个所用的时间与乙做60个所用
的时间相等。

求甲、乙每小时各做
多少个?
一般步骤:
1、审题;
设未知数,找相等关系,列方程;
解方程,验根
一架飞机顺风飞行1380千米和逆风
飞行1020千米所需的时间相等。


知这架飞机的速度是每小时360千
米,求风的速度。

解:设风的速度为x千米/小时,根
据所需的时间相等列出方程:
= ,解得:
54
54满足原方程,并且符合实际意义。

解分式方程的一般步骤:
1.在方程的两边都乘最简公分母,
约去分母,化成整式方程;――化

2.解这个整式方程;――解整
3.把整式方程的根代入最简公
分母,看结果是不是零,使最简
公分母为零的根是原方程的增
根,必须舍去。

——验根
已知甲车行驶90千米所用的时
间与乙车行驶60千米所用的时间相
同,如果甲车每小时比乙车快6千
米,请问甲、乙两车每小时行驶多
少千米?
学生板前书

观看老师解题总
结方法然后练习
本上做题
学生总结锻炼学
生表达能力
△会分析题意,
找出等量关系,
会列出分式方
程解简单应用
题。

知道检验时
既要检验整式
方程的根是不
是所列分式方
程的根,还要检
验分式方程的
根是不是符合
实际问题与题
意。

◇通过列分式
方程解应用题,
渗透方程思想,
同时培养学生
分析问题和解
决问题的能力
教学流程
分课时
环节
与时间
教师活动学生活动
△设计意图
◇资源准备
□评价○反思
六、板书
设计
分式方程的应用
一架飞机顺风飞行1380千米和逆风
飞行1020千米所需的时间相等。


知这架飞机的速度是每小时360千
米,求风的速度。

解:设风的速度为x千米/小时,根
据所需的时间相等列出方程:
= ,解得:
54
54满足原方程,并且符合实际意义。

解分式方程的一般步骤:
1.在方程的两边都乘最简公分母,
约去分母,化成整式方程;――化

2.解这个整式方程;――解整
3.把整式方程的根代入最简公
分母,看结果是不是零,使最简
公分母为零的根是原方程的增
根,必须舍去。

——验根。

相关文档
最新文档