人教版八年级数学上册第十三章小结与复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第13章轴对称
第Ⅰ卷(选择题共30 分)
一、选择题(本大题共10题,每小题3分,共30分)
1、下列说法正确的是().
A.轴对称涉及两个图形,轴对称图形涉及一个图形
B.如果两条线段互相垂直平分,那么这两条线段互为对称轴
C.所有直角三角形都不是轴对称图形 D.有两个内角相等的三角形不是轴对称图形2、点M(1,2)关于x轴对称的点的坐标为().
A.(-1,-2) B.(-1,2) C.(1,-2) D.(2,-1)
3、下列图形中对称轴最多的是( ) .
A.等腰三角形 B.正方形 C.圆 D.线段
4、已知直角三角形中30°角所对的直角边为2cm,则斜边的长为().
A .2cm
B .4cm
C .6cm
D .8cm
5、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ).
A .11cm
B .7.5cm
C .11cm 或7.5cm
D .以上都不对 6、如图所示,l 是四边形ABCD 的对称轴,AD ∥
BC ,现给出下列结论: ①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其
中正确的结论有( ).
A .1个
B .2个
C .3个
D .4个
7、如图:DE 是△ABC 中AC 边的垂直平分线,
若BC=8厘米,AB=10厘米,则△EBC 的周
长为( )厘米.
A .16
B .18
C .26
D .28
8、若等腰三角形腰上的高是腰长的一半,则这
个等腰三角形的底角是 ( ).
A .75°或15°
B .75°
C .15°
D .75°和30°
9、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是
( ).
A .横坐标
B .纵坐标
C .横坐标及纵坐标
D .横坐标或纵坐标
l O
D
C
B A
E
D
C
B A
B
A
10、下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是( ) A : B : C : D : 二、填空题(每小题3分,共15分)
11、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= . 12、等腰三角形一个底角是30°,则它的顶角是__________度.
13、等腰三角形的一内角等于50°,则其它两个内角各为 . 14、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .
15.已知A (-1,-2)和B (1,3),将点A 向______平移________ 个单位长度后得到的
点与点B 关于y 轴对称.
三、解答题:
16、已知:如图,已知△ABC ,分别画出与△ABC 关于x 轴、y 轴对称的图形△
A 1
B 1
C 1 和△A 2B 2C 2 ;(8分)
P 2
P 1N M
O
P
B A
17.如图,AC 和BD 相交于点O ,且AB//DC ,OC=OD ,
求证:OA=OB 。
(7分)
18.如图,点D 、E 在△ABC 的边BC 上,AD=AE ,AB=AC ,求证:BD=EC 。
(7分)
O A
B
C
D
19、作图题(保留作图痕迹)
(1)作线段AB 的中垂线EF (5分)(2)作∠AOB
的角平分线OC (5分)
A B
M
N
A
B
B
A
O
A
B
C
D
E
(3)要在公路MN 上修一个车站P ,使得P 向A ,B 两个地方的距离和最小,请在图中画出P 的位置。
(5分) 20、(9分)如图,△ABD 、△AEC 都是等边三角形,求证:BE=DC .
21、(9分)如图,一艘轮船从点A 向正北方向航行,每小时航行15海里,小岛P 在轮船的北偏西15°,3小时后轮船航行到点B ,小岛P 此时在轮船的北偏西30°方向,在小岛P 的周围20海里范围内有暗礁,如果
P
C 北
轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由。
`
13章·轴对称(详细答案)
11 6 ;12 1200 ;13 500,800或650,650;
14 15 ;15 上,5 ;16图略
17.证明:∵OC=OD
∴∠D=∠C
∵AB//DC
∴∠B =∠D,∠A =∠C
∴∠A =∠B ∴OA=OB
18.证明:过点A ,作AF ⊥BC 。
∵AD=AE ,AF ⊥BC ∴DF=EF (三线合一) ∵AB=AC ,AF ⊥BC ∴BF=CF (三线合一)
∴BF- DF =CF- EF 即BD=EC 19图略
20.证:∵在等边△ABD 中,有AD=AB ,且∠DAB=600 在等边△AEC 中,有AC=AE ,且∠EAC=600 ∴∠DAB=∠EAC ∵∠DAC=∠DAB+∠BAC , ∠BAE=∠EAC+∠BAC ,
A
B
C
D
E
F
∴∠DAC=∠BAE
∴△DAC≌△BAE ∴CD=BE 21.解:连接AP,且做PD垂直于AB交AB延长线于D点
∵∠PBC=30°∴∠PBA=150°
又∵∠A=15°
∴∠APB=15°(180-150-15)
∴PB=PA=45×3=45海里
∴PD=22.5海里(30度角所对的边等于斜边一半)
22.5大于20,所以不会触礁。
专项训练二概率初步
一、选择题
1.(徐州中考)下列事件中的不可能事件是( )
A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°
2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )
A.25% B.50% C.75% D.85%
3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )
A.1
10
B.
1
5
C.
3
10
D.
2
5
4.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )
A.1
4
B.
1
3
C.
1
2
D.
3
4
5.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )
A.1
2
B.
1
3
C.
1
4
D.
1
6
6.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )
A.1
3
B.
1
6
C.
1
9
D.
1
12
7.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )
A.316
B.38
C.58
D.1316
第7题图 第8题图
8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )
A.16
B.π6
C.π8
D.π5
二、填空题
9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛
⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的
概率是________.
10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出
发到达E 处的概率是________.
11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.
12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.
13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.
14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为1
4,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a
有解的概率为________.
三、解答题
15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.
(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:
事件A 必然事件 随机事件
(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于4
5
,求m的值.
16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).
(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;
(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;
(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.
17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.
(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;
(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.
18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:
(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;
(2)如果摸出的这两个小球上数字之和为9的概率是1
3
,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果
x的值不可以取4,请写出一个符合要求的x的值.
参考答案与解析
1.D 2.B 3.C 4.A 5.A 6.C 7.C
8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2
=BC 2
+AC 2
,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-15
2
=
3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π
6
.
9.12 10.12 11.15 12.35 13.15 14.1
3 15.解:(1)
4 2或3 (2)根据题意得
6+m 10=4
5
,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为1
4
;
(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为1
2,所以锐锐能通关的概率为12×13=1
6
;
(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题
的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为1
6
.
17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为1
3
;
(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>1
3
,∴甲获胜的概率大,游戏不公平.
2 3 5
2 2 2
3 2 5 2 3 2 3 3 3 5 3 5
2 5
3 5 5 5
18.解:(1)0.33
(2)图略,当x 为4时,数字和为9的概率为
212=16≠1
3
,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的
概率是13
.。