人教版(七年级)初一上册数学期末测试题及答案doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版(七年级)初一上册数学期末测试题及答案doc
一、选择题
1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )
A .点M
B .点N
C .点P
D .点Q 2.如果一个角的补角是130°,那么这个角的余角的度数是( ) A .30° B .40° C .50° D .90° 3.以下选项中比-2小的是( )
A .0
B .1
C .-1.5
D .-2.5
4.将连续的奇数1、3、5、7、…、,按一定规律排成如表:
图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22 B .70 C .182 D .206 5.一个角是这个角的余角的2倍,则这个角的度数是( )
A .30
B .45︒
C .60︒
D .75︒
6.对于方程
12132
x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+
7.将图中的叶子平移后,可以得到的图案是()
A .
B .
C .
D.
8.有m 辆客车及n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘45 人,则还有 5 人不能上车.有下列四个等式:① 40m+25=45m+5 ;

255
4045
n n
+-
=;③
255
4045
n n
++
=;④ 40m+25 = 45m- 5 .其中正确的是()
A.①③B.①②C.②④D.③④9.在下边图形中,不是如图立体图形的视图是()
A.B.
C.D.
10.下列各数中,有理数是( )
A.2B.πC.3.14 D.37 11.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()
A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>0 12.如图,将长方形ABCD绕CD边旋转一周,得到的几何体是()
A.棱柱B.圆锥C.圆柱D.棱锥二、填空题
13.如果实数a,b满足(a-3)2+|b+1|=0,那么a b=__________.
14.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.
15.已知关于x 的一元一次方程
320202020
x
x n +=+①与关于y 的一元一次方程32
32020(32)2020
y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 16.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________. 17.|-3|=_________;
18.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.
19.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.
20.如图,若12l l //,1x ∠=︒,则2∠=______.
21.52.42°=_____°___′___″. 22.观察“田”字中各数之间的关系:
则c 的值为____________________.
23.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______. 24.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).
三、压轴题
25.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .
(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?
(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值. 26.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a +24|+|b +10|+(c -10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.
(1)求a 、b 、c 的值;
(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;
(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由.
27.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),
COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,
请补全图形并加以说明.
28.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;
(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.
29.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,
a),C点坐标为(c,b),且a、b、C满足6
a +|2b+12|+(c﹣4)2=0.
(1)求B、C两点的坐标;
(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;
(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的1
3
?直接写出此时点P的坐
标.
30.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.
观察下列按照一定规律堆砌的钢管的横截面图:
用含n的式子表示第n个图的钢管总数.
(分析思路)
图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.
如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)
(解决问题)
(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.
S=1+2 S=2+3+4 _____________ ______________
(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:
_______ ____________ _______________ _______________
(3)用含n的式子列式,并计算第n个图的钢管总数.
31.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A,B的距离相等,求点P对应的数x的值.
(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.
(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?
32.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.
(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?
(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
【详解】
∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,
∴原点在点P与N之间,
∴这四个数中绝对值最小的数对应的点是点N.
故选B.
2.B
解析:B
【解析】
【分析】
直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.【详解】
解:∵一个角的补角是130︒,
∴这个角为:50︒,
∴这个角的余角的度数是:40︒.
故选:B.
【点睛】
此题主要考查了余角和补角,正确把握相关定义是解题关键.
3.D
解析:D
【解析】
【分析】
根据有理数比较大小法则:负数的绝对值越大反而越小可得答案.
【详解】
根据题意可得:
2.52 1.501
-<-<-<<,
故答案为:D.
【点睛】
本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小. 4.D
解析:D
【解析】
【分析】
根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】
设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行
∴x 的个位数只能是3或5或7
∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+
A .令41022x += 解得3x =,符合要求;
B .令41070x += 解得15x =,符合要求;
C .令410182x +=解得43x =,符合要求;
D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】
本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.
5.C
解析:C 【解析】 【分析】
设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解. 【详解】
解:根据题意列方程的:2(90°-α)=α, 解得:α=60°. 故选:C . 【点睛】
本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).
6.D
解析:D 【解析】 【分析】
方程两边同乘以6即可求解. 【详解】
12132
x x +-=, 方程两边同乘以6可得, 2x-6=3(1+2x ). 故选D.
【点睛】
本题考查了一元一次方程的解法—去分母,方程两边同乘以各分母的最小公倍数是去分母的基本方法.
7.A
解析:A
【解析】
【分析】
根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案.
【详解】
解:根据平移不改变图形的形状、大小和方向,
将所示的图案通过平移后可以得到的图案是A,
其它三项皆改变了方向,故错误.
故选:A.
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.
8.A
解析:A
【解析】
【分析】
首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.
【详解】
根据总人数列方程,应是40m+25=45m+5,①正确,④错误;
根据客车数列方程,应该为
255
4045
n n
++
=,③正确,②错误;
所以正确的是①③.
故选A.
【点睛】
此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.
9.C
解析:C
【解析】
【分析】
直接利用简单组合体的三视图进而判断得出答案.
【详解】
解:A选项为该立体图形的俯视图,不合题意;
B选项为该立体图形的主视图,不合题意;
C选项不是如图立体图形的视图,符合题意;
D选项为该立体图形的左视图,不合题意.
故选:C.
【点睛】
此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.
10.C
解析:C
【解析】
【分析】
根据有理数及无理数的概念逐一进行分析即可得.
【详解】
B. 是无理数,故不符合题意;
C. 3.14是有理数,故符合题意;
D.
故选C.
【点睛】
本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键. 11.C
解析:C
【解析】
【分析】
利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】
解:由a、b在数轴上的位置可知:a<0,b>0,且|a|>|b|,
∴a+b<0,ab<0,a﹣b<0,a÷b<0.
故选:C.
12.C
解析:C
【解析】
【分析】
根据面动成体可得长方形ABCD绕CD边旋转所得的几何体.
【详解】
解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,
故选:C.
【点睛】
此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.
二、填空题
13.-1;
【解析】
解:由题意得:a-3=0,b+1=0,解得:a=3,b=-1,∴=-1. 故答案为-1. 点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0. 解析:-1;
【解析】
解:由题意得:a -3=0,b +1=0,解得:a =3,b =-1,∴3(1)a b =-=-1. 故答案为-1.
点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.
14.【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a+3b)元
解析:(23)a b +
【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.
故选C.
【点睛】
此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.
15.y =﹣.
【解析】
【分析】
根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.
【详解】
解:∵关于x 的一元一次方程①的解为x =2020,
∴关于y 的一元一次方程②中﹣(3y ﹣2)=2020,

解析:y =﹣20183

【解析】
【分析】
根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.
【详解】
解:∵关于x 的一元一次方程
320202020x x n +=+①的解为x =2020, ∴关于y 的一元一次方程
3232020(32)2020y y r --=--②中﹣(3y ﹣2)=2020, 解得:y =﹣20183
. 故答案为:y =﹣
20183. 【点睛】
此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.
16.2或8.
【解析】
【分析】
根据绝对值的性质去掉绝对值符号,分类讨论解题即可
【详解】
∵|a -m|=5,|n-a|=3
∴a −m=5或者a −m=-5;n −a=3或者n −a=-3
当a −m=5,n
解析:2或8.
【解析】
【分析】
根据绝对值的性质去掉绝对值符号,分类讨论解题即可
【详解】
∵|a-m|=5,|n-a|=3
∴a−m=5或者a−m=-5;n−a=3或者n−a=-3
当a−m=5,n−a=3时,|m-n|=8;
当a−m=5, n−a=-3时,|m-n|=2;
当a−m=-5,n−a=3时,|m-n|=2;
当a−m=-5,n−a=-3时,|m-n|=8
故本题答案应为:2或8
【点睛】
绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键
17.3
【解析】
分析:根据负数的绝对值等于这个数的相反数,即可得出答案.
解答:解:|-3|=3.
故答案为3.
解析:3
【解析】
分析:根据负数的绝对值等于这个数的相反数,即可得出答案.
解答:解:|-3|=3.
故答案为3.
18.三
【解析】
【分析】
由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.
【详解】
解:设原价为x ,
两次提价后方案一:;
方案二:;
方案三:.
综上可知三种方案提价最多的是方
解析:三
【解析】
【分析】
由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.
【详解】
解:设原价为x ,
两次提价后方案一:(110%)(130%) 1.43x x ++=;
方案二:(130%)(110%) 1.43x x ++=;
方案三:(120%)(120%) 1.44x x ++=.
综上可知三种方案提价最多的是方案三.
故填:三.
【点睛】
本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.
19.20
【解析】
【分析】
根据平行线的性质得到∠3=∠1+∠CAB ,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.
【详解】
解:如图,
∵∠ACB=90°,
∴∠2+∠3=90°.
解析:20
【解析】
【分析】
根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.
【详解】
解:如图,
∵∠ACB=90°,
∴∠2+∠3=90°.
∴∠3=90°−∠2.
∵a∥b,∠2=2∠1,
∴∠3=∠1+∠CAB,
∴∠1+30°=90°−2∠1,
∴∠1=20°.
故答案为:20.
【点睛】
此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.
20.(180﹣x)°.
【解析】
【分析】
根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.
【详解】
∵l1∥l2,∠1=x°,
∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.

解析:(180﹣x)°.
【解析】
【分析】
根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.
【详解】
∵l1∥l2,∠1=x°,
∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.
故答案为(180﹣x)°.
【点睛】
本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.
21.52; 25; 12.
【解析】
【分析】
将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即
解析:52; 25; 12.
【解析】
【分析】
将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.
【详解】
52.42°=52°25′12″.
故答案为52、25、12.
【点睛】
此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.
22.【解析】
【分析】
依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.
【详解】
解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数
解析:270
【解析】
【分析】
依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.
【详解】
解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.
故答案为:270.
【点睛】
本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。

23.5
【解析】
【分析】
把方程的解代入方程即可得出的值.
【详解】
把代入方程,得

故答案为5.
【点睛】
此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.
解析:5
【解析】
【分析】
把方程的解代入方程即可得出m的值.
【详解】
x=代入方程,得
把1
m⨯-=
141
m=
∴5
故答案为5.
【点睛】
此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.
24.>.
【解析】
【分析】
先求出两个数的绝对值,再根据绝对值大的反而小进行比较.
【详解】
∵|﹣8|=8,|﹣9|=9,8<9,
∴﹣8>﹣9.
故答案是:>.
【点睛】
考查简单的有理数比较大小
解析:>.
【解析】
【分析】
先求出两个数的绝对值,再根据绝对值大的反而小进行比较.
【详解】
∵|﹣8|=8,|﹣9|=9,8<9,
∴﹣8>﹣9.
故答案是:>.
【点睛】
考查简单的有理数比较大小,比较两个负数的大小的解题关键是绝对值大的反而小.三、压轴题
25.(1)10
7
秒或10秒;(2)
14
13

114
13

【解析】
【分析】
(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;
(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,
由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.
【详解】
(1)∵|a-20|+|c+10|=0,
∴a-20=0,c+10=0,
∴a=20,c=﹣10.
设点B对应的数为b.
∵BC=2AB,∴b﹣(﹣10)=2(20﹣b).
解得:b=10.
当运动时间为t秒时,点P对应的数为20+2t,点Q对应的数为﹣10+5t.
∵Q到B的距离与P到B的距离相等,
∴|﹣10+5t ﹣10|=|20+2t ﹣10|,
即5t ﹣20=10+2t 或20﹣5t =10+2t ,
解得:t =10或t =
107. 答:运动了107
秒或10秒时,Q 到B 的距离与P 到B 的距离相等.
(2)当点R 运动了x 秒时,点P 对应的数为20+2(x +2)=2x +24,点Q 对应的数为﹣10+5(x +2)=5x ,点R 对应的数为20﹣x ,∴AQ =|5x ﹣20|.
∵点M 为线段PR 的中点,点N 为线段RQ 的中点,
∴点M 对应的数为
224202x x ++-=442x +, 点N 对应的数为
2052x x -+=2x +10, ∴MN =|442
x +﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.
分三种情况讨论:
①当0<x <4时,12﹣1.5x +20﹣5x =25,
解得:x =1413
; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,
解得:x =
667
>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25,
解得:x 31141=. 综上所述:x 的值为
1413或11413. 【点睛】
本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.
26.(1) a =-24,b =-10,c =10;(2) 点P 的对应的数是-443
或4;(3) 当Q 点开始运动后第6、21秒时,P 、Q 两点之间的距离为8,理由见解析
【解析】
【分析】
(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a 、b 、c 的值;
(2)分两种情况讨论可求点P的对应的数;
(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.
【详解】
(1)∵|a+24|+|b+10|+(c-10)2=0,
∴a+24=0,b+10=0,c-10=0,
解得:a=-24,b=-10,c=10;
(2)-10-(-24)=14,
①点P在AB之间,AP=14×
2
21
+
=
28
3

-24+28
3
=-
44
3

点P的对应的数是-44
3

②点P在AB的延长线上,AP=14×2=28,
-24+28=4,
点P的对应的数是4;
(3)∵AB=14,BC=20,AC=34,
∴t P=20÷1=20(s),即点P运动时间0≤t≤20,
点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;
当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);
当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t=46
3
<17(舍去);
当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t=62
3
>20(舍去),
当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8,
解得t=21;
综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8.
【点睛】
此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.
27.(1)41°;(2)见解析.
【解析】
【分析】
(1)根据角平分线的定义可得
1
2
AOC AOB
∠∠
=,
1
2
AOE AOD
∠∠
=,进而可得
∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.
【详解】 (1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12
AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=-
=
1122
AOB AOD ∠∠- =()12
AOB AOD ∠∠- =12
BOD ∠ =01822
⨯ =41°
(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,
∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,
∴11O ,22
AOC A B AOE AOD ∠∠∠∠=
=, ∴COE AOC AOE β∠∠∠==+ =
1122
AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12
α
如图,当OA 在BOD ∠外部,
∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,
∴11,22
AOC AOB AOE AOD ∠∠∠∠=
=, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=
+ =()12
AOB AOD ∠∠+ =()013602
BOD ∠- =()
013602α- =011802
α-
∴α与β之间的数量关系发生变化.
【点睛】
本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.
28.(1)图1中∠AOD=60°;图2中∠AOD=10°;
(2)图1中∠AOD=
n m 2+;图2中∠AOD=n m 2-. 【解析】
【分析】
(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;
(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=
n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2
-.
解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,
∵OD 是∠BOC 的平分线, ∴∠BOD=12
∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;
图2中∠BOC=∠AOC+∠AOB=120°,
∵OD 是∠BOC 的平分线,
∴∠BOD=12
∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;
(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,
如图1中,
∠BOC=∠AOC ﹣∠AOB=n ﹣m ,
∵OD 是∠BOC 的平分线,
∴∠BOD=
12∠BOC=n m 2
﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,
∠BOC=∠AOC+∠AOB=m+n ,
∵OD 是∠BOC 的平分线,
∴∠BOD=12∠BOC=n m 2
+, ∴∠AOD=∠BOD ﹣∠AOB=
n m 2
-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,
29.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或
133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(8
3,﹣6)
【解析】
【分析】
(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;
(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;
(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.
【详解】
(1)∵|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).
(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12
=
⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意
得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×4
12-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12
-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13
=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83
,﹣6). 综上所述:当t 为2秒或
133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83
,﹣6).
【点睛】
本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.
30.(1)3456;45678S S =+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析
【解析】
【分析】
先找出前几项的钢管数,在推出第n 项的钢管数.
【详解】
(1)3456;45678S S =+++=++++

2)方法不唯一,例如:
12S =+ 1233S =+++ 123444S =+++++ 12345555S =+++++++ (3)方法不唯一,例如:
()()12.....2S n n n n =++++++
()()()()=.....12.. (1112)
n n n n n n n n +++++++=+++ ()312
n n =+ 【点睛】
此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.
31.(1)x=1;(2) x =-3或x =5;(3) 30.
【解析】
【分析】
(1)根据题意可得4-x=x-(-2),解出x的值;
(2)此题分为两种情况,当点P在B的右边时,当点P在B的左边时,分别列出方程求解即可;
(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x进而求出即可.
【详解】
(1)4-x=x-(-2),解得:x=1,(2)①当点P在B的右边时得:
x-(-2)+x-4=8,解得:x=5,②当点P在B的左边时得:-2-x+4-x=8,解得:x=-3,则x=-3或x=5.(3)设经过x分钟点A与点B重合,根据题意得:
2x=6+x,解得:x=6,则5x=30,故答案为30个单位长度.
【点睛】
本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置. 32.(1)1;(2)点P运动5秒时,追上点R;(3)线段MN的长度不发生变化,其长度为5.
【解析】
试题分析:(1)由已知条件得到AB=10,由PA=PB,于是得到结论;
(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;
(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.
试题解析:解:(1)(1)∵A,B表示的数分别为6,-4,
∴AB=10,
∵PA=PB,
∴点P表示的数是1,
(2)设点P运动x秒时,在点C处追上点R(如图)
则:AC=6x BC=4x AB=10
∵AC-BC=AB
∴ 6x-4x=10
解得,x=5
∴点P运动5秒时,追上点R.
(3)线段MN的长度不发生变化,理由如下:
分两种情况:
点P在A、B之间运动时:
MN=MP+NP=AP+BP=(AP+BP)=AB=5
点P运动到点B左侧时:
MN=MP-NP=AP-BP=(AP-BP)=AB=5
综上所述,线段MN的长度不发生变化,其长度为5.
点睛:此题主要考查了一元一次方程的应用、数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.。

相关文档
最新文档