(学生3) 第 3讲 川师附属学校2013级第二学期期末考试初一数学试卷(1) - 副本

合集下载

成都四川师范大学附属实验学校人教版七年级下册数学期末考试试卷及答案

成都四川师范大学附属实验学校人教版七年级下册数学期末考试试卷及答案

成都四川师范大学附属实验学校人教版七年级下册数学期末考试试卷及答案一、选择题1.在下列各图的△ABC中,正确画出AC边上的高的图形是()A.B.C.D.2.下列等式由左边到右边的变形中,属于因式分解的是()A.(a﹣2)(a+2)=a2﹣4B.8x2y=8×x2yC.m2﹣1+n2=(m+1)(m﹣1)+n2D.x2+2x﹣3=(x﹣1)(x+3)3.不等式3x+2≥5的解集是()A.x≥1B.x≥73C.x≤1D.x≤﹣14.如图,下列结论中不正确的是()A.若∠1=∠2,则AD∥BC B.若AE∥CD,则∠1+∠3=180°C.若∠2=∠C,则AE∥CD D.若AD∥BC,则∠1=∠B5.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A.90°B.120°C.135°D.150°6.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,试利用上述规律判断算式:3+32+33+34+…+32020结果的末位数字是()A.0 B.1 C.3 D.77.计算a•a2的结果是()A.a B.a2C.a3D.a48.科学家发现2019﹣nCoV冠状肺炎病毒颗粒的平均直径约为0.00000012m.数据0.00000012用科学记数法表示为()A .1.2×107B .0.12×10﹣6C .1.2×10﹣7D .1.2×10﹣89.下列各式从左到右的变形中,是因式分解的为( )A .ab +ac +d =a (b +c )+dB .(x +2)(x ﹣2)=x 2﹣4C .6ab =2a ⋅3bD .x 2﹣8x +16=(x ﹣4)2 10.下列给出的线段长度不能与4cm ,3cm 能构成三角形的是( )A .4cmB .3cmC .2cmD .1cm 二、填空题11.若 a m =6 , a n =2 ,则 a m−n =________12.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.13.已知某种植物花粉的直径为0.00033cm ,将数据0.00033用科学记数法表示为 ________________.14.a m =2,b m =3,则(ab )m =______.15.内角和等于外角和2倍的多边形是__________边形.16.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.17.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______.18.如图,在三角形纸片ABC 中剪去∠C 得到四边形ABDE ,且∠C =40°,则∠1+∠2的度数为_____.19.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.20.已知:如图,△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ACD周长为16cm,则AC的长为__________cm.三、解答题21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点C变换为点D,点A、B的对应点分别是点E、F.(1)在图中请画出△ABC平移后得到的△EFD;(2)在图中画出△ABC的AB边上的高CH;(3)△ABC的面积为_______.22.装饰公司为小明家设计电视背景墙时需要A、B型板材若干块,A型板材规格是a⨯b,B型板材规格是b⨯b.现只能购得规格是150⨯b的标准板材.(单位:cm)(1)若设a=60cm,b=30cm.一张标准板材尽可能多的裁出A型、B型板材,共有下表三种裁法,下图是裁法一的裁剪示意图.裁法一裁法二裁法三A型板材块数120B型板材块数3m n则上表中, m =___________, n =__________;(2)为了装修的需要,小明家又购买了若干C 型板材,其规格是a ⨯a ,并做成如下图的背景墙.请写出下图中所表示的等式:__________;(3)若给定一个二次三项式2a 2+5ab +3b 2,试用拼图的方式将其因式分解.(请仿照(2)在几何图形中标上有关数量)23.计算:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭; (2)(x +1)(2x ﹣3).24.(1)解二元一次方程组3423x y x y -=⎧⎨-=⎩; (2)解不等式组29421333x x x x <-⎧⎪⎨+≥-⎪⎩. 25.(知识生成)通常情况下、用两种不同的方法计算同一图形的面积,可以得到一个恒等式. (1)如图 1,请你写出()()22,a b a b ab +-,之间的等量关系是 (知识应用)(2)根据(1)中的结论,若74,4x y xy +==,则x y -= (知识迁移)类似地,用两种不同的方法计算同一几何体的情况,也可以得到一个恒等式.如图 2 是边长为+a b 的正方体,被如图所示的分割成 8块.(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以是(4)已知4a b +=,1ab =,利用上面的规律求33+a b 的值.26.解方程组(1)21325x y x y +=⎧⎨-=⎩ (2)111231233x y x y ⎧-=⎪⎪⎨⎪--=⎪⎩ 27.如图,在方格纸内将ABC ∆水平向右平移4个单位得到'''A B C ∆.(1)补全'''A B C ∆,利用网格点和直尺画图;(2)图中AC 与''A C 的位置关系是: ;(3)画出ABC ∆中AB 边上的中线CE ;(4)平移过程中,线段AC 扫过的面积是: .28.在南通市中小学标准化建设工程中,某校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元;(2)根据学校实际,需购进电脑和电子白板共31台,若总费用不超过30万元,则至多购买电子白板多少台?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的高的概念判断.【详解】解:AC边上的高就是过B作垂线垂直AC交AC的延长线于D点,因此只有C符合条件,故选:C.【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.2.D解析:D【分析】认真审题,根据因式分解的定义,即:将多项式写成几个因式的乘积的形式,进行分析,据此即可得到本题的答案.【详解】解:A.不是乘积的形式,错误;B.等号左边的式子不是多项式,不符合因式分解的定义,错误;C.不是乘积的形式,错误;D.x2+2x﹣3=(x﹣1)(x+3),是因式分解,正确;故选:D.【点睛】本题主要考查了因式分解的定义,即:将多项式写成几个因式的乘积的形式,牢记定义是解题的关键,要注意认真总结.3.A解析:A【解析】分析:根据一元一次不等式的解法即可求出答案.详解:3x+2≥5,3x≥3,∴x≥1.故选A.点睛:本题考查了一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.4.D【分析】由平行线的性质和判定解答即可.【详解】解:A、∵∠1=∠2,∴AD∥BC,原结论正确,故此选项不符合题意;B、∵AE∥CD,∴∠1+∠3=180°,原结论正确,故此选项不符合题意;C、∵∠2=∠C,∴AE∥CD,原结论正确,故此选项不符合题意;D、∵AD∥BC,∴∠1=∠2,原结论不正确,故此选项符合题意;故选:D.【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解决问题的关键,注意它们之间的区别.5.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.6.A解析:A【分析】观察所给等式发现规律末位数字为:3,9,7,1,3,9,7,…,每4个数一组循环,进而可得算式:3+32+33+34+…+32020结果的末位数字.【详解】解:观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,发现规律:末位数字为:3,9,7,1,3,9,7,…,每4个数一组循环,所以2020÷4=505,而3+9+7+1=20,20×505=10100.所以算式:3+32+33+34+…+32020结果的末位数字是0.故选:A.本题考查了规律型-数字的变化类,解决本题的关键是根据数字的变化寻找规律.7.C解析:C【分析】根据同底数幂的乘法法则计算即可.【详解】解:a•a2=a1+2=a3.故选:C.【点睛】本题考查了幂的运算性质,准确应用同底数幂的乘法是解题的关键.8.C解析:C【分析】用科学计数法将0.00000012表示为a×10-n即可.【详解】解:0.00000012=1.2×10﹣7,故选:C.【点睛】本题考查用科学计数法表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.9.D解析:D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C、等式左边是单项式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选D.【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.10.D解析:D【分析】根据三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,即可得答案.【详解】解:设第三边为xcm ,根据三角形的三边关系:4343x -<<+,解得:17x <<.故选项ABC 能构成三角形,D 选项1cm 不能构成三角形,故选:D .【点睛】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,两边之差小于第三边.二、填空题11.3【解析】.故答案为3.解析:3【解析】623m n m n a a a -=÷=÷=.故答案为3.12.2【分析】根据点F 是CE 的中点,推出S △BEF=S △BEC ,同理得S △EBC=S △ABC ,由此可得出答案.【详解】∵点F 是CE 的中点,∴△BEF 的底是EF ,△BEC 的底是EC ,即EF=EC解析:2【分析】根据点F 是CE 的中点,推出S △BEF =12S △BEC ,同理得S △EBC =12S △ABC ,由此可得出答案. 【详解】∵点F 是CE 的中点,∴△BEF 的底是EF ,△BEC 的底是EC ,即EF=12EC ,高相等; ∴S △BEF =12S △BEC , 同理得S △EBC =12S △ABC ,∴S △BEF =14S △ABC ,且S △ABC =8, ∴S △BEF =2,故答案为:2.【点睛】本题考查了三角形的性质,充分运用三角形的面积公式以及三角形的中线的性质是解本题的关键.13.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:43.310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数据0.00033用科学记数法表示为43.310-⨯,故答案为:43.310-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为am=2,bm=3,所以(ab )m=am•bm=2×3=6,故答案为:6.【点睛】此题考查积解析:6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为a m=2,b m=3,所以(ab)m=a m•b m=2×3=6,故答案为:6.【点睛】此题考查积的乘方,关键是根据积的乘方运算法则将未知转化为已知.15.六【解析】【分析】设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:1解析:六【解析】【分析】设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:180(n-2)=360×2,解得:n=6,故答案为:六.【点睛】本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).16.32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣解析:32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:15(5﹣2)×180°=108°, 则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=32°.故答案是:32°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.17.【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵的解集是,∴=1,a -b<0,∴a=2b,b<0.则不等式可以化为2bx>4b.∵b<解析:2x <【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵3()50a b x a b -+->的解集是1x <,∴()53a b a b --=1,a-b<0, ∴a=2b,b<0.则不等式4ax b >可以化为2bx>4b.∵b<0.∴x<2.即关于x 的不等式4ax b >的解集为x<2.【点睛】本题考查了不等式的解法,正确确定b 的符号是关键.18.220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CE解析:220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED ,∠2=∠C+∠EDC ,∴∠1+∠2=∠C+∠CED+∠EDC+∠C ,∵∠C+∠CED+∠EDC =180°,∠C =40°,∴∠1+∠2=180°+40°=220°,故答案为:220°.【点睛】本题考查剪纸问题,三角形内角和定理,三角形的外角的性质等知识,熟悉相关性质是解题的关键.19.5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:,由图乙得:,化简得,∴,∵a+b>0,∴a+b解析:5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:2()1a b -=,由图乙得:22()()12+--=a b a b ,化简得6ab =,∴22()()412425+=-+=+=a b a b ab ,∵a +b >0,∴a +b =5,故答案为:5.【点睛】本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型.20.7【解析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解:∵AB=6cm,AD解析:7【解析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15-6-5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21-6-8=7cm.故AC长为7cm.“点睛”此题考查了三角形的周长和中线,本题的关键是由周长和中线的定义得到BC的长,题目难度中等.三、解答题21.(1)见详解;(2)见详解;(3)152.【分析】(1)按要求作图即可;(2)按要求作图即可;(3)根据勾股定理求出AB和CH的长即可得出面积.【详解】(1)△EFD如图所示,;(2)CH如图所示,;(3)根据勾股定理可得:AB=223+6=35,CH=221+2=5,∴S△ABC=12×AB×CH=12×35×5=152.【点睛】本题考查了平移作图,勾股定理,掌握知识点是解题关键.22.(1)m=1,n=5;(2)(a+2b)2=a2+4ab+4b2;(3)2a2+5ab+3b2=(a+b)(2a+3b),详见解析【分析】(1)结合图形和条件分析可以得出按裁法二裁剪时,可以裁出B型板1块,按裁法三裁剪时,可以裁出5块B型板;(2)看图即可得出所求的式子;(3)通过画图能更好的理解题意,从而得出结果.由于构成的是长方形,它的面积等于所给图片的面积之和,从而因式分解.【详解】(1)按裁法二裁剪时,2块A型板材块的长为120cm,150-120=30,所以可裁出B型板1块,按裁法三裁剪时,全部裁出B型板,150÷30=5,所以可裁出5块B型板;∴m=1,n=5.故答案为:1,5;(2)如下图:发现的等式为:(a+2b)2=a2+4ab+4b2;故答案为:(a+2b)2=a2+4ab+4b2.(3)按题意画图如下:∵构成的长方形面积等于所给图片的面积之和,∴2a 2+5ab +3b 2=(a +b )(2a +3b ).【点睛】本题考查了完全平方公式和几何图形的应用及一元一次方程的应用,关键是根据学生的画图能力,计算能力来解答.23.(1)﹣1;(2)223x x --【分析】(1)分别根据﹣1的偶次幂、负整数指数幂的运算法则和0指数幂的意义计算每一项,再合并即可;(2)根据多项式乘以多项式的法则解答即可.【详解】解:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭=131-+=﹣1; (2)(x +1)(2x ﹣3)=22232323x x x x x -+-=--.【点睛】本题考查了负整数指数幂的运算法则和0指数幂的意义以及多项式的乘法法则等知识,属于基本题型,熟练掌握上述基础知识是解题关键.24.(1)11x y =⎧⎨=-⎩;(2)13x ≤< 【分析】(1)根据代入消元法解答即可;(2)先解不等式组中的每个不等式,再取其解集的公共部分即可.【详解】解:(1)3423x y x y -=⎧⎨-=⎩①②, 由①,得34y x =-③,把③代入②,得()2343x x --=,解得:x =1,把x =1代入③,得y =3-4=﹣1,所以方程组的解为11x y =⎧⎨=-⎩;(2)29421333x x x x <-⎧⎪⎨+≥-⎪⎩①②, 解不等式①,得3x <,解不等式②,得1x ≥,所以不等式组的解集为13x ≤<.【点睛】本题考查了二元一次方程组和一元一次不等式组的解法,属于基础题型,熟练掌握上述基本知识是解题关键.25.(1)22()4()a b ab a b +-=-.(2)3x y -= .(3)33322()33a b a b a b ab +=+++.(4)54.【分析】(1)根据两种面积的求法的结果相等,即可得到答案;(2)根据第(1)问中已知的等式,将数值分别代入,即可求得答案.(3)根据正方体的体积公式,正方体的边长的立方就是正方体的体积;2个正方体和6个长方体的体积和就是大长方体的体积,则可得到等式;(4)结合4a b +=,1ab =,根据(3)中的公式,变形进行求解即可.【详解】(1)22()4()a b ab a b +-=-.(2)4x y +=,74xy =,()()22274441679.4x y x y xy -=+-=-⨯=-= 故3x y -= . (3)33322()33a b a b a b ab +=+++ .(4)由4a b +=,1ab =,根据第(3)得到的公式可得()()()()333322333641254a b a b a b ab a b ab a b +=+-+=+-+=-=.【点睛】本题考查完全平方公式以及立方公式的几何背景,从整体和局部两种情况分析并写出面积以及体积的表达式是解题的关键. 26.(1)3214x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)14111211x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【分析】(1)直接利用加减消元法解方程组,即可得到答案;(2)直接利用加减消元法解方程组,即可得到答案;【详解】解:(1)21325x y x y +=⎧⎨-=⎩①②,由①+②,得46x =, ∴32x =, 把32x =代入①,得14y =-, ∴方程组的解为:3214x y ⎧=⎪⎪⎨⎪=-⎪⎩; (2)111231233x y x y ⎧-=⎪⎪⎨⎪--=⎪⎩①②, 由①3⨯-②,得:11763x =, ∴1411x =, 把1411x =代入①,解得:1211y =-, ∴方程组的解为:14111211x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组. 27.(1)图见详解;(2)平行且相等;(3)图见详解;(4)28.【分析】(1)根据图形平移的性质画出△A B C '''即可;(2)根据平移的性质可得出AC 与A C ''的关系;(3)先取AB 的中点E ,再连接CE 即可;(4)线段AC 扫过的面积为平行四边形AA C C ''的面积,根据平行四边形的底为4,高为7,可得线段AC 扫过的面积.【详解】解:(1)如图所示,△A B C '''即为所求;(2)由平移的性质可得,AC 与A C ''的关系是平行且相等;故答案为:平行且相等;(3)如图所示,线段CE 即为所求;(4)如图所示,连接AA ',CC ',则线段AC 扫过的面积为平行四边形AA C C ''的面积,由图可得,线段AC 扫过的面积4728=⨯=.故答案为:28.【点睛】本题主要考查了利用平移变换进行作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.28.(1)电脑0.5万元,电子白板1.5万元;(2)14台【分析】(1)设每台电脑x 元,每台电子白板y 元,根据题意列出方程组,解方程组即可;(2)设购进电子白板m 台,则购进电脑()31m -台,根据总费用不超过30万元,列出不等式,根据m 实际意义即可求解.【详解】(1)设每台电脑x 元,每台电子白板y 元,则2 3.52 2.5x y x y +=⎧⎨+=⎩,解得0.51.5x y =⎧⎨=⎩故每台电脑0.5万元,每台电子白板1.5万元;(2)设购进电子白板m 台,则购进电脑()31m -台,由题意得1.50.5(31)30m m +-≤解得14.5m ≤,又因为m 是正整数,则14m ≤,故至多购买电子白板14台.【点睛】本题考查了二元一次方程组应用,一元一次不等式应用,综合性较强,难度不大,根据题意列出二元一次方程组、一元一次不等式是解题关键.。

四川省师大附属第一实验中学七年级数学下学期期末考试试卷 新人教版

四川省师大附属第一实验中学七年级数学下学期期末考试试卷 新人教版

B ′D ′DB四川省师大附属第一实验中学2013-2014学年七年级数学下学期期末考试试卷全卷分A卷和B卷,A卷满分100分,B卷满分50分,考试时间120分钟.A卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题.A卷(共100分)第Ⅰ卷(选择题,共30分)注意事项:1.第Ⅰ卷共2页.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上.请注意机读答题卡的横竖格式. 一、 选择题(本大题共10个小题,每小题3分,共30分) 1. 下列运算正确的是( )A .()222a b a b -=- B .32a a a -=C .()()212141a a a +-=-D .()23624aa -=2.某流感病毒的直径大约为0.00000008米,用科学计数法表示为( )A .0.8×10-7米 B .810-8米 C .8×10-9米 D .8×10-7米 3.下列长度的3条线段,能首尾依次相接组成三角形的是( ) A .1,3,5 B .3,4,6 C .5,6,11 D .8,5,2 4. 下列图形中,有无数条对称轴的是( )A.等边三角形B.线段C.等腰直角三角形D.圆5.下列乘法中,不能运用平方差公式进行运算的是( )A.(x+a)(x-a)B.(b+m)(m-b)C.(-x-b)(x-b)D.(a+b)(-a-b) 6.能判断两个三个角形全等的条件是( )A .已知两角及一边相等B .已知两边及一角对应相等C .已知三条边对应相等D .已知三个角对应相等7.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这种做法的根据是( )A .三角形的稳定性B .长方形的对称性C .长方形的四个角都是直角D .两点之间线段最短31ACDFG(第7题图) (第8题图)8. 如图,已知FD ∥BE ,则∠1+∠2-∠3=( )A .90°B .135°C .150°D .180° 9.请仔细观察用直尺和圆规.....作一个角∠A′O′B′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB 的依据是 ( ) A .SAS B .ASA C .AAS D .SSS10.如图向高为H 的圆柱形空水杯中注水,则下面表示注水量y与水深x的关系的图象是( )第Ⅱ卷(非选择题,共70分)注意事项:1.A 卷的第Ⅱ卷和B 卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目填写清楚.二.填空题:(本大题共4个小题,每小题4分,共16分)11. 计算:()2301220112-⎛⎫+-- ⎪⎝⎭=12. 从一个袋子中摸出红球的概率为15,已知袋子中红球有5个,则袋子中共有球的个数为 13. 如图1所示,若︒=∠+∠18021,︒=∠753,则=∠4 ︒10514.如图所示,△ABC 中,∠A=90°,BD 是角平分线,DE ⊥BC ,垂足是E ,AC=10cm ,CD=6cm,则DE的长为__________________DCBAXX图1N MO 4321ba BADCE第14题图三、解答题(本大题共6个小题,共54分) 15. 计算(本题满分12分)(1))21()2()(22862a a a a --+÷ (2)()()()2112x x x +--+16.先化简,再求值(本题满分6分)x x y x x 2)1()2(2++-+,其中3,31-==y x17.解答题(本题满分8分)(1)已知a+b=3, a 2+b 2=5,求ab 的值 (2)若,23,83==nm 求1323+-n m 的值18.(本小题满分8分)如图,在△ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥AB ,垂足为F . (1)求证: CD ∥EF(2)如果∠1=∠2,且∠3=115°,求∠ACB 的度数.19.(本小题满分10分)小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图6-32所示).图6-32(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)他到达离家最远的地方是什么时间?离家多远?(3)11时到12时他行驶了多少千米?(4)他可能在哪段时间内休息,并吃午餐?(5)他由离家最远的地方返回时的平均速度是多少?20.(本小题满分10分)如图,四边形ABCD中,E是AD中点,CE交BA延长线于点F.此时E也是CF中点AFE DC(1)判断CD 与FB 的位置关系并说明理由 (2)若BC =BF ,试说明:BE ⊥CF .B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21. 如果(x+1)(x2-5ax+a)的乘积中不含x2项,则a为22.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E,其中能使△ABC≌△AED的条件有:(只需填序号)23.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=__第22题图第23题图24. 如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是_______.25. 在数学中,为了简便,记1nkk=∑=1+2+3+…+(n-1)+n,1()nkx k=+∑=(x+1)+(x+2)+…+(x+n).若101()kx k=-∑+23x=31[k=∑(x-k)(x-k-1)].则=x二、解答题(本大题共3个小题,共30 分)26.(本小题满分8分).已知:43,322=-+=+xyyxyx,求:33xyyx+的值27.(本小题满分10分)操作实验:如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.DBEFCA所以△ABD≌△ACD,所以∠B=∠C.归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等. 根据上述内容,回答下列问题: 思考验证:如图(4),在△ABC 中,AB=AC .试说明∠B=∠C 的理由.探究应用:如图(5),CB⊥AB,垂足为A ,DA⊥AB,垂足为B .E 为AB 的中点,AB=BC ,CE⊥BD. (1)BE 与AD 是否相等?为什么?(2)小明认为AC 是线段DE 的垂直平分线,你认为对吗?说说你的理由。

四川师范大学附属实验学校七年级数学下册期末试卷选择题汇编精选模拟考试试题

四川师范大学附属实验学校七年级数学下册期末试卷选择题汇编精选模拟考试试题

一、选择题1.如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+p=0,则m,n,p,q四个有理数中,绝对值最大的一个是()A.p B.q C.m D.n答案:B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.2.如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),…,则第100个点的横坐标为()A.12 B.13 C.14 D.15答案:C解析:C【分析】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),结合图形找出部分a n的值,根据数值的变化找出变化规律“a n=n”,再罗列出部分S n的值,根据数值的变化找出变化规律()12nn nS+=,依次变化规律解不等式()11002n n+≥即可得出结论.【详解】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),观察,发现规律:a 1=1,a 2=2,a 3=3,…,∴a n =n .S 1=a 1=1,S 2=a 1+a 2=3,S 3=a 1+a 2+a 3=6,…,∴S n =1+2+…+n =()12n n +. 当100≤S n ,即100≤()12n n +, 解得:122012n +≤﹣(舍去),或22012n ≥﹣1. ∵2201142﹣113<<, 故选:C .【点睛】本题考查了规律型中得点的坐标的变化,解题的关键是根据点的坐标的找出变化规律“()12n n n S +=”.3.如图,已知//a b ,下列正确的是( )A .若12∠=∠,则//c dB .若12∠=∠,则e//fC .若34∠=∠,则//c dD .若34∠=∠,则e//f答案:D解析:D【分析】根据平行线的性质和平行线的判定逐个分析即可求解.【详解】解:如图,记,e b 相交所成的锐角为5,∠ ,因为//a b,∠+∠=︒,所以35180∠=∠,若34∠+∠=︒,所以54180所以e//f,而1=2∠∠不能推出图中的直线平行,故选D.【点睛】本题主要考查平行线的性质和判定,解决本题的关键是要熟练掌握平行线的性质和判定. 4.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(1,1)、(1,2)、(2,2)…根据这个规律,第2016个点的坐标为()A.(45,9)B.(45,13)C.(45,22)D.(45,0)答案:A解析:A【解析】观察图形可知,到每一横坐标结束,经过整数点的点的总个数等于最后点的横坐标的平方,并且横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当横坐标是偶数时,以横坐标为1,纵坐标为横坐标减1的点结束,根据此规律解答即可:横坐标为1的点结束,共有1个,1=12,横坐标为2的点结束,共有2个,4=22,横坐标为3的点结束,共有9个,9=32,横坐标为4的点结束,共有16个,16=42,…横坐标为n的点结束,共有n2个.∵452=2025,∴第2025个点是(45,0).∴第2016个点是(45,9).点睛:本题考查了点的坐标,观察出点个数与横坐标存在平方关系是解题的关键5.如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2017的坐标为()A.(504,504) B.(﹣504,504) C.(﹣504,﹣504) D.(﹣505,504)答案:D解析:D【解析】分析:根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P 2017的在第二象限,且纵坐标=2016÷4,再根据第二项象限点的规律即可得出结论.本题解析:由规律可得,2017÷4=504…1 ,∴点 P2017 的在第二象限的角平分线上,∵点P5(−2,1), 点P9(−3,2), 点P13(−4,3) ,∴点P2017(−505,504) ,故选D.点睛:本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键要首先确定点的大致位置,处于此位置的点的规律,推出点的坐标.6.如图,在平面直角坐标系上有个点P(1,0),点P第一次向上跳运1个单位至P1(1,1),紧接着第二次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是()A.(-24,49) B.(-25,50) C.(26,50) D.(26,51)答案:C解析:C【详解】经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100÷2=50;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,依此类推可得到:n P 的横坐标为n÷4+1(n 是4的倍数). 故点100P 的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P 第100次跳动至点100P 的坐标是(26,50).故答案为(26,50).7.按如图所示的程序计算,若开始输入的值为25,则最后输出的y 值是( )A 5B .5C .5D .5±答案:B解析:B【分析】根据已知进行计算,并判断每一步输出结果即可得到答案.【详解】解:∵25的算术平方根是5,5不是无理数,∴再取5的平方根,而5的平方根为5±∴输出值y =5±故选:B .【点睛】本题考查实数分类及计算,判断每步计算结果是否为无理数是解题的关键.8.对一组数(x,y)的一次操作变换记为P 1(x,y),定义其变换法则如下:P 1(x,y)=(x+y,x-y),且规定P n (x,y)=P 1(P n-1(x,y))(n 为大于1的整数),如:P 1(1,2)=(3,-1),P 2(1,2)= P 1(P 1(1,2))= P 1(3,-1)=(2,4),P 3(1,2)= P 1(P 2(1,2))= P 1(2,4)=(6,-2),则P 2017(1,-1)=( ).A .(0,21008)B .(0,-21008)C .(0,-21009)D .(0,21009)答案:D解析:D【解析】分析:用定义的规则分别计算出P 1,P 2,P 3,P 4,P 5,P 6,观察所得的结果,总结出规律求解.详解:因为P 1(1,-1)=(0,2);P 2(1,-1)=P 1(P 1(1,-1))=P 1(0,2)=(2,-2);P 3(1,-1)=P 1(P 2(2,-2))=(0,4);P 4(1,-1)=P 1(P 3(0,4))=(4,-4);P 5(1,-1)=P 1(P 4(4,-4))=(0,8);P 6(1,-1)=P 1(P 5(0,8))=(8,-8);……P 2n-1(1,-1)=……=(0,2n );P 2n (1,-1)=……=(2n ,-2n ).因为2017=2×1009-1,所以P 2017=P 2×1009-1=(0,21009).故选D.点睛:对于新定义,要理解它所规定的运算规则,再根据这个规则进行相关的计算;探索数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程和结果中归纳出运算结果或运算结果的规律.9.设记号*表示求a 、b 算术平均数的运算,即*2a b a b +=,则下列等式中对于任意实数a ,b ,c 都成立的是( ). ①(*)()*()a b c a b a c +=++;②*()()*a b c a b c +=+;③*()(*)(*)a b c a b a c +=+;④()()**22a a b c b c +=+. A .①②③ B .①②④ C .①③④ D .②④答案:B解析:B【详解】①中(*)2b c a b c a ++=+,()*()22a b a c b c a b a c a ++++++==+,所以①成立; ②中*()2a b c a b c +++=,()*2a b c a b c +++=,所以②成立; ③中()()*(*)*222a b a c b c a b a c a a b c ++++=+=+=+,所以③不成立; ④中(*)2a b a b c c ++=+,22(*2)22222a abc a b c a b b c c +++++=+==+,所以④成立. 故选B. 10.对一组数(),x y 的一次操作变换记为()1,P x y ,定义其变换法则如下:()()1,,P x y x y x y =+-,且规定()()()11,,n n Px y P P x y -=(n 为大于1的整数), 如,()()11,23,1P =-,()()()()()21111,21,23,12,4P P P P ==-=,()()()()()31211,21,22,46,2P P P P ===-,则()20171,1P -=( ). A .()10080,2 B .()10080,2- C .()10090,2- D .()10090,2 答案:D解析:D【详解】因为()()11,10,2P -=,()()()()()21111,11,10,2=2,2P P P P -=-=-,()()()()()31211,11,22,20,4P P P P -=-=-=,()()41,14,4P -=-,()()51,10,8P -= ()()61,18,8P -=-,所以()()211,10,2n n P --=,()()21,12,2n n n P -=-,所以 ()()100920171,10,2P -=,故选D. 11.如图,A 、B 、C 、D 是数轴上的四个点,其中最适合表示10的点是( )A .点AB .点BC .点CD .点D答案:D解析:D【分析】 根据10<4即可得到答案.【详解】∵9<10<16, ∴10<4, ∴10的点是点D ,故选:D .【点睛】此题考查利用数轴表示实数,实数的大小比较,正确比较实数是解题的关键.12.已知n 是正整数,并且n -1<326n ,则n 的值为( )A .7B .8C .9D .10答案:C解析:C【分析】根据实数的大小关系比较,得到5266,从而得到26n 的值.【详解】 解:∵2526365266, ∴8<269,∴n =9.故选:C .【点睛】2613.如图,在一单位为1的方格纸上,123A A A ∆,345A A A ∆,567A A A ∆…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若123A A A ∆的顶点坐标分别为1(2,0)A ,2(1,1)A -,3(0,0)A ,则依图中所示规律,2020A 的坐标为( )A .(1010,0)B .(1012,0)C .(2,1012)D .(2,1010) 答案:D解析:D【分析】根据脚码确定出脚码为偶数时的点的坐标,得到规律当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,然后确定出第2020个点的坐标即可.【详解】∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,A 2(1,-1),A 4(2,2),A 6(1,-3),A 8(2,4),A 10(1,-5),A 12(2,6),…, ∵2020÷4=505,∴点A 2020在第一象限,横坐标是2,纵坐标是2020÷2=1010,∴A 2020的坐标为(2,1010).故选:D .【点睛】本题是对点的坐标变化规律的考查,根据2012是偶数,求出点的脚码是偶数时的变化规律是解题的关键.14.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±9答案:C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x -=,∴29x =,∵2(39)±=,∴3x =±,故选:C.【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键.15.如图,在平面直角坐标系上有点A(1,0),点A 第一次跳动至点()111A -,,第二次点1A 跳动至点()221A ,,第三次点2A 跳动至点()322A ,-,第四次点3A 跳动至点()432A ,,……,依此规律跳动下去,则点2017A 与点2018A 之间的距离是( )A .2017B .2018C .2019D .2020答案:C解析:C【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A 2017与点A 2018的坐标,进而可求出点A 2017与点A 2018之间的距离.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n 次跳动至点的坐标是(n+1,n ),则第2018次跳动至点的坐标是(1010,1009),第2017次跳动至点A 2017的坐标是(-1009,1009).∵点A 2017与点A 2018的纵坐标相等,∴点A 2017与点A 2018之间的距离=1010-(-1009)=2019,故选C .【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.16.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12-B .21-C .22-D .22- 答案:D解析:D【分析】设点C 的坐标是x ,根据题意列得212x -+=-,求解即可. 【详解】解:∵点A 是B ,C 的中点.∴设点C 的坐标是x ,则212x -+=-, 则22x =-+,∴点C 表示的数是22-+.故选:D.【点睛】此题考查数轴上两点的中点的计算公式:两点的中点所表示的数等于两点所表示的数的平均数,正确掌握计算公式是解题的关键.17.如图,//AB CD ,将一个含30角的直角三角尺按如图所示的方式放置,若1∠的度数为25︒,则2∠的度数为( )A .35︒B .65︒C .145︒D .155︒答案:A解析:A【分析】过三角板60°角的顶点作直线EF ∥AB ,则EF ∥CD ,利用平行线的性质,得到∠3+∠4=∠1+∠2=60°,代入计算即可.【详解】如图,过三角板60°角的顶点作直线EF ∥AB ,∵AB ∥CD ,∴EF∥CD,∴∠3=∠1,∠4=∠2,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=25°,∴∠2=35°,故选A.【点睛】本题考查了平行线的辅助线构造,平行线的判定与性质,三角板的意义,熟练掌握平行线的判定与性质是解题的关键.18.如图,已知AB∥CD, EF∥CD,则下列结论中一定正确的是( )A.∠BCD= ∠DCE; B.∠ABC+∠BCE+∠CEF=360︒;C.∠BCE+∠DCE=∠ABC+∠BCD; D.∠ABC+∠BCE -∠CEF=180︒.答案:D解析:D【解析】分析:根据平行线的性质,找出图形中的同旁内角、内错角即可判断.详解:延长DC到H∵AB∥CD,EF∥CD∴∠ABC+∠BCH=180°∠ABC=∠BCD∠CE+∠DCE=180°∠ECH=∠FEC∴∠ABC+∠BCE+∠CEF=180°+∠FEC∠ABC+∠BCE -∠CEF=∠ABC+∠BCH+∠ECH-∠CEF=180°.故选D.点睛:此题主要考查了平行线的性质,关键是熟记平行线的性质:两直线平行,内错角相等,同旁内角互补,同位角相等.19.如图所示,直线c 截直线a ,b ,给出下列以下条件:①48∠=∠;②17∠=∠;③26∠=∠;④47180∠+∠=︒.其中能够说明a ∥b 的条件有A .1个B .2个C .3个D .4个答案:D解析:D【解析】根据平行线的判定,由题意知:①∵68∠=∠,48∠=∠,∴46∠=∠,∴a b ∥,故①对.②∵13∠=∠,17∠=∠,∴37∠=∠,∴a b ∥,故②对.③∵26∠=∠,∴a b ∥,故③对.④∵47180∠+∠=︒,34180∠+∠=︒,∴37∠=∠,∴a b ∥,故④对.故选D.点睛:此题主要考查了平行线的判定,关键是利用图形中的条件和已知的条件,构造两直线平行的条件.平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.20.直线//AB CD ,直线EF 与AB ,CD 分别交于点E ,F ,EG EF ⊥.若155∠=︒,则2∠的度数为( )A .25︒B .35︒C .45︒D .55︒答案:B解析:B【分析】由对顶角相等得∠DFE =55°,然后利用平行线的性质,得到∠BEF =125°,即可求出2∠的度数.【详解】解:由题意,根据对顶角相等,则155DFE ∠=∠=︒,∵//AB CD ,∴180DFE BEF ∠+∠=︒,∴18055125BEF ∠=︒-︒=︒,∵EG EF ⊥,∴90FEG ∠=︒,∴21259035∠=︒-︒=︒;故选:B .【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握平行线的性质,正确的求出125BEF ∠=︒.21.如图,已知//BC DE ,BF 平分ABC ∠,DC 平分ADE ∠,则下列判断:①ACB E ∠=∠;②DF 平分ADC ∠;③BFD BDF ∠=∠;④ABF BCD ∠=∠中,正确的有( )A .1个B .2个C .3个D .4个答案:B解析:B【分析】根据平行线的性质求出ACB E ∠=∠,根据角平分线定义和平行线的性质求出ABF CBF ADC EDC ∠=∠=∠=∠,推出//BF DC ,再根据平行线的性质判断即可.【详解】∵//BC DE ,∴ACB E ∠=∠,∴①正确;∵//BC DE ,∴ABC ADE ∠=∠,∵BF 平分ABC ∠,DC 平分ADE ∠, ∴12ABF CBF ABC ∠=∠=∠,12ADC EDC ADE ∠=∠=∠, ∴ABF CBF ADC EDC ∠=∠=∠=∠,∴//BF DC ,∴BFD FDC ∠=∠,∴根据已知不能推出ADF CDF ∠=∠,∴②错误;③错误;∵ABF ADC ∠=∠,ADC EDC ∠=∠,∴ABF EDC ∠=∠,∵//DE BC ,∴BCD EDC ∠=∠,∴ABF BCD ∠=∠,∴④正确;即正确的有2个,故选:B .【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,能灵活运用平行线的性质和判定进行推理是解此题的关键.22.如图,已知直线AB ,CD 被直线AC 所截,AB ∥CD ,E 是平面内CD 上方的一点(点E 不在直线AB ,CD ,AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α﹣β,③β﹣α,④180°﹣α﹣β,⑤360°﹣α﹣β中,∠AEC 的度数可能是( )A .①②③B .①②④⑤C .①②③⑤D .①②③④⑤ 答案:C解析:C【分析】根据点E 有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.综上所述,∠AEC的度数可能是β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:C.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.23.如图,从①12∠=∠,②C D ∠=∠,③//DF AC 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )A .0B .1C .2D .3答案:D解析:D【分析】分别任选其中两个条件作为已知,然后结合平行线的判定与性质,证明剩余一个条件是否成立即可.【详解】解:如图所示:(1)当①∠1=∠2,则∠3=∠2,故DB ∥EC ,则∠D =∠4;当②∠C =∠D ,故∠4=∠C ,则DF ∥AC ,可得:∠A =∠F ,即①②可证得③;(2)当①∠1=∠2,则∠3=∠2,故DB ∥EC ,则∠D =∠4,当③∠A =∠F ,故DF ∥AC ,则∠4=∠C ,故可得:∠C =∠D ,即①③可证得②;(3)当③∠A =∠F ,故DF ∥AC ,则∠4=∠C ,当②∠C =∠D ,则∠4=∠D ,故DB ∥EC ,则∠2=∠3,可得:∠1=∠2,即②③可证得①.故正确的有3个.故选:D .【点睛】本题主要考查了平行线的判定和性质,正确掌握并熟练运用平行线的判定与性质是解题关键.24.如图,//AB CD ,AC 平分BAD ∠,B CDA ∠=∠,点E 在AD 的延长线上,连接EC ,2B CED ∠=∠,下列结论:①//BC AD ;②CA 平分BCD ∠;③AC EC ⊥;④ECD CED ∠=∠.其中正确的个数为( )A .1个B .2个C .3个D .4个答案:D解析:D【分析】结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.【详解】解:∵AB //CD ,∴∠1=∠2,∵AC 平分∠BAD ,∴∠2=∠3,∴∠1=∠3,∵∠B =∠CDA ,∴∠1=∠4,∴∠3=∠4,∴BC //AD ,∴①正确;∴CA 平分∠BCD ,∴②正确;∵∠B =2∠CED ,∴∠CDA =2∠CED ,∵∠CDA =∠DCE +∠CED ,∴∠ECD =∠CED ,∴④正确;∵BC //AD ,∴∠BCE +∠AEC = 180°,∴∠1+∠4+∠DCE +∠CED = 180°,∴∠1+∠DCE = 90°,∴∠ACE = 90°,∴AC ⊥EC ,∴③正确故其中正确的有①②③④,4个,故选:D .【点睛】此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键. 25.如图,////AF BE CD ,若140∠=︒,250∠=︒,3120∠=︒,则下列说法正确的是( )A .100F ∠=︒B .140C ∠=︒ C .130A ∠=︒D .60D ∠=︒ 答案:D解析:D【分析】根据平行线的性质进行求解即可得到答案.【详解】解:∵BE ∥CD∴∠ 2+∠C =180°,∠ 3+∠D =180°∵∠ 2=50°,∠ 3=120°∴∠C =130°,∠D =60°又∵BE ∥AF ,∠ 1=40°∴∠A =180°-∠ 1=140°,∠F =∠ 3=120°故选D.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.26.如图,平面内有五条直线 1l 、2l 、3l 、4l 、5l ,根据所标角度,下列说法正确的是( )A .12l l //B .23//l lC .13//l lD .45//l l 答案:D解析:D【分析】根据平行线的判定定理进行逐个选项进行分析即可得到答案.【详解】解:如图所示∵∠PHD =92°∴∠GHD =180°-∠PHD =88°∵∠CDK =88°∴∠GHD =∠CDK∴l 4∥l 5(同位角相等,两直线平行),所以D 选项正确∴∠BCG =∠F GV =93°∵∠ABF ≠∠BCG∴l 1与l 2不平行,所以A 选项错误;又∵∠CGH =93°,∠DHP =92°,∴∠CGH ≠∠DHP∴l 2与l 3不平行,所以B 选项错误;∵∠IBC +∠BDK =88°+88°≠180°∴l 1与l 3不平行,所以C 选项错误;故选D.【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行,同旁内角互补,两直线平行.27.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB ∥CD ,∠EAB =80°,110ECD ∠=︒,则∠E 的度数是( )A .30°B .40°C .60°D .70° 答案:A解析:A【分析】过点E 作//EF AB ,先根据平行线的性质可得100AEF ∠=︒,再根据平行公理推论、平行线的性质可得70CEF ∠=︒,然后根据角的和差即可得.【详解】解:如图,过点E 作//EF AB ,80EAB ∠=︒,180100A E B E A F ∠=︒-=∴∠︒,//AB CD ,//CD EF ∴,180CEF ECD ∴∠+∠=︒,110ECD ∠=︒,18070CEF ECD ∴∠=︒-∠=︒,1007030AEC AEF CEF ∴∠=∠-∠=︒-︒=︒,故选:A .【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键. 28.若1a >,则a ,a -,1a 的大小关系正确的是( )A .1a a a >->B .1a a a >->C .1a a a >>-D .1a a a ->> 答案:C解析:C【分析】可以用取特殊值的方法,因为a >1,所以可设a=2,然后分别计算|a|,-a ,1a,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a =, ∵2>12>-2, ∴|a|>1a >-a ; 故选:C .【点睛】此类问题运用取特殊值的方法做比较简单.29.已知关于x ,y 的方程组25241x y a x y a +=-⎧⎨-=-⎩给出下列结论:①当a =1时,方程组的解也是x +y =2a +1的解;②无论a 取何值,x ,y 的值不可能是互为相反数;③x ,y 的自然数解有3对;④若2x +y =8,则a =2.正确的结论有( )个.A .1B .2C .3D .4答案:C解析:C【分析】先解出二元一次方程组得1222x a y a =+⎧⎨=-⎩,①当a =1时,方程组的解为30x y =⎧⎨=⎩,则x +y =3=2a +1;②x +y =1+2a +2﹣2a =3,无论a 取何值,x ,y 的值不可能是互为相反数;③3x y +=,,x y 是自然数,解得,x y 有4对解;④2x +y =2(1+2a )+(2﹣2a )=4+2a =8,则a =2.【详解】解:25241?x y a x y a +=-⎧⎨-=-⎩①②, ①﹣②,得y =2﹣2a ,将y =2﹣2a 代入②,得x =1+2a ,∴方程组的解为1222x a y a =+⎧⎨=-⎩,当a =1时,方程组的解为30x y =⎧⎨=⎩, ∴x +y =3=2a +1,∴①结论正确;∵x +y =1+2a +2﹣2a =30≠,∴无论a 取何值,x ,y 的值不可能是互为相反数,∴②结论正确;3x y +=,,x y 是自然数0123,,,,3210x x x x y y y y ====⎧⎧⎧⎧∴⎨⎨⎨⎨====⎩⎩⎩⎩共4对 ∴x ,y 的自然数解有4对,∴③结论不正确;∵2x +y =2(1+2a )+(2﹣2a )=4+2a =8,∴a =2,∴④结论正确;故选:C .【点睛】本题考查了二元一次方程的解,二元一次方程组的解,解二元一次方程组 ,解题的关键是掌握二元一次方程的解,二元一次方程组的解,解二元一次方程组.30.若不等式组0312(1)x m x x -<⎧⎨->-⎩只有两个整数解,则m 的取值范围是( ) A .1≤m <2 B .1<m ≤2 C .1≤m ≤2 D .m <2答案:B解析:B【分析】先解出第二个不等式的解集,再根据不等式组只有两个整数解,确定m 的取值范围.【详解】解:解不等式312(1)x x ->-得,31220x x --+>10x ∴+>1x ∴>-解不等式0x m -<得,x m <,不等式组只有两个整数解,0,1x ∴=∴m 的取值范围是1<m ≤2,故选:B .【点睛】本题考查解一元一次不等式(组),不等式组的整数解等知识,是重要考点,掌握相关知识是解题关键.31.解不等式()()210x x -->时,我们可以将其化为不等式2010x x ->⎧⎨->⎩或2010x x -<⎧⎨-<⎩得到的解集为1x <或2x >,利用该题的方法和结论,则不等式()()()3210x x x --->的解集为( )A .3x >B .12x <<C .1x <D .3x >或12x << 答案:D解析:D【分析】根据已知形式化成不等式组分别求解即可;【详解】由题可得,将不等式化为()()30210x x x ->⎧⎨-->⎩或()()30210x x x -<⎧⎨--<⎩, 解不等式组()()30210x x x ->⎧⎨-->⎩, 由30x ->得3x >,由()()210x x -->得1x <或2x >,∴不等式的解集为:3x >;解不等式组()()30210x x x -<⎧⎨--<⎩, 由30x -<得3x <,由()()210x x --<得12x <<,∴不等式组的解集为:12x <<,∴不等式组的解析为3x >或12x <<.故选D .【点睛】本题主要考查了一元一次不等式组的求解,准确根据已知条件组合不等式组求解是解题的关键.32.如果关于x 的不等式组3021x a x b -≥⎧⎨+<⎩的整数解仅有1,2,那么适合这个不等式组的整数a ,b 组成的有序数对(),a b 共有( )A .4个B .6个C .8个D .9个答案:B解析:B【分析】解不等式组,然后根据不等式组的整数解仅有1,2即可确定a ,b 的范围,即可确定a ,b 的整数解,即可求解.【详解】解:3021x a x b -⎧⎨+<⎩①②, 解不等式①,得:3a x, 解不等式②,得:12b x -<, ∴不等式组的解集为132a b x -<, 不等式组的整数解仅有1、2, 013a ∴<,1232b -<, 解得:03a <,53b -<-,∴整数a 有1;2;3,整数b 有4-;3-,整数a 、b 组成的有序数对(,)a b 有(1,4)-;(2,4)-;(3,4)-;(1,3)-;(2,3)-;(3,3)-,共6个,故选:B .【点睛】此题主要考查了不等式组的整数解,根据不等式组整数解的值确定a ,b 的取值范围是解决问题的关键.33.若关于x 的不等式0ax b ->的解集是12x <,则关于x 的不等式bx a <的解集是( ) A .2x <- B .2x < C .2x >- D .2x >答案:D解析:D【分析】由题意可知,a 、b 均为负数,且可得a =2b ,把a =2b 代入bx <a 中,则可求得bx <a 的解集.【详解】由0ax b ->得:ax b > ∵不等式0ax b ->的解集为12x <∴a <0∴12b x a <= ∴a =2b∴b <0由bx a <,得2bx b <∵b <0∴x >2故选:D .【点睛】本题考查了解一元一次不等式,关键是由条件确定字母a 的符号,从而确定a 与b 的关系,易出现错误的地方是求bx <a 的解集时,忽略b 的符号,从而导致结果错误. 34.某种商品的进价为40元,出售时标价为60元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )折.A .7B .6C .8D .5答案:A解析:A【分析】设商店打x 折销售,利用利润=销售价格-进价,结合要保证利润率不低于5%,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设商店打x 折销售, 依题意得:6040405%10x ⨯-⨯, 解得:7x .故选:A .【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键. 35.若整数a 使关于x 的不等式组1112341x x x a x -+⎧≤⎪⎨⎪->+⎩,有且只有45个整数解,则符合条件的所有整数a 的和为( )A .-180B .-238C .-119D .-177答案:A解析:A【分析】不等式组整理后,根据只有4个整数解,确定出x 的取值,进而求出a 的范围,进一步求解即可【详解】 解:1112341x x x a x -+⎧≤⎪⎨⎪->+⎩①②解不等式①得,25x ≤解不等式②得,a 1x 3+> ∴不等式组1112341x x x a x -+⎧≤⎪⎨⎪->+⎩的解集为1253a x +<≤∵不等式组1112341x x x a x -+⎧≤⎪⎨⎪->+⎩有且只有45个整数解, ∴120193a +-≤<- ∴6058a -≤<-∵a 为整数∴a 为-61,-60,-59∴-61-60-59=-180故选:A【点睛】本题主要考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.36.已知关于x 、y 的方程组22331x y k x y k +=⎧⎨+=-⎩以下结论:①当0k =时,方程组的解也是方程24-=-x y 的解;②存在实数k ,使得0x y +=;③当1y x ->-时,1k >;④不论k 取什么实数,3x y +的值始终不变,其中正确的是( )A .①②③B .①②④C .①③④D .②③④ 答案:B解析:B【分析】①把k=0代入方程组求出解,代入方程检验即可;②方程组消元k 得到x 与y 的方程,检验即可;③表示出y-x ,代入已知不等式求出k 的范围,判断即可;④方程组整理后表示出x+3y ,检验即可.【详解】解:①把k=0代入方程组得:20231x y x y +=⎧⎨+=-⎩, 解得:21x y =-⎧⎨=⎩, 代入方程得:左边=-2-2=-4,右边=-4,左边=右边,此选项正确;②由x+y=0,得到y=-x ,代入方程组得:31x k x k -=⎧⎨-=-⎩,即k=3k-1, 解得:12k =, 则存在实数12k =,使x+y=0,本选项正确; ③22331x y k x y k +=⎧⎨+=-⎩,解不等式组得:321x k y k=-⎧⎨=-⎩, ∵1y x ->-,∴1(32)1k k --->-,解得:1k <,此选项错误;④x+3y=3k -2+3-3k=1,本选项正确;∴正确的选项是①②④;故选:B.【点睛】此题考查了二元一次方程组的解以及解二元一次方程组熟练掌握运算法则是解本题的关键.37.甲、乙两人共同解关于x ,y 的方程组532ax by x cy +=⎧⎨+=⎩①②,甲正确地解得21x y =⎧⎨=-⎩乙看错了方程②中的系数c ,解得31x y =⎧⎨=⎩,则2()a b c ++的值为( ) A .16 B .25 C .36 D .49答案:B解析:B【分析】将x =2,y =﹣1代入方程组中,得到关于a 与b 的二元一次方程与c 的值,将x =3,y =1代入方程组中的第一个方程中得到关于a 与b 的二元一次方程,联立组成关于a 与b 的方程组,求出方程组的解得到a 与b 的值,即可确定出a ,b 及c 的值.【详解】把21x y =⎧⎨=-⎩代入得:2562a b c -=⎧⎨-=⎩,解得:c =4,把31x y =⎧⎨=⎩代入得:3a +b =5,联立得:2535a b a b -=⎧⎨+=⎩,解得:21a b =⎧⎨=-⎩,则(a +b +c )2=(2﹣1+4)2=25. 故选B .【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.38.如图,在平面直角坐标系上有点A(1.O),点A 第一次跳动至点A 1(-1,1).第四次向右跳动5个单位至点A 4(3,2),…,依此规律跳动下去,点A 第100次跳动至点A 100的坐标是( )A .(50,49)B .(51, 49)C .(50, 50)D .(51, 50) 答案:D解析:D【解析】分析:根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.详解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n 次跳动至点的坐标是(n +1,n ),∴第100次跳动至点的坐标是(51,50).故答案选:D.点睛:坐标与图形性质, 规律型:图形的变化类.39.小兰:“小红,你上周买的笔和笔记本的价格是多少啊?”小红:“哦,…,我忘了!只记得先后买了两次,第一次买了 5 支笔和 10 本笔记本共花了 42 元钱,第二次买了 10 文笔和 5 本笔记本共花了 30 元钱.”请根据小红与小兰的对话,求得小红所买的笔和笔 记本的价格分别是( )A .0.8 元/支,2.6 元/本B .0.8 元/支,3.6 元/本C .1.2 元/支,2.6 元/本D .1.2 元/支,3.6 元/本答案:D解析:D【分析】首先设小红所买的笔的价格是x 元/支,笔记本的价格是y 元/本,根据关键语句“第一次买了5支笔和10本笔记本共花了42元钱,”可得方程5x+10y=42,“第二次买了10支笔和5本笔记本共花了30元钱”可得方程10x+5y=30,联立两个方程,再解方程组即可.【详解】解:设小红所买的笔的价格是x 元/支,笔记本的价格是y 元/本,由题意得: 5104210530x y x y +=⎧⎨+=⎩ 解得: 1.23.6x y =⎧⎨=⎩故答案为D.【点睛】本题主要考查了二元一次方程组的应用,关键是弄懂题意,找出题目中的等量关系,再列出方程组即可.40.如图,在一单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7……,都是斜边在x 轴上,斜边长分别为2,4,6,……的等腰直角三角形,若A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,﹣1),A 3(0,0),则依图中所示规律,A 2020的坐标为( )A .(1010,0)B .(1012,0)C .(2,1012)D .(2,1010) 答案:D解析:D【分析】根据脚码确定出脚码为偶数时的点的坐标,得到规律:当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,然后确定出第2020个点的坐标即可.【详解】解:观察点的坐标变化发现:当脚码为偶数时的点的坐标,得到规律:当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,因为2020能被4整除,所以横坐标为2,纵坐标为1010,故选:D .【点睛】本题考查点坐标的变化规律,根据所要求的点坐标确定类似点的变化规律是解题关键.41.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y---=--有非负整数解,则符合条件的所有整数a 的和为( ) A .0 B .1 C .4 D .6答案:B解析:B【分析】先解关于x 的一元一次不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩ ,再根据其解集是x≤a ,得a 小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a 的值,再求和即可.【详解】解:由不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩,解得:5x a x ⎧⎨<⎩ ∵解集是x≤a ,∴a<5;由关于的分式方程24111y a y y y---=-- 得得2y-a+y-4=y-1 32a y +∴= 又∵非负整数解,∴a≥-3,且a=-3,a=-1(舍,此时分式方程为增根),a=1,a=3它们的和为1. 故选B.【点睛】本题综合考查了含参一元一次不等式,含参分式方程的问题,需要考虑的因素较多,属于易错题.42.已知方程组2106x y bx ay +=⎧⎨+=⎩和10312ax y b x y -=⎧⎨-=⎩有相同的解,则-a b 的值为( ) A .1 B .1- C .2 D .2-答案:A解析:A【分析】根据两个方程组解相同,解方程组210312x y x y +=⎧⎨-=⎩,把求得的x 、y 的值分别两个方程组中的另一个方程即可得到关于a 、b 的方程组,解方程组即可求得a 、b 的值,从而可求得结果的值.【详解】∵方程组2106x y bx ay +=⎧⎨+=⎩和10312ax y b x y -=⎧⎨-=⎩有相同的解 ∴方程组210312x y x y +=⎧⎨-=⎩①②与106ax y b bx ay -=⎧⎨+=⎩有相同的解 由①×3+②得:7x =42解得:x =6把x =6代入①得:12+y =10解得:y =-2∴62x y =⎧⎨=-⎩是方程组210312x y x y +=⎧⎨-=⎩①②与106ax y b bx ay -=⎧⎨+=⎩的解 把62x y =⎧⎨=-⎩代入106ax y b bx ay -=⎧⎨+=⎩中,得:6210626a b b a +=⎧⎨-=⎩化简得:35133a b a b -=-⎧⎨-+=⎩③④ ③+④×3得:4b =8解得:b =2把b =2代入④得:-a +6=3解得:a =3故方程组解为32a b =⎧⎨=⎩∴a -b =3-2=1故选:A .【点睛】本题主要考查了二元一次方程组的解法、二元一次方程组的解,理解二元一次方程组的解是本题的关键.43.已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,则2a b -的值为( ) A .15 B .14 C .10 D .8答案:C解析:C【分析】联立不含a 与b 的方程组成方程组,求出方程组的解得到x 与y 的值,进而求出a 与b 的值,代入原式计算即可求出值.【详解】解:根据题意,则5325x y x y +=⎧⎨-=⎩①②, 由①×2+②得:11x =11,解得:x =1,把x =1代入①得:5+y =3,解得:y =-2;把x =1,y =-2代入5451ax y x by +=⎧⎨+=⎩,则104521a b -=⎧⎨-=⎩, 解得:142a b =⎧⎨=⎩,。

四川师范大学附属中学七年级下册数学期末压轴难题试卷-百度文库

四川师范大学附属中学七年级下册数学期末压轴难题试卷-百度文库

四川师范大学附属中学七年级下册数学期末压轴难题试卷-百度文库 一、选择题1.16的平方根是() A .4± B .4 C .2± D .2 2.在下列图形中,不能..通过其中一个三角形平移得到的是( ) A .B .C .D .3.点A (-2,-4)所在象限为( ). A .第一象限B .第二象限C .第三象限D .第四象限4.下列四个说法:①连接两点之间的线段叫做这两点间的距离;②经过直线外一点,有且只有一条直线与这条直线平行;③a 2的算术平方根是a ;④64的立方根是4.其中假命题的个数有( ) A .1个 B .2个C .3个D .4个5.如图,直线//a b ,点,M N 分别在直线,a b 上,P 为两平行线间一点,那么123∠+∠+∠等于( )A .360︒B .300︒C .270︒D .180︒ 6.下列各式正确的是( )A .42=±B .2(2)4-=C .224-=D .382-=7.如图,将直尺与含45°角的三角尺叠放在一起,其两边与直尺相交,若∠1=25°,则∠2的度数为( )A .120°B .135°C .150°D .160°8.如图,在平面直角坐标系中,存在动点P 按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2021次运动后,点P 的坐标是( )A .(2022,1)B .(2021,0)C .(2021,1)D .(2021,2)二、填空题9.算术平方根是5的实数是___________.10.已知点,A a b ()在第四象限,||5,||3a b ==,则点A 关于y 轴对称的坐标是__________.11.如图,已知AD 是ABC 的角平分线,CE 是ABC 的高,∠BAC =60°,∠BCE =40°,则∠ADB =_____.12.如图,直线a ,b 被直线c 所截,//a b ,180∠=︒,则2∠=_________.13.如图1是长方形纸带,19DEF ∠=︒,将纸带沿EF 折叠成图2,再沿BF 折叠成图3,则图3中的CFE ∠的度数是_________度.14.已知,a b 为两个连续的整数,且 15a b <<,则a b +=_______ 15.在平面直角坐标系中,第二象限内的点M 到横轴的距离为2,到纵轴的距离为3,则点M 的坐标是________.16.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点1(0,1)A ,()21,1A ,()31,0A ,()42,0A ,…,那么点2021A 的坐标为__________.三、解答题17.(1)已知2(1)4x -=,求x 的值; (2)计算:23112(2)8--+-. 18.求下列各式中x 的值. (1)4x 2﹣25=0; (2)(2x ﹣1)3=﹣64.19.已知如图,//BC EF ,80AOB ∠=︒,1160C ∠+∠=︒,60B ∠=︒,求证:A D ∠=∠. 完成下面的证明过程: 证明:∵80AOB ∠=︒,∴80COD AOB ∠=∠=︒(______________________________) ∵____________________(已知)∴1180COD ∠+∠=︒.(______________________________) ∴1100∠=︒.∵1160C ∠+∠=︒,(已知) ∴1601______C ∠=︒-∠= 又∵60B ∠=︒, ∴B C ∠=∠,∴//AB CD ,(______________________________) ∴A D ∠=∠.(______________________________)20.在平面直角坐标系中,已知点(),A x y ,点()2,2B x my mx y --(其中m 为常数,且0m ≠),则称B 是点A 的“m 系置换点”.例如:点()1,2A 的“3系置换点”B 的坐标为()1232,2312-⨯⨯⨯⨯-,即()11,4B -.(1)点(2,0)的“2系置换点”的坐标为________;(2)若点A 的“3系置换点”B 的坐标是(-4,11),求点A 的坐标.(3)若点(),0A x (其中0x ≠),点A 的“m 系置换点”为点B ,且2AB OA =,求m 的值; 21.阅读下面文字:22的小数部分我们不可能全部写出来,于是小明用21-来表示2的小数部分,事实上小明的表示法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:由“平方与开平方互为逆运算”可知:22<2(7)<23,即273<<,∴7的整数部分是2,小数部分是72-.(1)10的整数部分是________,小数部分是________;(2)如果5的小数部分是a ,37整数部分是b ,求25b a -+的值; (3)已知103x y +=+,其中x 是整数,且01y <<,求y x -. 二十二、解答题22.如图,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD ,求出阴影部分的边长.二十三、解答题23.如图①,将一张长方形纸片沿EF 对折,使AB 落在''A B 的位置;(1)若1∠的度数为a ,试求2∠的度数(用含a 的代数式表示); (2)如图②,再将纸片沿GH 对折,使得CD 落在''C D 的位置.①若//'EF C G ,1∠的度数为a ,试求3∠的度数(用含a 的代数式表示); ②若''B F C G ⊥,3∠的度数比1∠的度数大20︒,试计算1∠的度数. 24.综合与探究综合与实践课上,同学们以“一个含30角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a ,b ,且//a b ,三角形ABC 是直角三角形,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒操作发现:(1)如图1.148∠=︒,求2∠的度数;(2)如图2.创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由. 实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.25.小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在ABC 中,90ACB ∠=︒,AE 是角平分线,CD 是高,AE 、CD 相交于点F .求证:CFE CEF ∠=∠;(变式思考)如图2,在ABC 中,90ACB ∠=︒,CD 是AB 边上的高,若ABC 的外角BAG ∠的平分线交CD 的延长线于点F ,其反向延长线与BC 边的延长线交于点E ,则CFE ∠与CEF ∠还相等吗?说明理由;(探究延伸)如图3,在ABC 中,AB 上存在一点D ,使得ACD B ∠=∠,BAC ∠的平分线AE 交CD 于点F .ABC 的外角BAG ∠的平分线所在直线MN 与BC 的延长线交于点M .直接写出M ∠与CFE ∠的数量关系.26.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处. (1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图∠+∠+∠+∠+∠+∠和是________.中的123456【参考答案】一、选择题1.A解析:A【分析】如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作a x±=±.【详解】解:16的平方根是16=4±.故选A.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.2.D【分析】根据平移的性质即可得出结论.【详解】解:A、能通过其中一个三角形平移得到,不合题意;B、能通过其中一个三角形平移得到,不合题意;C、能通过其中一个三角形平移得到,不合题意;D解析:D【分析】根据平移的性质即可得出结论.【详解】解:A、能通过其中一个三角形平移得到,不合题意;B、能通过其中一个三角形平移得到,不合题意;C、能通过其中一个三角形平移得到,不合题意;D、不能通过其中一个三角形平移得到,上面的三角形需要由下面的三角形旋转才能得到,符合题意.故选:D.【点睛】本题考查的是利用平移设计图案,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解答此题的关键.3.C【分析】先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【详解】A(-2,-4)的横坐标是负数,纵坐标是负数,符合点在第三象限的条件,所以点A在第三象限.故选C.【点睛】本题主要考查点的坐标所在的象限,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.C【分析】利用两点间的距离的定义、平行线的判定、算术平方根的定义及立方根的求法分别判断后即可确定正确的选项.【详解】解:①连接两点之间的线段的长度叫做这两点间的距离,故原命题错误,是假命题,符合题意;②经过直线外一点,有且只有一条直线与这条直线平行,正确,是真命题,不符合题意;③a2的算术平方根是a(a≥0),故原命题错误,是假命题,符合题意;2,故原命题错误,是假命题,符合题意;假命题有3个,故选:C.【点睛】本题主要考查真假命题,两点见的距离,平行线的判定,算术平方根,立方根的求法等知识点,熟知相关定义以及运算法则是解题的关键.5.A【分析】过点P作PE∥a.则可得出PE∥a∥b,结合“两直线平行,内错角相等”可得出∠2=∠AMP+∠BNP,再结合邻补角的即可得出结论.【详解】解:过点P作PE∥a,如图所示.∵PE ∥a ,a ∥b , ∴PE ∥a ∥b ,∴∠AMP =∠MPE ,∠BNP =∠NPE , ∴∠2=∠MPE +∠NPE =∠AMP +∠BNP . ∵∠1+∠AMP =180°,∠3+∠BNP =180°, ∴∠1+∠2+∠3=180°+180°=360°. 故选:A . 【点睛】本题考查了平行线的性质以及角的计算,解题的关键是找出∠2=∠AMP +∠BNP .本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键. 6.B 【分析】根据算术平方根的定义,立方根的定义以及平方根的定义逐一判断即可. 【详解】解:A.42=,故本选项不合题意; B.2(2)4-=,正确;C.224-=-,故本选项不合题意;D.382-=-,故本选项不合题意. 故选:B . 【点睛】本题考查了平方根,立方根以及算术平方根的定义,熟记相关定义是解题的关键. 7.D 【分析】如图,利用三角形的外角的性质求出∠3,再利用平行线的性质可得结论. 【详解】 解:如图,∵∠4=45°,∠1=25°,∠4=∠1+∠3, ∴∠3=45°-25°=20°, ∵a ∥b , ∴∠2+∠3=180°,∴∠2=180°-20°=160°,故选:D.【点睛】本题考查三角形外角的性质,平行线的性质等知识,解题的关键是学会添加常用辅助线,利用平行线的性质解决问题.8.C【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0, (4)个数一个循环,进而可得经过第2021次运动后,动点P的坐标.【详解】解:观察点的坐标变化可知:第1次从原解析:C【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,…4个数一个循环,进而可得经过第2021次运动后,动点P的坐标.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0;4个数一个循环,所以2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).故选:C.【点睛】本题考查了规律型−点的坐标,解决本题的关键是观察点的坐标变化寻找规律.二、填空题9.5【分析】根据算术平方根的定义解答即可.【详解】解:算术平方根是的实数是5. 故答案为:5. 【点睛】本题主要考查算术平方根的定义,熟知负数没有平方根,0的平方根有1个,正数的平方根有2个解析:5 【分析】根据算术平方根的定义解答即可. 【详解】5. 故答案为:5. 【点睛】本题主要考查算术平方根的定义,熟知负数没有平方根,0的平方根有1个,正数的平方根有2个,算术平方根有1个是解题关键.10.【分析】由第四象限点的坐标符号是(+,-),可得,关于y 轴对称的点,纵坐标相同,横坐标互为相反数,即可求解. 【详解】解:因为在第四象限,则,所以,又因为关于y 轴对称,x 值相反,y 值不变,解析:53--(,) 【分析】由第四象限点的坐标符号是(+,-),可得53A -(,),关于y 轴对称的点,纵坐标相同,横坐标互为相反数,即可求解. 【详解】解:因为,A a b ()在第四象限,则00a b ><,,所以53A -(,), 又因为53A -(,)关于y 轴对称,x 值相反,y 值不变, 所以点A 关于y 轴对称点坐标为53--(,). 故答案为53--(,). 【点睛】本题考查点的坐标的意义和对称的特点.关键是掌握点的坐标的变化规律.11.100° 【分析】根据AD 是ABC 的角平分线,CE 是ABC 的高,∠BAC =60°,可得∠BAD 和∠CAD 相等,都为30°,∠CEA =90°,从而求得∠ACE 的度数,又因为∠BCE =40°,∠ADB解析:100°【分析】根据AD 是ABC 的角平分线,CE 是ABC 的高,∠BAC =60°,可得∠BAD 和∠CAD 相等,都为30°,∠CEA =90°,从而求得∠ACE 的度数,又因为∠BCE =40°,∠ADB =∠BCE +∠ACE +∠CAD ,从而求得∠ADB 的度数.【详解】解:∵AD 是ABC 的角平分线,∠BAC =60°.∴∠BAD =∠CAD =12∠BAC =30°,∵CE 是ABC 的高,∴∠CEA =90°.∵∠CEA +∠BAC +∠ACE =180°.∴∠ACE =30°.∵∠ADB =∠BCE +∠ACE +∠CAD ,∠BCE =40°.∴∠ADB =40°+30°+30°=100°.故答案为:100°.【点睛】本题考查三角形的内角和、角的平分线、三角形的一个外角等于和它不相邻的内角的和,关键是根据具体目中的信息,灵活变化,求出相应的问题的答案. 12.100°【分析】先根据平行线的性质得出∠3=80°,再由邻补角得到∠2=100°.【详解】如图,∵,,∴∠3=80°,又∵∠2+∠3=180°,∴∠2=180°-∠3=180°-8解析:100°【分析】先根据平行线的性质得出∠3=80°,再由邻补角得到∠2=100°.【详解】如图,∵//a b ,180∠=︒,∴∠3=80°,又∵∠2+∠3=180°,∴∠2=180°-∠3=180°-80°=100°.故答案为:100°.【点睛】此题主要考查了平行线的性质以及邻补角,熟练掌握它们的性质是解答此题的关键.13.123【分析】由题意根据折叠的性质可得∠DEF=∠EFB=19°,图2中根据平行线的性质可得∠GFC=142°,图3中根据角的和差关系可得∠CFE=∠GFC-∠EFG.【详解】解:∵AD//解析:123【分析】由题意根据折叠的性质可得∠DEF=∠EFB=19°,图2中根据平行线的性质可得∠GFC=142°,图3中根据角的和差关系可得∠CFE=∠GFC-∠EFG.【详解】解:∵AD//BC,∴∠DEF=∠EFB=19°,在图2中,∠GFC=180°-∠FGD=180°-2∠EFG=142°,在图3中,∠CFE=∠GFC-∠EFG=123°.故答案为:123.【点睛】本题考查平行线的性质,图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.14.7【分析】由无理数的估算,先求出a、b的值,再进行计算即可.【详解】解:∵,∴,∵、为两个连续的整数,,∴,,∴;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确解析:7【分析】由无理数的估算,先求出a、b的值,再进行计算即可.【详解】解:∵∴34<,∵a、b为两个连续的整数,a b<,b=,∴3a=,4a b+=+=;∴347故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确求出a、b的值,从而进行解题.15.(-3,2)【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【详解】∵点到横轴的距离为,到纵轴的距离为,解析:(-3,2)【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【详解】∵点M到横轴的距离为2,到纵轴的距离为3,∴|y|=2,|x|=3,由M是第二象限的点,得:x=−3,y=2.即点M的坐标是(−3,2),故答案为:(−3,2).【点睛】此题考查象限及点的坐标的有关性质,解题关键在于第二象限内点的横坐标小于零,纵坐标大于零.16.【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果.【详解】∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,,解析:()1010,1【分析】由题意可知,每隔四次移动重复一次,继续得出A 5,A 6,A 7,A 8,…,归纳出点A n 的一般规律,从而可求得结果.【详解】∵1(0,1)A ,()21,1A ,()31,0A ,()42,0A∴根据点的平移规律,可分别得:()52,1A ,()63,1A ,()73,0A ,()84,0A ,()94,1A ,()105,1A ,()115,0A ,()126,0A ,…,()4322,1n A n --,()4221,1n A n --,()4121,0n A n --,()42,0n A n∵2021=505×4+1∴2021A 的横坐标为2×505=1010,纵坐标为1即2021(1010,1)A故答案为:()1010,1【点睛】本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.三、解答题17.(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:∵;∴∴x=3或x=-1(2)原式=,【解析:(1)x=3或x=-1;(212【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:∵()214x -=;∴12 x-=±∴x=3或x=-1(2)原式1122-+ 12=,【点睛】本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键. 18.(1)x=;(2)x=.【分析】(1)利用平方根的定义求解;(2)利用立方根的定义求解.【详解】解:(1)4x2﹣25=0,4x2=25,x2=,x=;(2)(2x﹣1)3=﹣64解析:(1)x=52±;(2)x=32-.【分析】(1)利用平方根的定义求解;(2)利用立方根的定义求解.【详解】解:(1)4x2﹣25=0,4x2=25,x2=254,x=52±;(2)(2x﹣1)3=﹣64,2x﹣1=﹣4,2x=﹣3,x=32 -.【点睛】本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键.19.见解析【分析】根据平行线的判定和性质定理以及对顶角相等即可得到结论.【详解】解:证明:∵∠AOB=80°,∴∠COD=∠AOB=80°(对顶角相等).∵BC ∥EF (已知),∴∠COD+解析:见解析【分析】根据平行线的判定和性质定理以及对顶角相等即可得到结论.【详解】解:证明:∵∠AOB =80°,∴∠COD =∠AOB =80°(对顶角相等).∵BC ∥EF (已知),∴∠COD +∠1=180°(两直线平行,同旁内角互补).∴∠1=100°.∵∠1+∠C =160°(已知),∴∠C =160°-∠1=60°.又∵∠B =60°,∴∠B =∠C .∴AB ∥CD (内错角相等,两直线平行).∴∠A =∠D (两直线平行,内错角相等).【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了对顶角的定义.20.(1);(2);(3).【分析】(1)根据题中新定义直接将m 的值代入即可得出答案;(2)根据题中新定义列出关于、的二元一次方程组求解即可得出答案; (3)根据题中新定义可得出点B 的坐标,再根据解析:(1)()28,;(2)()21,;(3)1m =±. 【分析】(1)根据题中新定义直接将m 的值代入即可得出答案;(2)根据题中新定义列出关于x 、y 的二元一次方程组求解即可得出答案;(3)根据题中新定义可得出点B 的坐标,再根据2AB OA =列方程求解即可得出答案.【详解】解:(1)点(2,0)的“2系置换点”的坐标为()22202220-⨯⨯⨯⨯-,,即()28,;(2)由题意得:2342311x y x y -⨯⨯=-⎧⎨⨯⨯-=⎩ 解得:21x y =⎧⎨=⎩∴点A 的坐标为:()21,;(3)(),0A x∴点()2,2B x my mx y --为()20,20x m mx -⨯-即点B 坐标为(),2x mx ∴2AB mx =,OA x =2AB OA =22mx x ∴=m 为常数,且0m ≠∴1m =±.【点睛】本题考查了二元一次方程组的解法、绝对值方程,理解“m 系置换点”的定义并能运用是本题的关键.21.(1)3,;(2);(3)【分析】(1)先估算出的范围,再求出即可;(2)先估算出和的范围,再求出a 、b 的值,最后求出代数式的值即可; (3)先求出10+的范围,再求出x 、y 的值,最后代入求出解析:(1)33;(2)83)12【分析】(1的范围,再求出即可;(2的范围,再求出a 、b 的值,最后求出代数式的值即可;(3)先求出x 、y 的值,最后代入求出即可.【详解】解:(1)∵∴3<4,∴3-3,故答案为:3-3;(2)∵∴23,67,∴a ,b =6,∴)628b a-+=-+(3)∵12,∴11<1012,∴x=11,y=10111=,∴1111212y x--==【点睛】本题考查了估算无理数的大小和求代数式的值,能估算出无理数的大小是解此题的关键.二十二、解答题22.(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.解析:(1)棱长为4;(2【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为x,则364x=,所以4x=,即正方体的棱长为4.(2)因为正方体的棱长为4,所以AB=【点睛】本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键.二十三、解答题23.(1);(2)① ;②【分析】(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可;(2) ①由(1)知,,根据平行线的性质得到,再由折叠的性质及平角的定义解析:(1)1902a︒-;(2)①1454a︒+;②50︒【分析】(1)由平行线的性质得到4'B FC a∠=∠=,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可;(2) ①由(1)知,1902BFE a∠=︒-,根据平行线的性质得到1BFE C'GB902a∠=∠=︒-,再由折叠的性质及平角的定义求解即可;②由(1)知,∠BFE = 19012EFB '∠=︒-∠,由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,再根据条件和折叠的性质得到''11402190B FC FGC +=∠+∠=∠︒-∠︒,即可求解.【详解】解:(1)如图,由题意可知'//'A E B F ,∴14a ∠=∠=,∵//AD BC ,∴4'B FC a ∠=∠=,180BFB a '∴∠=︒-,∴由折叠可知1129022BFE BFB a '∠=∠=∠=︒-.(2)①由题(1)可知1902BFE a ∠=︒- , ∵//'EF C G ,1902BFE C'GB a ∴∠=∠=︒-, 再由折叠可知:113180*********HGC C GB a a ⎛⎫∠+∠=︒-∠=︒-︒-=︒+ ⎪⎝⎭', 13454HGC a ∴∠=∠=︒+;②由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,由(1)知19012BFE ∠=︒-∠, 11802180290112B FC BFE ⎛⎫'∴∠=︒-∠=︒-︒-∠=∠ ⎪⎝⎭, 又3∠的度数比1∠的度数大20︒,∴3=1+20∠∠︒,()18023180212014021FGC '∴∠=︒-∠=︒-∠+︒=︒-∠,''11402190B FC FGC +=∴∠+∠=∠︒-∠︒,1=50∴∠︒.【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.24.(1);(2)理由见解析;(3),理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠ 解析:(1)242∠=︒;(2)理由见解析;(3)12∠=∠,理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC−∠DBC =60°−∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.【详解】解:(1)如图1 148∠=︒,90BCA ∠=︒,3180142BCA ∴∠=︒-∠-∠=︒,//a b ,2342∴∠=∠=︒;图1(2)理由如下:如图2. 过点B 作//BD a ,图22180ABD ∴∠+∠=︒,//b BD ∴,1∴∠=∠DBC ,601ABD ABC DBC ∴∠=∠-∠=︒-∠,2601180∴∠+︒-∠=︒,21120∴∠-∠=︒;(3)12∠=∠,图3理由如下:如图3,过点C 作//CP a , AC 平分BAM ∠,30CAM BAC ∴∠=∠=︒,260BAM BAC ∠=∠=︒,又//a b ,//CP b ∴,160BAM ∠=∠=︒,30PCA CAM ∴∠=∠=︒,903060BCP BCA PCA ∴∠=∠-∠=︒-︒=︒,又//CP a ,260BCP ∴∠=∠=︒,12∠∠∴=.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.25.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸]∠M+∠CFE=90°,证明见解析.[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可证明;[变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF 、再根据直角三角形的性质和等角的余角相等即可得出CFE ∠=CEF ∠;[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE ,由此可证∠M+∠CFE=90°.【详解】[习题回顾]证明:∵∠ACB=90°,CD 是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD ,∵AE 是角平分线,∴∠CAF=∠DAF ,∵∠CFE=∠CAF+∠ACD ,∠CEF=∠DAF+∠B ,∴∠CEF=∠CFE ;[变式思考]相等,理由如下:证明:∵AF 为∠BAG 的角平分线,∴∠GAF=∠DAF ,∵∠CAE=∠GAF ,∴∠CAE=∠DAF ,∵CD 为AB 边上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE ;[探究延伸]∠M+∠CFE=90°,证明:∵C 、A 、G 三点共线 AE 、AN 为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM ,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B ,∠CFE=∠EAC+∠ACD ,∠ACD=∠B ,∴∠CEF=∠CFE ,∴∠M+∠CFE=90°.【点睛】本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.26.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE -∠AED-∠A′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。

师大附中七年级(下)数学期末考试卷

师大附中七年级(下)数学期末考试卷

l4 l3

A
B
l1
D
E
F
l2
咨询电话:10108899
学理科到学而思
地址:① 韶山北路 312 号长岭如家酒店旁 ② 雨花区劳动路 471 号枫树山小学旁雅礼中学对面
9、 已知三角的三个外角的
2:3:4,则它的最大内角度数为( )
A.90°
C.120°
D.100°
咨询电话:10108899
学理科到学而思
地址:① 韶山北路 312 号长岭如家酒店旁 ② 雨花区劳动路 471 号枫树山小学旁雅礼中学对面
长思思·初中
10、如图,AD 是 ABC 中 BAC 的平分线,DE AB 于点 E,EF AC 交 AC 于点 F,SABC =7, DE 2 , AB 4 ,则 AC 的长是( )
C
E
A
DB
咨询电话:10108899
学理科到学而思
地址:① 韶山北路 312 号长岭如家酒店旁 ② 雨花区劳动路 471 号枫树山小学旁雅礼中学对面
长沙学而思·初中部
23、(本小题满分 8 分) 如图,已知点 B 、 F 、 C 、 E 在一条直线上, B E , BF CE , AB DE ,求证 ABC DEF .
(2)BC=AC;(3)BH=AC;(4)CE=CD 中正确的有( )
A.1 个
B.2 个
C.3 个
D.4 个
二、填空题
13、一个多边形的内角和是 720°,它是
边形.
14、已知:如图, OAD OBC ,且 O 70 , C 25 ,则 DAC
度.
O
y
B
A
E
AD

川师大附属实验学校2013级第二学期期末摸拟考试初一数学试卷一及答案

川师大附属实验学校2013级第二学期期末摸拟考试初一数学试卷一及答案

川师大附属实验学校初2013级第二学期期末摸拟考试初一数学试卷(一)命题人;沈军卫 审题人;罗剑A 卷(100分)一、选择题(每小题2分、共20分)1.下列计算正确的是( )A.x 5+x 5=x 10B.x 5·x 5=x 10C.(x 5)5=x 10D.x 20÷x 2= x 102.下列各组长度的三条线段能组成三角形的是( ) A.1cm ,2cm ,3cm B.1cm ,1cm ,2cm C.1cm ,2cm ,2cm ; D.1cm ,3cm ,5cm ; 3.下列乘法中,不能运用平方差公式进行运算的是( )A 、(x+a)(x-a)B 、(b+m)(m-b)C 、(-x-b)(x-b)D 、(a+b)(-a-b)4. 如图,下列条件中,不能判断直线l 1∥l 2的是( )A 、∠1=∠3B 、∠2=∠3C 、∠4=∠5D 、∠2+∠4=1805、在△ABC 中,∠ABC 与∠ACB 的平分线相交于O ,则∠BOC 一定( )A、大于90° B、等于90° C、小于90° D、小于或等于90° 6、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( )A 1个B 2个C 3个D 4个 7、 由四舍五入得到近似数3.00万是( )A.精确到万位,有1个有效数字B. 精确到个位,有1个有效数字C.精确到百分位,有3个有效数字D. 精确到百位,有3个有效数字 8、从一个袋子中摸出红球的概率为51,且袋子中红球有5个,则袋子中共有球的个数为( ) A . 1 B .5 C .25 D .159、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( ) (1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)第40分钟时,汽车停下来了 (4)在第30分钟时,汽车的速度是90千米/时;.A 1个B 2个C 3个D 4个10、下列图象中,哪个图象能大致刻画在太阳光的照射下,太阳能热水器里面的水的温度与时间的关系.( )水温 水温 水温 水温A B C D二、填空题(每小题2分,共20分)11、用科学记数法表示:0.000000801=__________。

四川师大附中七年级数学下期末试题

四川师大附中七年级数学下期末试题

四川师大附中七年级数学下期末试题相等C.已知三条边对应相等 D.已知三个角对应相等7.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是( )A.三角形的稳定性 B.长方形的对称性C.长方形的四个角都是直角 D.两点之间线段最短(第7题图)(第8题图)8. 如图,已知FD∥BE,则∠1+∠2-∠3=( )A.90°B.135°C.150° D.180°9.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASAC.AAS D.SSS10.如图向高为H的圆柱形空水杯中注水,则下面表示注水量y与水深x的关系的图象是()第Ⅱ卷(非选择题,共70分)注意事项:1.A卷的第Ⅱ卷和B卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上.2.答卷前将密封线内的项目填写清楚.二.填空题:(本大题共4个小题,每小题4分,共16分)11. 计算: =12. 从一个袋子中摸出红球的概率为,已知袋子中红球有5个,则袋子中共有球的个数为13. 如图1所示,若,,则14.如图所示,△ABC中,∠A=90°,BD是角平分线,DE⊥BC,垂足是E,AC=10cm,CD=6cm,则DE的长为__________________三、解答题(本大题共6个小题,共54分)15.计算(本题满分12分)(1) (2)16.先化简,再求值(本题满分6分),其中17.解答题(本题满分8分)(1)已知a+b=3, a2+b2=5,求ab的值 (2)若求的值18.(本小题满分8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)求证:CD∥EF(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.19.(本小题满分10分)小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图6-32所示).图6-32(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)他到达离家最远的地方是什么时间?离家多远?(3)11时到12时他行驶了多少千米?(4)他可能在哪段时间内休息,并吃午餐?(5)他由离家最远的地方返回时的平均速度是多少?20.(本小题满分10分)如图,四边形ABCD中,E是AD中点,CE交BA延长线于点F.此时E也是CF中点(1)判断CD与FB的位置关系并说明理由(2)若BC=BF,试说明:BE⊥CF.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21. 如果(x+1)(x2-5ax+a)的乘积中不含x2项,则a为22.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E,其中能使△ABC≌△AED的条件有:(只需填序号)23.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=__第22题图第23题图24. 如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是_______.25. 在数学中,为了简便,记=1+2+3+…+(n-1)+n,=(x+1)+(x+2)+…+(x+n).若 + = (x-k)(x-k-1)].则二、解答题(本大题共3个小题,共30 分)26.(本小题满分8分).已知: ,求: 的值27.(本小题满分10分)操作实验:如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.所以△ABD≌△ACD,所以∠B=∠C.归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.根据上述内容,回答下列问题:思考验证:如图(4),在△ABC中,AB=AC.试说明∠B=∠C 的理由.探究应用:如图(5),CB⊥AB,垂足为A,DA⊥AB,垂足为B.E为AB的中点,AB=BC,CE⊥BD.(1)BE与AD是否相等?为什么?(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由。

川师附中数学七年级统考试卷

川师附中数学七年级统考试卷

川师附中数学七统考试卷第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.实效m,n在数轴上的对应点如图所示,则下列各式子正确的是()A.B.C.D.2.解方程5x-3=2x+2,移项正确的是()A.5x-2x=3+2 B.5x+2x=3+2C.5x-2x=2-3 D.5x+2x=2-33.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A. B. C. D.4.如果m和n互为相反数,则化简(3m﹣2n)﹣(2m﹣3n)的结果是()A.﹣2B.0C.2D.35.星期天,小王去朋友家借书,下图是他离家的距离y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了10 分钟C.小王去时所花的时间少于回家所花的时间D.小王去时走上坡路,回家时走下坡路6.对有理数a、b,规定运算如下:a ※b=a+ab,则-2 ※ 3的值为………………()A.-8 B.-6 C.-4 D.-27.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有…………………………( ) A.1个B.2个C.3个D.4个8.中学生骑电动车上学给交通安全带来隐患,为了解某中学2500 个学生家长对“中学生骑电动车上学”的态度,从中随机调查400 个家长,结果有360 个家长持反对态度,则下列说法正确的是()A.调查方式是普查B.该校只有360 个家长持反对态度C.样本是360 个家长D.该校约有90%的家长持反对态度9.已知点O是线段AB上的一点,且AB=10㎝,点M、N分别是线段AO、线段BO 的中点,那么线段MN的长度是()A、3㎝B、5㎝C、2㎝D、无法确定10.用棋子摆出下列一组“口”字,按照这种方法白下区,则摆第n个“口”字需用旗子()A.4n枚B.(4n﹣4)枚C.(4n+4)枚D.n2枚第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11. -1/7的相反数是_______;-8/9的倒数是.BA(第7题图)12...........A .....7............A.......13.已知P是数轴上表示-2的点,把P点向左移动3个单位长度后表示的数是.14.梦之岛数码港某商铺出售A,B,C三种型号的笔记本电脑,四月份A型电脑的销售额占三种型号总销售额的60%,五月份B,C两种型号的电脑销售额比四月份减少了m%,A型电脑销售额比四月份增加了20%,已知商场五月份该三种型号电脑的总销售额比四月份增加了10.8%,则m =________.15.按如下图示的程序计算,若开始输入的n值为2,则最后输出的结果是 .输入n 大于200 输出结果是三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算题(1)23﹣37+3﹣52;(2);(3);(4).17. 解方程(1) 3x+3=2x+7 (2)18.已知(x-1)5=ax5+bx4+cx3+dx2+ex+f.求:(1)a+b+c+d+e+f的值;(2)a+c+e的值.19.直线上有两点A,B,再在该直线上取点C,使BC=AB,D是AC的中点,若BD=6cm,求线段AB的长.20.小甲虫从某点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为:(单位:厘米)①小甲虫最后是否回到出发点O呢?(4分)②在爬行过程中,如果每爬行1厘米奖励三粒芝麻,那么小甲虫一共得到多少粒芝麻?(4分)21.在边长为16cm的正方形纸片的四个角上各剪去一个同样大小的正方形,折成一个无盖的长方体(如图) .(1)如果剪去的小正方形的边长为x cm,请用x表示这个无盖长方体的容积;(2)当剪去的小正方形的边长x的值分别为3cm和3.5cm时,比较折成的无盖长方体的容积的大小.22、(12分)水是生命之源泉,是人体需要的第一营养素,具有极为重要的生理功能。

四川师范大学附属中学七年级下册数学期末试卷-百度文库

四川师范大学附属中学七年级下册数学期末试卷-百度文库

四川师范大学附属中学七年级下册数学期末试卷-百度文库一、选择题1.若2200.3,3,(3)a b c -==-=-,那么a 、b 、c 三数的大小为( ).A .a c b >>B .c a b >>C .a b c >>D .c b a >>2.如图,能判断AB ∥CE 的条件是( )A .∠A =∠ECDB .∠A =∠ACEC .∠B =∠BCAD .∠B =∠ACE3.下列各式从左到右的变形中,是因式分解的是( ) A .2(3)(3)9a a a +-=- B .2323(2)a a a a a--=-- C .245(4)5a a a a --=--D .22()()a b a b a b -=+-4.如图,在五边形ABCDE 中,A B E α∠+∠+∠=,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度教是( )A .1902α- B .1902α︒+C .12αD .15402α︒-5.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒6.下列图案中,可以看成是由图案自身的一部分经平移后得到的是( )A .B .C .D .7.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( ) A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩8.一元一次不等式312x -->的解集在数轴上表示为( ) A . B .C .D .9.在ABC 中,1135A B C ∠=∠=∠,则ABC 是( ) A .钝角三角形B .直角三角形C .锐角三角形D .无法确定10.如图,△ABC 中∠A=30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB=82°,则原三角形的∠B 的度数为( )A .75°B .72°C .78°D .82°二、填空题11.20192018512125⎛⎫-⨯ ⎪⎝⎭⎭⎛⎫ ⎪⎝ =______.12.已知12x y =⎧⎨=⎩是关于x 、y 的二元一次方程mx ﹣y =7的一个解,则m =_____.13.已知m a =2,n a =3,则2m n a -=_______________.14.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________.15.已知30m -=,7m n +=,则2m mn +=___________. 16.已知()223420x y x y -+--=,则x=__________,y=__________.17.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且△ABC 的面积等于4cm 2,则阴影部分图形面积等于_____cm 218.已知关于x ,y 的二元一次方程(32)(23)11100a x a y a +----=,无论a 取何值,方程都有一个固定的解,则这个固定解为_______. 19.已知代数式2x-3y 的值为5,则-4x+6y=______.20.已知点m (3a -9,1-a ),将m 点向左平移3个单位长度后落在y 轴上,则a= __________ .三、解答题21.因式分解: (1)a 3﹣a ; (2)4ab 2﹣4a 2b ﹣b 3; (3)a 2(x ﹣y )﹣9b 2(x ﹣y ); (4)(y 2﹣1)2+6 (1﹣y 2)+9.22.已知关于x ,y 的二元一次方程组533221x y nx y n +=⎧⎨-=+⎩的解适合方程x +y =6,求n 的值.23.同一平面内的两条直线有相交和平行两种位置关系.(1)如图a ,若//AB CD ,点P 在AB 、CD 外部,我们过点P 作AB 、CD 的平行线PE ,则有////AB CD PE ,则BPD ∠,B ,D ∠之间的数量关系为_________.将点P移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论.(2)迎“20G ”科技节上,小兰制作了一个“飞旋镖”,在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,他很想知道BPD ∠、ABP ∠、D ∠、BQD ∠之间的数量关系,请你直接写出它们之间的数量关系:__________.(3)设BF 交AC 于点P ,AE 交DF 于点Q ,已知126APB ∠=︒,100AQF ∠=︒,直接写出B E F ∠+∠+∠的度数为_______度,A ∠比F ∠大______度.24.如图,直线AC ∥BD ,BC 平分∠ABD ,DE ⊥BC ,垂足为点E ,∠BAC =100°,求∠EDB 的度数.25.已知△ABC中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点. (1)如图1,连接CE , ①若CE ∥AB ,求∠BEC 的度数; ②若CE 平分∠ACD ,求∠BEC 的度数.(2)若直线CE 垂直于△ABC 的一边,请直接写出∠BEC 的度数.26.如图所示,点B ,E 分别在AC ,DF 上,BD ,CE 均与AF 相交,∠1=∠2,∠C =∠D ,求证:∠A =∠F .27.因式分解: (1)m 2﹣16;(2)x 2(2a ﹣b )﹣y 2(2a ﹣b );(3)y2﹣6y+9;(4)x4﹣8x2y2+16y4.28.如图,一个三角形的纸片ABC,其中∠A=∠C,(1)把△ABC纸片按 (如图1) 所示折叠,使点A落在BC边上的点F处,DE是折痕.说明BC∥DF;(2)把△ABC纸片沿DE折叠,当点A落在四边形BCED内时 (如图2),探索∠C与∠1+∠2之间的大小关系,并说明理由;(3)当点A落在四边形BCED外时 (如图3),探索∠C与∠1、∠2之间的大小关系.(直接写出结论)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据乘方运算法则、负整数指数幂及零指数幂分别计算,再判断大小即可得.【详解】解:a=0.32=0.09,b= -3-2=19,c=(-3)0=1,∴c>a>b,故选B.【点睛】本题考查有理数的大小比较,解题的关键是熟练掌握乘方运算法则、负整数指数幂及零指数幂.2.B解析:B【解析】【分析】根据平行线的判定方法:内错角相等两直线平行,即可判断AB∥CE.【详解】解:∵∠A=∠ACE,∴AB∥CE(内错角相等,两直线平行).【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.3.D解析:D【分析】根据因式分解的定义,需要将式子变形为几个整式相乘的形式,据此可判断.【详解】A、C不是几个式子相乘的形式,错误;B中,32aa--不是整式,错误;D是正确的故选:D.【点睛】本题考查因式分解的定义,注意一定要化成多个整式相乘的形式才叫因式分解.4.A解析:A【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=α,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【详解】∵五边形的内角和等于540°,∠A+∠B+∠E=α,∴∠BCD+∠CDE=540°-α,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=12(∠BCD+∠CDE)=270°-12α,∴∠P=180°-(270°-12α)=12α-90°.故选:A.【点睛】此题考查多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.5.C解析:C【分析】设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−24°,再由第2次折叠得到∠C′FB=∠BFC=x−24°,于是利用平角定义可计算出x =68°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=112°,所以∠AEF=【详解】如图,设∠B′FE=x,∵纸条沿EF折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,∴∠BFC=∠BFE−∠CFE=x−24°,∵纸条沿BF折叠,∴∠C′FB=∠BFC=x−24°,而∠B′FE+∠BFE+∠C′FE=180°,∴x+x+x−24°=180°,解得x=68°,∵A′D′∥B′C′,∴∠A′EF=180°−∠B′FE=180°−68°=112°,∴∠AEF=112°.故选:C.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.6.A解析:A【分析】根据平移的定义,逐一判断即可.【详解】解:A、是平移;B、轴对称变换,不是平移;C、是旋转变换,不是平移.D、图形的大小发生了变化,不是平移.故选:A.【点睛】本题考查平移变换,判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.7.B解析:B【解析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组. 【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B . 【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.8.B解析:B 【解析】 【分析】先求出不等式的解集,再在数轴上表示出不等式的解集即可. 【详解】 -3x-1>2, -3x >2+1, -3x >3, x <-1, 在数轴上表示为:,故选B . 【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.9.A解析:A 【分析】根据三角形的内角和是180︒列方程即可; 【详解】∵1135A B C ∠=∠=∠, ∴3B A ∠=∠,5CA ∠=∠,∵180A B C ∠+∠+∠=︒,∴35180A A A ∠+∠+∠=︒,∴30A ∠=︒, ∴100C ∠=︒,∴△ABC是钝角三角形.故答案选A.【点睛】本题主要考查了三角形内角和定理的应用,在准确进行分析列式是解题的关键.10.C解析:C【分析】在图①的△ABC中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD,即可在△CBD中,得到另一个关于∠B、∠C度数的等量关系式,联立两式即可求得∠B的度数.【详解】在△ABC中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD,∠BCD=∠C;在△CBD中,则有:∠CBD+∠BCD=180°-82°,即:13∠B+∠C=98°…②;①-②,得:23∠B=52°,解得∠B=78°.故选:C.【点睛】此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B和∠CBD的倍数关系是解答此题的关键.二、填空题11.【分析】根据同底数的幂的乘法运算的逆运算,先将分成,再根据积的乘方的逆运算,把指数相同的数相乘即可.【详解】解:故答案为:.【点睛】本题考查幂的乘方和积的乘方,将不同底数解析:5-12【分析】根据同底数的幂的乘法运算的逆运算,先将2019512⎛⎫- ⎪⎝⎭分成2018551212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭,再根据积的乘方的逆运算,把指数相同的数相乘即可. 【详解】解:20192018512125⎛⎫-⨯ ⎪⎝⎭⎭⎛⎫ ⎪⎝20182018551212125⎛⎫⎛⎫⎛⎫=-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭20182018512512512⎛⎫⎛⎫⎛⎫=-⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2018512512512⎛⎫⎛⎫=-⨯⨯- ⎪ ⎪⎝⎭⎝⎭()20185112⎛⎫=-⨯- ⎪⎝⎭512=-故答案为:512- . 【点睛】本题考查幂的乘方和积的乘方,将不同底数且不同指数的幂转化为底数相同或者指数相同的幂是解题关键.12.9 【分析】根据题意直接将 代入方程mx ﹣y =7得到关于m 的方程,解之可得答案. 【详解】解:将 代入方程mx ﹣y =7,得:m ﹣2=7, 解得m =9, 故答案为:9. 【点睛】 本题主要考查二元解析:9 【分析】根据题意直接将12xy=⎧⎨=⎩代入方程mx﹣y=7得到关于m的方程,解之可得答案.【详解】解:将12xy=⎧⎨=⎩代入方程mx﹣y=7,得:m﹣2=7,解得m=9,故答案为:9.【点睛】本题主要考查二元一次方程的解,解题的关键是掌握使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.13.【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:am-2n=am÷a2n=am÷(an)2=2÷9=故答案为【点睛】本题考查了同底数幂的除法和幂的解析:2 9【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:a m-2n=a m÷a2n=a m÷(a n)2=2÷9=2 9故答案为2 9【点睛】本题考查了同底数幂的除法和幂的乘方与积的乘方,解答本题的关键在于熟练掌握各知识点的运算法则.14.【分析】由是完全平方式,得到从而可得答案.【详解】解:方法一、方法二、由是完全平方式,则有两个相等的实数根,,故答案为:【点睛】本题考查的是完全平方式解析:18±【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案.【详解】解:方法一、 ()2222281991881,x kx x kx x x x ++=++=±=±+18,kx x ∴=± 18.k ∴=±方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,b ac ∴=-=1,,81,a b k c ===241810,k ∴-⨯⨯=2481k ∴=⨯,18.k ∴=±故答案为:18.±本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.15.21【分析】由得,再将因式分解可得, 然后将、代入求解即可.【详解】解:∵,∴,又∵∴,故答案为:.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 解析:21【分析】由30m -=得3m =,再将2m mn +因式分解可得()m m n +, 然后将3m =、7m n +=代入求解即可.【详解】解:∵30m -=,∴3m =,又∵7m n +=∴2()3721m mn m m n +=+=⨯=,故答案为:21.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 16..【解析】试题分析:因,所以,解得.考点:和的非负性;二元一次方程组的解法.解析:⎩⎨⎧==12y x . 【解析】 试题分析:因()223420x y x y -+--=,所以⎩⎨⎧=--=-024302y x y x ,解得⎩⎨⎧==12y x . 考点:a 和2a 的非负性;二元一次方程组的解法.【分析】由点为的中点,可得的面积是面积的一半;同理可得和的面积之比,利用三角形的等积变换可解答.【详解】解:如图,点是的中点,的底是,的底是,即,而高相等,,是的中点,,,,解析:1【分析】由点E 为AD 的中点,可得EBC ∆的面积是ABC ∆面积的一半;同理可得BCE ∆和EFB ∆的面积之比,利用三角形的等积变换可解答.【详解】解:如图,点F 是CE 的中点,BEF 的底是EF ,BEC ∆的底是EC ,即12EF EC =,而高相等, 12BEF BEC S S ∆∆∴=, E 是AD 的中点,12BDE ABD S S ∆∆∴=,12CDE ACD S S ∆∆=, 12EBC ABC S S ∆∆∴=, 14BEF ABC S S ∆∆∴=,且24ABC S cm ∆=, 21BEF S cm ∆∴=,即阴影部分的面积为21cm .故答案为1.本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.18.【分析】根据题意先给a 取任意两个值,然后代入,得到关于x 、y 的二元一次方程组,解之得到x 、y 的值,再代入原方程验证即可.【详解】∵无论取何值,方程都有一个固定的解,∴a 值可任意取两个值,解析:41x y =⎧⎨=⎩【分析】根据题意先给a 取任意两个值,然后代入,得到关于x 、y 的二元一次方程组,解之得到x 、y 的值,再代入原方程验证即可.【详解】∵无论a 取何值,方程都有一个固定的解,∴a 值可任意取两个值,可取a=0,方程为23110x y +-=,取a=1,方程为5210x y +-=,联立两个方程解得4,1x y ==,将4,1x y ==代入(32)(23)11100a x a y a +----=,得(32)4(23)111101282311100a a a a a a +⨯--⨯--=+-+--=对任意a 值总成立,所以这个固定解是41x y =⎧⎨=⎩, 故答案为:41x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,熟练掌握带有参数的方程的解法是解答的关键.19.-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x -3y=5,∴原式=-2(2x-3y )=-2×5=-10.故答案为:-10.本题解析:-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x-3y=5,∴原式=-2(2x-3y)=-2×5=-10.故答案为:-10.【点睛】本题考查了代数式求值,熟练掌握运算法则是解题的关键.20.4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与解析:4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了y轴上的点的坐标特征.三、解答题21.(1)a(a+1)(a﹣1);(2)﹣b(2a﹣b)2;(3)(x﹣y)(a+3b)(a﹣3b);(4)(y+2)2(y﹣2)2【分析】(1)直接提取公因式a,进而利用平方差公式分解因式得出答案;(2)直接提取公因式﹣b,进而利用完全平方公式分解因式即可;(3)直接提取公因式(x﹣y),进而利用平方差公式分解因式得出答案;(4)直接利用完全平方公式分解因式,再利用平方差公式分解因式即可.【详解】解:(1)a3﹣a=a(a2﹣1)=a(a+1)(a﹣1);(2)4ab2﹣4a2b﹣b3=﹣b(﹣4ab+4a2+b2)=﹣b(2a﹣b)2;(3)a2(x﹣y)﹣9b2(x﹣y)=(x﹣y)(a2﹣9b2)=(x﹣y)(a+3b)(a﹣3b);(4)(y2﹣1)2+6(1﹣y2)+9=(y2﹣1)2﹣6 (y2﹣1)+9=(y2﹣1﹣3)2=(y+2)2(y﹣2)2.【点睛】此题主要考查因式分解的几种方法:提公因式法,公式法等,能熟练运用是解题关键.22.116【分析】方程组消去n后,与已知方程联立求出x与y的值,即可确定出n的值.【详解】解:方程组消去n得,-7x-8y=1,联立得:7816x yx y--=⎧⎨+=⎩解得4943 xy=⎧⎨=-⎩把x=49,y=-43代入方程组,解得n=116.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.23.(1)∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,证明见解析;(2)∠BPD=∠ABP+∠D+∠BQD;(3)80,46.【分析】(1)由平行线的性质得出∠B=∠BPE,∠D=∠DPE,即可得出∠BPD=∠B-∠D;将点P移到AB、CD内部,延长BP交DC于M,由平行线的性质得出∠B=∠BMD,即可得出∠BPD=∠B+∠D;(2)由平行线的性质得出∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,即可得出结论;(3)过点E作EN∥BF,则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,得出∠EQF=∠B+∠E+∠F,求出∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,由∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F,∠AMP=∠FMQ,得出126°-∠A=80°-∠F,即可得出结论.【详解】解(1)∵AB∥CD∥PE,∴∠B=∠BPE,∠D=∠DPE,∵∠BPE=∠BPD+∠DPE,∴∠BPD=∠B-∠D,故答案为:∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,理由如下:延长BP交DC于M,如图b所示:∵AB∥CD,∴∠B=∠BMD,∵∠BPD=∠BMD+∠D,∴∠BPD=∠B+∠D;(2)∵A′B∥CD,∴∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,∴∠BPD=∠ABP+∠D+∠BQD,故答案为:∠BPD=∠ABP+∠D+∠BQD;(3)过点E作EN∥BF,如图d所示:则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,∴∠EQF=∠B+∠E+∠F,∵∠AQF=100°,∴∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,∵∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F;∵∠AMP=∠FMQ,∴126°-∠A=80°-∠F,∴∠A-∠F=46°,故答案为:80,46.【点睛】本题考查了平行线性质,三角形外角性质、三角形内角和定理等知识,熟练掌握平行线的性质是解题的关键.24.50°【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD=12∠ABD=40°,进而得出答案.【详解】解:∵AC//BD,∠BAC=100°,∴∠ABD=180°﹣∠BAC=180°-100°=80°,∵BC平分∠ABD,∴∠CBD=12∠ABD=40°,∵DE⊥BC,∴∠BED=90°,∴∠EDB=90°﹣∠CBD=90°-40°=50°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD的度数是解题关键.25.(1)①40°;②30°;(2)50°,130°,10°【解析】试题分析:(1)①根据三角形的内角和得到∠ABC=80°,由角平分线的定义得到∠ABE=12∠ABC=40°,根据平行线的性质即可得到结论;②根据邻补角的定义得到∠ACD=180°-∠ACB=140°,根据角平分线的定义得到∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,根据三角形的外角的性质即可得到结论;(2)①如图1,当CE⊥BC时,②如图2,当CE⊥AB于F时,③如图3,当CE⊥AC时,根据垂直的定义和三角形的内角和即可得到结论.试题解析:(1)①∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=12∠ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∠ACD=180°-∠ACB=140°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,∴∠BEC=∠ECD-∠CBE=30°;(2)①如图1,当CE⊥BC时,∵∠CBE=40°,∴∠BEC=50°;②如图2,当CE⊥AB于F时,∵∠ABE=40°,∴∠BEC=90°+40°=130°,③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°-40°-40°-90°=10°.【点睛】本题考查了平行线的性质,角平分线的定义,垂直的定义,三角形的内角和,三角形的外角的性质,正确的画出图形是解题的关键.26.证明见解析.【分析】根据对顶角的性质得到BD∥CE的条件,然后根据平行线的性质得到∠B=∠C,已知∠C=∠D,则得到满足AB∥EF的条件,再根据两直线平行,内错角相等得到∠A=∠F.【详解】证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴BD∥CE,∴∠C=∠ABD;又∵∠C=∠D,∴∠D=∠ABD,∴AB∥EF,∴∠A=∠F.考点:平行线的判定与性质;对顶角、邻补角.27.(1)(m+4)(m﹣4);(2)(2a﹣b)(x+y)(x﹣y);(3)(y﹣3)2;(4)(x+2y)2(x﹣2y)2【分析】(1)原式利用平方差公式因式分解即可;(2)原式提取公因式,再利用平方差公式因式分解即可;(3)原式利用完全平方公式因式分解即可;(4)原式利用完全平方公式,以及平方差公式因式分解即可.【详解】解:(1)原式=(m+4)(m﹣4);(2)原式=(2a﹣b)(x2﹣y2)=(2a﹣b)(x+y)(x﹣y);(3)原式=(y﹣3)2;(4)原式=(x2﹣4y2)2=(x+2y)2(x﹣2y)2.【点睛】此题考查的是因式分解,掌握利用提公因式法和公式法因式分解是解决此题的关键.28.(1)见解析;(2)∠1+∠2=2∠C;(3)∠1-∠2=2∠C.【分析】(1)根据折叠的性质得∠DFE=∠A,由已知得∠A=∠C,于是得到∠DFE=∠C,即可得到结论;(2)先根据四边形的内角和等于360°得出∠A+∠A′=∠1+∠2,再由图形翻折变换的性质即可得出结论;(3)∠A′ED=∠AED(设为α),∠A′DE=∠ADE(设为β),于是得到∠2+2α=180°,∠1=β-∠BDE=β-(∠A+α),推出∠2-∠1=180°-(α+β)+∠A,根据三角形的内角和得到∠A=180°-(α+β),证得∠2-∠1=2∠A,于是得到结论.【详解】解:(1) 由折叠知∠A=∠DFE,∵∠A=∠C,∴∠DFE=∠C,∴BC∥DF;(2)∠1+∠2=2∠A.理由如下:∵∠1+2∠AED=180°,∠2+2∠ADE=180°,∴∠1+∠2+2(∠ADE+∠AED)=360°.∵∠A+∠ADE+∠AED=180°,∴∠ADE+∠AED=180°-∠A,∴∠1+∠2+2(180°-A)=360°,即∠1+∠2=2∠C.(3)∠1-∠2=2∠A.∵2∠AED+∠1=180°,2∠ADE-∠2=180°,∴2(∠ADE+∠AED)+∠1-∠2=360°.∵∠A+∠ADE+∠AED=180°,∴∠ADE+∠AED=180°-∠A,∴∠1-∠2+2(180°-∠A)=360°,即∠1-∠2=2∠C.【点睛】考查了翻折变换的性质,三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和等于180°,综合题,但难度不大,熟记性质准确识图是解题的关键.。

成都四川师范大学附属实验学校人教版七年级下册数学期末压轴难题考试试卷及答案

成都四川师范大学附属实验学校人教版七年级下册数学期末压轴难题考试试卷及答案

成都四川师范大学附属实验学校人教版七年级下册数学期末压轴难题考试试卷及答案一、选择题1.下列四幅图中,1∠和2∠是同位角的是( )A .①②B .③④C .①②④D .②③④2.下列现象中是平移的是( )A .将一张纸对折B .电梯的上下移动C .摩天轮的运动D .翻开书的封面3.点()P m n ,在第二象限内,则点(),Q m m n --在第______象限. A .一B .二C .三D .四4.下列命题是假命题的是( )A .对顶角相等B .两直线平行,同旁内角相等C .过直线外一点有且只有一条直线与已知直线平行D .同位角相等,两直线平行5.如图,直线AB ∥CD ,AE ⊥CE ,∠1=125°,则∠C 等于( )A .35°B .45°C .50°D .55°6.小雪在作业本上做了四道题目:①327-=﹣3;②±16=4;③381=9;④2(6)-=-6,她做对了的题目有( ) A .1道B .2道C .3道D .4道7.珠江流域某江段江水流向经过B 、C 、D 三点,拐弯后与原来方向相同.如图,若∠ABC =120°,∠BCD =80°,则∠CDE 等于( )A .20°B .40°C .60°D .80°8.一只青蛙在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)0,11,()()1,)0(1→→→→……,每次跳一个单位长度,则第2021次跳到点( )A .(6,45)B .(5,44)C .(4,45)D .(3,44)二、填空题9.计算:4﹣1=___.10.若点P(a,b)关于y 轴的对称点是P 1 ,而点P 1关于x 轴的对称点是P 2 ,若点P 2的坐标为(-3,4),则a=_____,b=______11.若点A (9﹣a ,3﹣a )在第二、四象限的角平分线上,则A 点的坐标为_____. 12.如图,直线a ∥b ,直角三角形的直角顶点在直线b 上,已知∠1=48°,则∠2的度数是___度.13.在“妙折生平——折纸与平行”的拓展课上,小潘老师布置了一个任务:如图,有一张三角形纸片ABC ,30B ∠=︒,50C ∠=︒,点D 是AB 边上的固定点(12BD AB <),请在BC 上找一点E ,将纸片沿DE 折叠(DE 为折痕),点B 落在点F 处,使EF 与三角形ABC 的一边平行,则BDE ∠为________度.14.实数a 、b 在数轴上所对应的点如图所示,则|3﹣b |+|a +3|+2a 的值_____.15.如图,直角坐标系中A 、B 两点的坐标分别为()3,1-,()2,1,则该坐标系内点C 的坐标为__________.16.在平面直角坐标系中,已知点A (﹣4,0),B (0,3),对△AOB 连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______三、解答题17.(1)-+; (2)245x -=,求x .18.求下列各式中的x 的值:(1)()225111x -=;(2)()3125180x --=.19.完成下面推理过程,并在括号中填写推理依据:如图,AD ⊥BC 于点D ,EG ⊥BC 于点G ,∠E =∠3,试说明:AD 平分∠BA C . 证明:∵AD ⊥BC ,EG ⊥BC ∴∠ADC = =90°(垂直定义) ∴ ∥EG (同位角相等,两直线平行) ∴∠1= ( ) ∠2=∠3( ) 又∵∠3=∠E (已知) ∴ =∠2 ∴AD 平分∠BAC20.已知在平面直角坐标系中有三点(3,0)A -,(5,4)B ,(1,5)C ,请回答如下问题:(1)在平面直角坐标系内描出A 、B 、C ,连接三边得到ABC ;(2)将ABC 三点向下平移2个单位长度,再向左平移1个单位,得到111A B C △;画出111A B C △,并写出1A 、1B 、1C 三点坐标;(3)求出111A B C △的面积.21.已知某正数的两个平方根分别是12a -和4,421a a b ++-的立方根是3,c 是13的整数部分.(1)求, , a b c 的值;(2)求2a b c ++的算术平方根.二十二、解答题22.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图2的虚线,AB BC 将它剪开后,重新拼成一个大正方形ABCD .(1)基础巩固:拼成的大正方形ABCD 的面积为______,边长AD 为______; (2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B 与数轴上的1-重合.以点B 为圆心,BC 边为半径画圆弧,交数轴于点E ,则点E 表示的数是______; (3)变式拓展:①如图4,给定55⨯的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的正方形吗?若能,请在图中画出示意图;②请你利用①中图形在数轴上用直尺和圆规.....表示面积为13的正方形边长所表示的数.二十三、解答题23.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.24.如图1,点O 在MN 上,90,,AOB AOM m OCQ n ∠=︒∠=︒∠=︒,射线OB 交PQ 于点C ,已知m ,n 满足:220(70)0m n -+-=.(1)试说明MN //PQ 的理由;(2)如图2,OD 平分AON ∠,CF 平分OCQ ∠,直线OD 、CF 交于点E ,则OEF ∠=______︒;(3)若将AOB ∠绕点O 逆时针旋转()090αα<<︒,其余条件都不变,在旋转过程中,OEF ∠的度数是否发生变化?请说明你的结论.25.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑) 26.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.【参考答案】一、选择题 1.C 解析:C 【分析】根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样的一对角叫做同位角进行分析即可. 【详解】解:根据同位角的定义可知:图①②④中,∠1和∠2是同位角;图③中,∠1和∠2不是同位角; 故选C . 【点睛】本题主要考查同位角的定义,熟记同位角的定义是解决此题的关键.2.B 【分析】根据平移的概念,依次判断即可得到答案; 【详解】解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断:A、将一张纸对折,不符合平移定解析:B【分析】根据平移的概念,依次判断即可得到答案;【详解】解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断:A、将一张纸对折,不符合平移定义,故本选项错误;B、电梯的上下移动,符合平移的定义,故本选项正确;C、摩天轮的运动,不符合平移定义,故本选项错误;D、翻开的封面,不符合平移的定义,故本选项错误.故选B.【点睛】本题考查平移的概念,在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.3.D【分析】先根据第二象限内点的横坐标是负数,纵坐标是正数判断出m、n的正负情况,再根据各象限内点的坐标特征求解.【详解】解:∵点P(m,n)在第二象限,∴m<0,n>0,∴-m>0,m-n<0,∴点Q(-m,m-n)在第四象限.故选D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】真命题就是正确的命题,条件和结果相矛盾的命题是假命题.【详解】解:A. 对顶角相等是真命题,故A不符合题意;B. 两直线平行,同旁内角互补,故B是假命题,符合题意;C. 过直线外一点有且只有一条直线与已知直线平行,是真命题,故C不符合题意;D. 同位角相等,两直线平行,是真命题,故D不符合题意,【点睛】本题考查真假命题,是基础考点,掌握相关知识是解题关键.5.A【分析】过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C =∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.【详解】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.6.A【分析】依据立方根、平方根算术平方根的定义求解即可【详解】327-=-3,故①正确16故②错误;38133③错误2-故④错误.(6)故选:A.【点睛】此题考查立方根,算术平方根和平方根,掌握运算法则是解题关键7.A过点C作CF∥AB,则CF∥DE,利用平行线的性质和角的等量代换求解即可.【详解】解:由题意得,AB∥DE,过点C作CF∥AB,则CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故选:A.【点睛】本题主要考查了平行线的性质,合理作出辅助线是解题的关键.8.D【分析】根据青蛙运动的速度确定:(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次解析:D【分析】根据青蛙运动的速度确定:(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次,到(0,6)是第48(6×8)次,依此类推,到(0,45)是第2025次,后退4次可得2021次所对应的坐标.【详解】解:青蛙运动的速度是每秒运动一个单位长度,(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次,到(0,6)第48(6×8)次,依此类推,到(0,45)是第2025次.2025-1-3=2021,故第2021次时青蛙所在位置的坐标是(3,44).故选:D.【点睛】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.二、填空题9.1【分析】先计算算术平方根,然后计算减法.【详解】解:原式=2-1=1.故答案是:1.【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x解析:1【分析】先计算算术平方根,然后计算减法.【详解】解:原式=2-1=1.故答案是:1.【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.10.a=3 b=-4【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-解析:a=3 b=-4【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P2,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),则a=3,b=-4.【点睛】此题考查关于x轴、y轴对称的点的坐标,难度不大11.(3,﹣3).【分析】根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a=0,然后解方程即可.【详解】∵点P在第二、四象限角平分线上,∴9﹣a+3﹣a=0,∴a=6,∴A点的坐标解析:(3,﹣3).【分析】根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a=0,然后解方程即可.【详解】∵点P在第二、四象限角平分线上,∴9﹣a+3﹣a=0,∴a=6,∴A点的坐标为(3,﹣3).故答案为:(3,﹣3).【点睛】本题考查了坐标与图形性质:解题的关键是利用坐标特征判断线段与坐标轴的位置关系;记住坐标轴和第一、三象限角平分线、第二、四象限角平分线上点的坐标特征.12.42【分析】利用平行线的性质,平角的性质解决问题即可.【详解】解:∵∠4=90°,∠1=48°,∴∠3=90°-∠1=42°,∵a∥b,∴∠2=∠3=42°,故答案为:42.【点解析:42【分析】利用平行线的性质,平角的性质解决问题即可.【详解】解:∵∠4=90°,∠1=48°,∴∠3=90°-∠1=42°,∵a∥b,∴∠2=∠3=42°,故答案为:42.【点睛】本题考查了平行线的性质,平角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.35°或75°或125°【分析】由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数.【详解】解:当EF∥AB时,∠BDE=∠DEF,由折解析:35°或75°或125°【分析】由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数.【详解】解:当EF∥AB时,∠BDE=∠DEF,由折叠可知:∠DEF=∠DEB,∴∠BDE=∠DEB,又∠B=30°,∴∠BDE=1(180°-30°)=75°;2当EF∥AC时,如图,∠C=∠BEF=50°,由折叠可知:∠BED=∠FED=25°,∴∠BDE=180°-∠B=∠BED=125°;如图,EF∥AC,则∠C=∠CEF=50°,由折叠可知:∠BED=∠FED,又∠BED+∠CED=180°,则∠CED+50°=180°-∠CED,解得:∠CED=65°,∴∠BDE=∠CED-∠B=65°-30°=35°;综上:∠BDE的度数为35°或75°或125°.【点睛】本题考查了平行线的性质,三角形内角和,折叠问题,解题的关键是注意分类讨论,画图图形推理求解.14.﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a<﹣,0<b<,故|﹣b|+|a+|+=﹣b﹣(a+)﹣a=﹣b﹣a﹣﹣a=﹣2a﹣b解析:﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a30<b3故3b|+|a32a=3﹣b ﹣(a +3)﹣a=3﹣b ﹣a ﹣3﹣a=﹣2a ﹣b .故答案为:﹣2a ﹣b .【点睛】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.15.【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正解析:()1,3-【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正确建立坐标系.16.(8052,0).【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O 的距离,然后写出坐标即可.【详解解析:(8052,0).观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O 的距离,然后写出坐标即可.【详解】解:∵点A (﹣4,0),B (0,3),∴OA =4,OB =3,∴AB5,∴第(3)个三角形的直角顶点的坐标是()12,0;观察图形不难发现,每3个三角形为一个循环组依次循环,∴一次循环横坐标增加12,∵2013÷3=671∴第(2013)个三角形是第671组的第三个直角三角形,其直角顶点与第671组的第三个直角三角形顶点重合,∴第(2013)个三角形的直角顶点的坐标是()67112,0⨯即()8052,0.故答案为:()8052,0.【点睛】本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键.三、解答题17.(1) - (2)±3【详解】试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可; 试题解析:(1)原式= ;(2)x2-4=5x2=9x=3或x=-3解析:(1) -13(2)±3 【详解】试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可;试题解析:(1)原式=112233--=- ; (2)x 2-4=5x 2=9x=3或x=-318.(1);(2).(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案.【详解】解:(1),,,解析:(1)65x =±;(2)75x =. 【分析】(1)先将原式变形为2x a =形式,再利用平方根的定义开平方求出答案;(2)把先(1)x -看作一个整体,将原式变形为3x a =形式,再利用立方根的定义开立方求出答案.【详解】解:(1)()225111x -=,2252511x -=,22536x =,23625x = 65x =±; (2)()3125180x --=,()312518x -=, ()381251125x -=, 215x ∴-= 解得:75x =. 【点睛】 此题主要考查了平方根以及立方根的定义,正确把握相关定义解方程是解题关键. 19.;两直线平等行,同位角相等;两直线平行,内错角相等;;等量代换;角平分线定义【分析】根据AD ⊥BC ,EG ⊥BC ,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,,由已知条件∠解析:;;EGC AD E ∠∠;两直线平等行,同位角相等;两直线平行,内错角相等;1∠;等量代换;角平分线定义【分析】根据AD ⊥BC ,EG ⊥BC ,可得//AD EG ,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得1E ∠=∠,2=3∠∠,由已知条件∠3=∠E ,等量代换即可的12∠=∠,即可证明AD 平分∠BA C .【详解】证明:∵AD ⊥BC ,EG ⊥BC∴∠ADC =EGC ∠=90°(垂直定义)∴AD ∥EG (同位角相等,两直线平行)∴∠1=E ∠(两直线平等行,同位角相等)∠2=∠3(两直线平行,内错角相等)又∵∠3=∠E (已知)∴1∠=∠2(等量代换)∴AD 平分∠BAC (角平分线的定义)故答案是:∠EGC ;AD ;∠E ;两直线平等行,同位角相等;两直线平行,内错角相等;∠1;等量代换;角平分线定义.【点睛】本题考查了垂线的定义,平行线的性质与判定,角平分线的定义,掌握以上定理性质是解题的关键.20.(1)见详解;(2)图形见详解,(-4,-2)、(4,2)、(0,3);(3)12.【分析】(1)根据坐标在坐标图中描点连线即可;(2)按照平移方式描点连线并写出坐标点;(3)根据坐标点利用解析:(1)见详解;(2)图形见详解,1A (-4,-2)、1B (4,2)、1C (0,3);(3)12.【分析】(1)根据坐标在坐标图中描点连线即可;(2)按照平移方式描点连线并写出坐标点;(3)根据坐标点利用割补法求面积即可.【详解】解:(1)如图:(2)平移后如图:平移后坐标分别为:1A(-4,-2)、1B(4,2)、1C(0,3);(3)111A B C△的面积:111 5845484112 222⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】此题考查坐标系中坐标的平移和坐标图形的面积,难度一般,掌握平移的性质是关键.21.(1),,c=4;(2)4【分析】(1)由题意可得出,得出a的值,代入中得出b的值,再根据即可得出c的值;(2)代入a 、b 、c 的值求出代数式的值,再求算术平方根即可.【详解】解:(1)∵某解析:(1)5a =,4b =,c=4;(2)4【分析】(1)由题意可得出(12)(4)0a a -++=,得出a 的值,代入3421327a b +-==中得出b 的值,再根据34<即可得出c 的值;(2)代入a 、b 、c 的值求出代数式的值,再求算术平方根即可.【详解】解:(1)∵某正数的两个平方根分别是12a -和4a∴(12)(4)0a a -++=∴5a =又∵421a b +-的立方根是3∴3421327a b +-==∴4b =又∵34<,c∴3c =(2)2524316a b c ++=+⨯+=故2a b c ++的算术平方根是4.【点睛】本题考查的知识点是平方根、算术平方根、立方根、估算无理数的大小,属于基础题目,解此题的难点在于c 值的确定,学会用“逼近法”求无理数的整数部分是解此题的关键. 二十二、解答题22.(1)10,;(2);(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实解析:(1)10;(21;(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实数与数轴的关系可得结果;(3)以2×3的长方形的对角线为边长即可画出图形;(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.【详解】解:(1)∵图1中有10个小正方形,∴面积为10,边长AD为10;(2)∵BC=10,点B表示的数为-1,∴BE=10,∴点E表示的数为101-;(3)①如图所示:②∵正方形面积为13,∴边长为13,如图,点E表示面积为13的正方形边长.【点睛】本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.二十三、解答题23.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得58∠=︒,再根据NAC平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒,∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒;∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;(3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.24.(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m 及n ,从而可求得∠MOC=∠OCQ ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也 解析:(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由220(70)0m n -+-=可求得m 及n ,从而可求得∠MOC =∠OCQ ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也易得∠COE 的度数,由三角形外角的性质即可求得∠OEF 的度数;(3)不变,分三种情况讨论即可.【详解】(1)∵200m -≥,2(70)0n -≥,且220(70)0m n -+-= ∴200m -=,2(70)0n -=∴m =20,n =70∴∠MOC =90゜-∠AOM =70゜∴∠MOC =∠OCQ =70゜∴MN ∥PQ(2)∵∠AON =180゜-∠AOM =160゜又∵OD 平分AON ∠,CF 平分OCQ ∠∴1802DON AON ∠=∠=︒,1352OCF OCQ ∠=∠=︒∵80MOE DON ∠=∠=︒∴10COE MOE MOC ∠=∠-∠=︒∴∠OEF =∠OCF +∠COE =35゜+10゜=45゜故答案为:45.(3)不变,理由如下:如图,当0゜<α<20゜时,∵CF 平分∠OCQ∴∠OCF =∠QCF设∠OCF =∠QCF =x则∠OCQ =2x∵MN ∥PQ∴∠MOC =∠OCQ =2x∵∠AON =360゜-90゜—(180゜-2x )=90゜+2x ,OD 平分∠AON∴∠DON =45゜+x∵∠MOE =∠DON =45゜+x∴∠COE =∠MOE -∠MOC =45゜+x -2x =45゜-x∴∠OEF =∠COE +∠OCF =45゜-x +x =45゜当α=20゜时,OD 与OB 共线,则∠OCQ =90゜,由CF 平分∠OCQ 知,∠OEF =45゜ 当20゜<α<90゜时,如图∵CF 平分∠OCQ∴∠OCF =∠QCF设∠OCF =∠QCF =x则∠OCQ =2x∵MN ∥PQ∴∠NOC =180゜-∠OCQ =180゜-2x∵∠AON =90゜+(180゜-2x )=270゜-2x ,OD 平分∠AON∴∠AOE =135゜-x∴∠COE =90゜-∠AOE =90゜-(135゜-x )=x -45゜∴∠OEF =∠OCF -∠COE =x -(x -45゜)=45゜综上所述,∠EOF的度数不变.【点睛】本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便.25.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC 中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=1002n-︒,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=1002n︒+,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【详解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案为60,30.(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-1802n︒-=1002n-︒,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-1802n︒-=1002n︒+,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.26.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=12∠FGQ,∠HFA=12∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=12∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=12∠FGQ=12(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

川师大附属实验学校初2013级第二学期期末摸拟考试初一数学试卷(二)命题人;沈军卫 审题人;陈宏A 卷(100分)一、选择题(每小题2分、共20分)1.“4·14”青海省玉树县7.1级大地震,牵动了全国人民的心,社会各界踊跃捐款捐物,4月20日央视赈灾晚会共募得善款21.75亿元.把21.75亿元用科学计数法表示为( ).A .2.175×108元 B .2.175×107元 C .2.175×109元 D .2.175×106元 2.如图,点B 是△ADC 的边AD 的延长线上一点,DE ∥AC .若︒=∠50C ,︒=∠60BDE ,则CDB ∠的度数等于( )A .︒70B .100︒C .︒110D .120︒3.小明打算暑假里的某天到上海世博会一日游,上午可以先从台湾馆、香港馆、韩国馆中随机选择一个馆, 下午再从加拿大馆、法国馆、俄罗斯馆中随机选择一个馆游玩.则小明恰好上午选中台湾馆,下午选中法国馆这两个场馆的概率是( )A .19B .13C .23D .294.将一副三角板如图放置,使点A 在DE 上,BC DE ∥,则AFC ∠的度数为( ) A.45° B. 50° C. 60° D. 75°5. 如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形。

一边长为3,则另一边长是( ) A .2m+3 B .2m+6 C .m+3 D .m+66.一辆汽车和一辆摩托车分别从A ,B 两地去同一城市,它们离A 地的路程随时间变化的图象如图所示.则下列结论错误..的是( )(第5题)ABCE2题图A CBA 'B 'C ' (第8题图) 图乙 图甲 A.摩托车比汽车晚到1 h B. A ,B 两地的路程为20 km C.摩托车的速度为45 km/h D.汽车的速度为60 km/h7.学剪五角星:如图,先将一张长方形纸片按图①的虚线对折,得到图②,然后将图②沿虚线折叠得到图③,再将图③沿虚BC 剪下ABC △,展开即可得到一个五角星.如果想得到一个正五角星(如图④),那么在图③中剪下ABC △时,应使ABC ∠的度数为( )A.126°B. 108°C. 100°D. 90°8. 把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.......在自然界和日常生活中,大量地存在这种图形变换(如图甲).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换......过程中,两个对应三角形(如图乙)的对应点所具有的性质是( )(A)对应点连线与对称轴垂直 (B)对应点连线被对称轴平分(C)对应点连线被对称轴垂直平分 (D)对应点连线互相平行9.小华的爷爷每天坚持体育锻炼.某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家.下面能反映当天小华的爷爷离家的距离y 与时间x 的函数关系的大致图象是( )第6题图① ② ③ ④10.如图,已知C 是线段AB 上的任意一点(端点除外),分别以AC 、BC 为边并且在AB 的同一侧作等边△ACD 和等边△BCE ,连结AE 交CD 于M ,连结BD 交CE 于N .给出以下三个结论:①BD AE = ②CM CN = ③AB MN //其中正确结论的个数是( ) (A )0(B )1(C )2(D )3二、填空题(每小题2分,共20分)11.上海世博会的口号是:“城市,让生活更美好”,到2010年5月30日止,累计入园参观 人数为8004300人,数字8004300用科学记数法表示为 . 12. 如图, 已知∠1 =∠2 =∠3 = 62°,则4∠= .13.在Rt ABC △中,90C ∠=︒,若10BC AD =,平分BAC ∠交BC 于点D ,且32BD CD =∶∶,则点D 到线段AB 的距离为______ _14.据统计,2009年嘉兴市人均GDP 约为41049.4⨯元,比上年增长7.7%.其中,近似数41049.4⨯ 有 个有效数字.15.在如图所示的矩形纸片上作随机扎针实验,则针头扎在阴影区域内的概率为 .A .B .C .D .DC B AABCDEMN(第10题)16、.将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2= .17.将图甲中阴影部分的小长方形变换到图乙位置,你能根据两个图形的面积关系得到的数学公式 是 .18.如图,四边形ABCD 是正方形,E 是边CD 上一点,若AFB △经过逆时针旋转角θ后与AED △重合,则θ的取值为19.在四张完全相同的卡片上分别印有等边三角形、平行四边形、等腰梯形、圆的图案,现将印有图案的一面朝下,混合后从中一次性随机抽取两张,则抽到的卡片上印有的图案都是轴对称图形的概率为20、如图,△ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD 、BE 、CF 交于一点G ,BD=2DC , S GEC =3,S GDC =4,则△ABC 的面积是 .三、 计算与求值(每小题6分,共18分)1、()()()5333239b a b a ab -÷-⋅- 2、()()()()()2232213432b a b a b a b a a b a --+--++-+3、已知:32=m,84=n ,求:3232+-n m 的值四、解答题(每小题6分、共12分)⑴、作图题:(不要求写作法)如图,在1010⨯的方格纸中,有一个格点四边形ABCD(第17题) 甲 乙翻奖牌背面翻奖牌正面1234海宝计算器计算器文具(即四边形的顶点都在格点上).① 在给出的方格纸中,画出四边形ABCD 向下平移5格 后的四边形1111A B C D ;② 在给出的方格纸中,画出四边形ABCD 关于直线l 对称 的图形2222A B C D .(2)、某班举行演讲革命故事的比赛中有一个抽奖活动.活动规则是:进入最后决赛的甲、乙两位同学,每人只有一次抽奖机会,在如图所示的翻奖牌正面的4个数字中任选一个数字,选中后可以得到该数字后面的奖品,第一人选中的数字,第二人就不能再选择该数字. (1)求第一位抽奖的同学抽中文具与计算器的的概率分别是多少?(2)有同学认为,如果.甲先抽,那么他抽到海宝的概率会大些,你同意这种说法吗? 说明理由.五、解答题(共8分)直角三角形ABC 中,∠ABC=90°,AC=10 ,BC=6, AB=8。

P 是AC 上的一个动点,当P 在AC 上运动时, 设PC=x, △ABP 的面积为y. (1)求y 与x 之间的关系式。

(2)点P 在什么位置时, △ABP 的面积等于△ABC 的面积的31六、解答题(共10分)如图①,直线l 过正方形ABCD 的顶点B ,A 、C 两顶点在直线l 同侧,过点A 、C 分别作AE ⊥直线l 、 CF ⊥直线l .(1)试说明:EF =AE +CF ;(2)如图②,当A 、C 两顶点在直线l 两侧时,其它条件不变,l图②C 猜想EF 、AE 、CF 满足什么数量关系(直接写出答案,不必说明理由).七、解答题(12分)如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC ,△A 1B 1C 1.﹙1﹚将△ABC ,△A 1B 1C 1如图②摆放,使点A 1与B 重合,点B 1在AC 边的延长线上,连接CC 1交BB 1于点E .求证:∠B 1C1C =∠B 1BC .A 11C 1AC(图①)﹙2﹚若将△ABC ,△A 1B 1C 1如图③摆放,使点B 1与B 重合,点A 1在AC 边的延长线上,连接CC 1交A 1B 于点F .试判断∠A 1C 1C 与∠A 1BC 是否相等,并说明理由.B 卷(50分)一、填空题:(每小题4分,共20分)1.已知2510m m --=,则22125m m m-+=___________. 2.用边长60cm 的正方形铁皮做一个无盖水箱,•先在四个角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成,如果截去的小正方形的边长是xcm,•水箱的容积是ycm 3,则因变量y 与自变量x 之 间的关系式是_____ ____.AB (A 1)CB 1C 1图 ②EA 1C 1AB (B 1)图 ③FPEC3.如图DB∥FG∥EC,∠ACE=360,AP平分∠BAC,∠PAG=12 0则∠ABD= 度. 4.有背面完全相同,正面上分别标有两个连续自然数,1k k +(其中0,1,2,,19k = )的卡片20张.小李将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,则该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为91010++=)不小于14的概率为_________________5.符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2) = 1,f (3)=2,f (4)= 3,(2)1111()()()()23452,3,4,5f f f f ====……利用以上规律计算:1(2010)()2010f f -=二、解答题(每小题5分,共10分)⑴已知0132=-+x x ,求:185523+++x x x 的值⑵如图,已知∠ABC=∠ACB ,∠1=∠2,∠3=∠F ,试判断EC 与DF 是否平行,并说明理由。

三、解答题(共8分)如图,已知∠1=∠2,EF ⊥AD 于P,交BC 延长线于M,求证:1()2M ACB B ∠=∠-∠。

BC FD E A 312四、 解答题(共12分)如图1,在ABC △中,点P 为BC 边中点,直线a 绕顶点A 旋转,若点B P 、在直线a 的异侧,BM ⊥直线a 于点M ,CN ⊥直线a 于点N ,连接.PM PN 、 (1)延长MP 交CN 于点E (如图2),①求证:BPM CPE △≌△;②求证:PM PN =; (2)若直线a 绕点A 旋转到图3的位置时,点B P 、在直线a 的同侧,其它条件不变.此时PM PN =还成立吗?若成立,请给予证明;若不成立,请说明理由; (3)若直线a 绕点A 旋转到与BC 边平行的位置时,其它条件不变,请直接判断PM PN =还成立吗?不必说明理由.题图1 题图2 题图3。

相关文档
最新文档