八年级数学上册全等三角形单元综合测试(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册全等三角形单元综合测试(Word 版 含答案)
一、八年级数学轴对称三角形填空题(难)
1.在ABC ∆中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=︒,则BAC ∠=______°.
【答案】80或100
【解析】
【分析】
根据题意,点D 和点E 的位置不确定,需分析谁靠近B 点,则有如下图(图见解析)两种情况:(1)图1中,点E 距离点B 近,根据垂直平分线性质可知,
,BD AD AE CE ==,从而有1,2B DAE C DAE ∠=∠+∠∠=∠+∠,再根据三角形的内角和定理可得180B C BAC ∠+∠+∠=︒,联立即可求得;(2)图2中,点D 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有3,4B C ∠=∠∠=∠,由三角形的内角和定理得180B C BAC ∠+∠+∠=︒,联立即可求得.
【详解】
由题意可分如下两种情况:
(1)图1中,根据垂直平分线性质可知,,BD AD AE CE ==,
1,2B DAE C DAE ∴∠=∠+∠∠=∠+∠
(等边对等角),
两式相加得12B C DAE DAE ∠+∠=∠+∠+∠+∠,
又12DAE BAC ∠+∠+∠=∠
20B C BAC DAE BAC ∴∠+∠=∠+∠=∠+︒

由三角形内角和定理得180B C BAC ∠+∠+∠=︒,
20180BAC BAC ∴∠+︒+∠=︒

80BAC ∴∠=︒

(2)图2中,根据垂直平分线性质可知,,BD AD AE CE ==,
3,4B C ∴∠=∠∠=∠
(等边对等角),
两式相加得34B C ∠+∠=∠+∠,
又34DAE BAC ∠+∠+∠=∠,
3420BAC DAE BAC ∴∠+∠=∠-∠=∠-︒

20B C BAC ∴∠+∠=∠-︒
由三角形内角和定理得180B C BAC ∠+∠+∠=︒,
20180BAC BAC ∴∠-︒+∠=︒

100BAC ∴∠=︒
.
故答案为80或100.
【点睛】
本题考查了垂直平分线的性质(垂直平分线上的点到线段两端点的距离相等)、等腰三角形的定义和性质(等边对等角)、以及三角形内角和定理,本题的难点在于容易漏掉第二种情况,出现漏解.
2.如图,点P 是AOB ∠内任意一点,OP =5 cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,PN PM MN ++的最小值是5 cm ,则AOB ∠的度数是__________.
【答案】30°
【解析】
试题解析:分别作点P 关于OA 、OB 的对称点C 、D ,连接CD ,
分别交OA 、OB 于点M 、N ,连接OC 、OD 、PM 、PN 、MN ,如图所示:
∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;
∵点P关于OB的对称点为C,
∴PN=CN,OP=OC,∠COB=∠POB,
∴OC=OP=OD,∠AOB=1
2
∠COD,
∵PN+PM+MN的最小值是5cm,
∴PM+PN+MN=5,
∴DM+CN+MN=5,
即CD=5=OP,
∴OC=OD=CD,
即△OCD是等边三角形,
∴∠COD=60°,
∴∠AOB=30°.
3.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出下列四个结论:
①AE=CF;
②△EPF是等腰直角三角形;
③EF=AB;

1
2ABC
AEPF
S S

=
四边形
,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述
结论中始终正确的有________(把你认为正确的结论的序号都填上).
【答案】①②④
【解析】
试题分析:∵∠APE、∠CPF都是∠APF的余角,
∴∠APE=∠CPF,

AB=AC ,∠BAC=90°,P 是BC 中点,
∴AP=CP ,
∴∠PAE=∠PCF ,
在△APE 与△CPF 中,
{?PAE PCF
AP CP
EPA FPC ∠=∠=∠=∠

∴△APE ≌△CPF (ASA ),
同理可证△APF ≌△BPE ,
∴AE=CF ,△EPF 是等腰直角三角形,S 四边形AEPF =
12S △ABC ,①②④正确; 而AP=12
BC ,当EF 不是△ABC 的中位线时,则EF 不等于BC 的一半,EF=AP , ∴故③不成立.
故始终正确的是①②④.
故选D .
考点:1.全等三角形的判定与性质;2.等腰直角三角形.
4.如图,将ABC ∆沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的1A 处,称为第1次操作,折痕DE 到BC 的距离记为1h ,还原纸片后,再将ADE ∆沿着过AD 中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11D E 到BC 的距离记为2h ,按上述方法不断操作下去…经过第2020次操作后得到的折痕20192019D E 到BC 的距离记为2020h ,若11h =,则2020h 的值为______.
【答案】2019122-
【解析】
【分析】
根据中点的性质及折叠的性质可得DA=DA ₁=DB,从而可得∠ADA ₁=2∠B,结合折叠的性质可得.,∠ADA ₁=2∠ADE,可得∠ADE=∠B,继而判断DE// BC,得出DE 是△ABC 的中位线,证得
AA ₁⊥BC,AA ₁=2,由此发现规律:01
2122h =-=-₁同理21122h =-3211122222
h =-⨯=-…于是经过第n 次操作后得到的折痕Dn-1 En-1到BC 的距离1122n n h -=-
,据此求得2020h 的值. 【详解】
解:如图连接AA ₁,由折叠的性质可得:AA ₁⊥DE, DA= DA ₁ ,A ₂、A ₃…均在AA ₁上
又∵ D 是AB 中点,∴DA= DB ,
∵DB= DA ₁ ,
∴∠BA ₁D=∠B ,
∴∠ADA ₁=∠B +∠BA ₁D=2∠B,
又∵∠ADA ₁ =2∠ADE ,
∴∠ADE=∠B
∵DE//BC,
∴AA ₁⊥BC ,
∵h ₁=1
∴AA ₁ =2,
∴01
2122h =-=-₁ 同理:21
122h =-; 3211122222
h =-⨯=-; …
∴经过n 次操作后得到的折痕D n-1E n-1到BC 的距离1122n n h -=-
∴20202019122h =-
【点睛】
本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.
5.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.
【答案】3
【解析】
【分析】
由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG ,利用△BDF ≌△GDE ,转换BF=GE ,然后即可求得其最小值.
【详解】
以BD 为边作等边三角形BDG ,连接GE ,如图所示:
∵等边三角形BDG ,等边三角形DEF
∴∠BDG=∠EDF=60°,BD=GD=BG ,DE=DF=EF
∴∠BDG+∠GFD=∠EDF+∠GFD ,即∠BDF=∠GDE
∴△BDF ≌△GDE (SAS )
∴BF=GE
当GE ⊥AC 时,GE 有最小值,如图所示GE′,作DH ⊥GE′
∴BF=GE= CD+
12
DG=2+1=3 故答案为:3.
【点睛】
此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.
6.在△ABC 中,∠ACB=90º,D、E 分别在 AC、AB 边上,把△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,若△CFD 与△BFE 都是等腰三角形,则∠BAC 的度数为_________.【答案】45°或60°
【解析】
【分析】
根据题意画出图形,设∠BAC的度数为x,则∠B=90°-x,∠EFB =135°-x,∠BEF=2x-45°,
当△BFE 都是等腰三角形,分三种情况讨论,即可求解.
【详解】
∵∠ACB=90º,△CFD是等腰三角形,
∴∠CDF=∠CFD=45°,
设∠BAC的度数为x,
∴∠B=90°-x,
∵△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,
∴∠DFE=∠BAC=x,
∴∠EFB=180°-45°-x=135°-x,
∵∠ADE=∠FDE,
∴∠ADE=(180°-45°)÷2=67.5°,
∴∠AED=180°-∠ADE-∠BAC=180°-67.5° -x=112.5°-x,
∴∠DEF=∠AED=112.5°-x,
∴∠BEF=180°-∠AED-∠DEF=180°-(112.5°-x)-(112.5°-x)=2x-45°,
∵△BFE 都是等腰三角形,分三种情况讨论:
①当FE=FB时,如图1,
则∠BEF=∠B,
∴90-x=2x-45,解得:x=45;
②当BF=BE时,
则∠EFB=∠BEF,
∴135-x=2x-45,
解得:x=60,
③当EB=EF时,如图2,
则∠B=∠EFB,
∴135-x=90-x,无解,
∴这种情况不存在.
综上所述:∠BAC 的度数为:45°或60°.
故答案是:45°或60°.
图1 图2
【点睛】
本题主要考查等腰三角形的性质定理,用代数式表示角度,并进行分类讨论,是解题的关键.
7.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1),若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个
【答案】5
【解析】
【分析】
分别以A 、B 为圆心,AB 为半径画圆,及作AB 的垂直平分线,数出在x 轴上的点C 的数量即可
【详解】
解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个
故答案为:5
【点睛】
本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键
8.如图,30AOB ∠=︒,P 是AOB ∠内一点,10PO =.若Q 、R 分别是边OA 、OB 上的动点,则PQR ∆周长的最小值为_______.
【答案】10
【解析】
【分析】
作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,利用对称的性质得到△PQR周长=P′P″,根据两点之间线段最短可判断此时△PQR周长最小,最小值为P′P″的长,再证明△P′OP″为等边三角形得到P′P″=OP′=OP=10,从而得到△PQR周长的最小值
【详解】
解:
作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,
则OP=OP′,OP=OP″,RP=RP′,QP=QP″,
∴△PQR周长=PR+RQ+PQ=RP′+RQ+QP″=P′P″,
∴此时△PQR周长最小,最小值为P′P″的长,
∵由对称性可知OP=OP′,OP=OP″,PP′⊥OB,PP″⊥OA,
∴∠1=∠2,∠3=∠4,
∴∠P′OP″=∠1+∠2+∠3+∠4=2∠2+2∠3=2∠BOA=60°,
∴△P′OP″为等边三角形,
∴P′P″=OP′=OP=10,
故答案是:10.
【点睛】
本题考查了几何变换综合题:熟练掌握轴对称的性质和等边三角形的性质;会利用两点之间线段最短解决最短路径问题.
∠=_______度.9.如图,正五边形ABCDE中,对角线AC与BE相交于点F,则AFE
【答案】72.
【解析】
【分析】
∠,根据等腰三角形的性质,三角形外角的性质计算即根据五边形的内角和公式求出EAB
可.
【详解】
解:∵五边形ABCDE 是正五边形,
(52)1801085EAB ABC ︒

-⨯∴∠=∠==

BA BC =

36BAC BCA ︒∴∠=∠=

同理36ABE ∠︒=,
363672AFE ABF BAF ∴∠∠+∠︒+︒︒===.
故答案为:72
【点睛】
本题考查的是正多边形的内角与外角,掌握正多边形的内角的计算公式、等腰三角形的性质是解题的关键.
10.已知,∠MON =30°,点A 1、A 2、A 3在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=a ,则△A 7B 7A 8的边长为______.
【答案】64a
【解析】
【分析】
根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,根据30°角所对直角边等于斜边的一半得到A 2B 2=2B 1A 2,进而得出A 3B 3=4B 1A 2=4a ,A 4B 4=8B 1A 2=8a ,A 5B 5=16B 1A 2…从而得到答案.
【详解】
∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°.
∵∠MON =30°,∴∠1=180°﹣120°﹣30°=30°.
又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°.
∵∠MON =∠1=30°,∴OA 1=A 1B 1=a ,∴A 2B 1=a .
∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°.
∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,
∠5=∠8=90°,∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3,∴A 3B 3=4B 1A 2=4a ,A 4B 4=8B 1A 2=8a ,A 5B 5=16B 1A 2=16a ,以此类推:A 7B 7=64B 1A 2=64a .
故答案为:64a .
【点睛】
本题考查了等边三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题的关键.
二、八年级数学轴对称三角形选择题(难)
11.边长为a 的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为( )
A .511a 32⨯
() B .511a 23⨯() C .611a 32⨯() D .611a 23
⨯() 【答案】A
【解析】 连接AD 、DB 、DF ,求出∠AFD=∠ABD=90°,根据HL 证两三角形全等得出∠FAD=60°,求出AD ∥EF ∥GI ,过F 作FZ ⊥GI ,过E 作EN ⊥GI 于N ,得出平行四边形FZNE 得出
EF=ZN=
13a ,求出GI 的长,求出第一个正六边形的边长是13a ,是等边三角形QKM 的边长的13;同理第二个正六边形的边长是等边三角形GHI 的边长的13
;求出第五个等边三角形的边长,乘以
13
即可得出第六个正六边形的边长. 连接AD 、DF 、DB .
∵六边形ABCDEF是正六边形,
∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,
∵∠AFE=∠ABC=120°,
∴∠AFD=∠ABD=90°,
在Rt△ABD和RtAFD中
AF=AB
{
AD=AD
∴Rt△ABD≌Rt△AFD(HL),
∴∠BAD=∠FAD=1
2
×120°=60°,
∴∠FAD+∠AFE=60°+120°=180°,
∴AD∥EF,
∵G、I分别为AF、DE中点,
∴GI∥EF∥AD,
∴∠FGI=∠FAD=60°,
∵六边形ABCDEF是正六边形,△QKM是等边三角形,
∴∠EDM=60°=∠M,
∴ED=EM,
同理AF=QF,
即AF=QF=EF=EM,
∵等边三角形QKM的边长是a,
∴第一个正六边形ABCDEF的边长是1
3a,即等边三角形QKM的边长的
1
3

过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,
∵EF∥GI,
∴四边形FZNE是平行四边形,
∴EF=ZN=1
3
a,
∵GF=1
2AF=
1
2
×
1
3
a=
1
6
a,∠FGI=60°(已证),
∴∠GFZ=30°,
∴GZ=1
2GF=
1
12
a,
同理IN=
1
12
a,
∴GI=
1
12
a+
1
3
a+
1
12
a=
1
2
a,即第二个等边三角形的边长是
1
2
a,与上面求出的第一个正六
边形的边长的方法类似,可求出第二个正六边形的边长是1
3
×
1
2
a;
同理第第三个等边三角形的边长是1
2
×
1
2
a,与上面求出的第一个正六边形的边长的方法类
似,可求出第三个正六边形的边长是1
3
×
1
2
×
1
2
a;
同理第四个等边三角形的边长是1
2
×
1
2
×
1
2
a,第四个正六边形的边长是
1
3
×
1
2
×
1
2
×
1
2
a;
第五个等边三角形的边长是1
2
×
1
2
×
1
2
×
1
2
a,第五个正六边形的边长是
1 3×
1
2
×
1
2
×
1
2
×
1
2
a;
第六个等边三角形的边长是1
2
×
1
2
×
1
2
×
1
2
×
1
2
a,第六个正六边形的边长是
1 3×
1
2
×
1
2
×
1
2
×
1
2
×
1
2
a,
即第六个正六边形的边长是1
3
×5
1
2
()a,
故选A.
12.如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,其中正确的结论有()个
A.1 B.2 C.3 D.4
【答案】C
【解析】
【分析】
由已知条件可知∠ABC+∠ACB=90°,又因为CD、BE分别是△ABC的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB,
∠BAG=2∠ABF.所以可知选项①③④正确.
【详解】
∵AB⊥AC.
∴∠BAC=90°,
∵∠BAC+∠ABC+∠ACB=180°,
∴∠ABC+∠ACB=90°
∵CD、BE分别是△ABC的角平分线,
∴2∠FBC+2∠FCB=90°
∴∠FBC+∠FCB=45°
∴∠BFC=135°故④正确.
∵AG∥BC,
∴∠BAG=∠ABC
∵∠ABC=2∠ABF
∴∠BAG=2∠ABF 故①正确.
∵AB⊥AC,
∴∠ABC+∠ACB=90°,
∵AG⊥BG,
∴∠ABG+∠GAB=90°
∵∠BAG=∠ABC,
∴∠ABG=∠ACB 故③正确.
故选C.
【点睛】
本题考查了等腰三角形的判定与性质,平行线的性质.掌握相关的判定定理和性质定理是解题的关键.
13.如图,△ABC的周长为32,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()
A.3 B.4 C.5 D.6
【答案】B
【解析】
【分析】
首先判断△BAE 、△CAD 是等腰三角形,从而得出BA =BE ,CA =CD ,由△ABC 的周长为32以及BC =12,可得DE =8,利用中位线定理可求出PQ .
【详解】 ∵BQ 平分∠ABC ,BQ ⊥AE ,
∴∠ABQ =∠EBQ ,
∵∠ABQ+∠BAQ =90°,∠EBQ+∠BEQ =90°,
∴∠BAQ =∠BEQ ,
∴AB =BE ,同理:CA =CD ,
∴点Q 是AE 中点,点P 是AD 中点(三线合一),
∴PQ 是△ADE 的中位线,
∵BE+CD =AB+AC =32﹣BC =32﹣12=20,
∴DE =BE+CD ﹣BC =8,
∴PQ =
12
DE =4. 故选:B .
【点睛】 本题考查了三角形的中位线定理和等腰三角形的性质和判定,解答本题的关键是判断出△BAE 、△CAD 是等腰三角形,利用等腰三角形的性质确定PQ 是△ADE 的中位线.
14.如图,60AOB ∠=,OC 平分AOB ∠,如果射线OA 上的点E 满足OCE ∆是等腰三角形,那么OEC ∠的度数不可能为( )
A .120°
B .75°
C .60°
D .30°
【答案】C
【解析】
【分析】 分别以每个点为顶角的顶点,根据等腰三角形的定义确定∠OEC 是度数即可得到答案.
【详解】
∵60AOB ∠=,OC 平分AOB ∠,
∠AOC=30︒,
当OC=CE 时,∠OEC=∠AOC=30︒,
当OE=CE 时,∠OEC=180OCE COE ∠∠︒--=120︒,
当OC=OE时,∠OEC=1
2
(180COE

︒-)=75︒,
∴∠OEC的度数不能是60°,
故选:C.
【点睛】
此题考查等腰三角形的定义,角平分线的定义,根据题意正确画出符合题意的图形是解题的关键.
15.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()
A.130°B.120°C.110°D.100°
【答案】B
【解析】
根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案:
如图,作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交CD于N,
则A′A″即为△AMN的周长最小值.作DA延长线AH.
∵∠BAD=120°,∴∠HAA′=60°.
∴∠AA′M+∠A″=∠HAA′=60°.
∵∠MA′A=∠MAA′,∠NAD=∠A″,
且∠MA′A +∠MAA′=∠AMN ,
∠NAD +∠A″=∠ANM ,
∴∠AMN +∠ANM =∠MA′A +∠MAA′+∠NAD +∠A″=2(∠AA′M +∠A″)=2×60°=120°. 故选B .
16.如图,等腰ABC ∆中,AB AC =,120BAC ∠=,AD BC ⊥于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP OC =.下列结论:
①30APO DCO ∠+∠=;②APO DCO ∠=∠;③OPC ∆是等边三角形;
④AB AO AP =+.其中正确结论的个数是( )
A .1
B .2
C .3
D .4
【答案】D
【解析】
【分析】 ①②连接OB ,根据垂直平分线性质即可求得OB=OC=OP ,即可解题;
③根据周角等于360°和三角形内角和为180°即可求得∠POC=2∠ABD=60°,即可解题;
④AB 上找到Q 点使得AQ=OA ,易证△BQO≌△PAO,可得PA=BQ ,即可解题.
【详解】
连接OB ,
∵AB AC =,AD ⊥BC ,
∴AD 是BC 垂直平分线,
∴OB OC OP ==,
∴APO ABO ∠=∠,DBO DCO ∠=∠,
∵AB=AC ,∠BAC =120∘
∴30ABC ACB ∠=∠=︒
∴30ABO DBO ∠+∠=︒,
∴30APO DCO ∠+∠=.
故①②正确;
∵OBP
∆中,180
BOP OPB OBP
∠=︒-∠-∠,
BOC
∆中,180
BOC OBC OCB
∠=︒-∠-∠,
∴360
POC BOP BOC OPB OBP OBC OCB
∠=︒-∠-∠=∠+∠+∠+∠,
∵OPB OBP
∠=∠,OBC OCB
∠=∠,
∴260
POC ABD
∠=∠=︒,
∵PO OC,
∴OPC
∆是等边三角形,
故③正确;
在AB上找到Q点使得AQ=OA,
则AOQ
∆为等边三角形,
则120
BQO PAO
∠=∠=︒,
在BQO
∆和PAO
∆中,
BQO PAO
QBO APO
OB OP
∠∠


∠∠






∴BQO PAO AAS
∆∆
≌(),
∴PA BQ
=,
∵AB BQ AQ
=+,
∴AB AO AP
=+,故④正确.
故选:D.
【点睛】
本题主要考查全等三角形的判定与性质、线段垂直平分线的性质,本题中求证
BQO PAO
∆∆
≌是解题的关键.
17.如图钢架中,∠A=a,焊上等长的钢条P1P2, P2P3, P3P4, P4P5……来加固钢架.著P1A= P1P2,且恰好用了4根钢条,则α的取值范圈是( )
A .15°≤ a <18°
B .15°< a ≤18°
C .18°≤ a <22.5°
D .18° < a ≤ 22.5°
【答案】C
【解析】
【分析】
由每根钢管长度相等,可知图中都是等腰三角形,利用等腰三角形底角一定是锐角,可推出取值范围.
【详解】
∵AB=BC=CD=DE=EF
∴∠P 1P 2A=∠A=a
由三角形外角性质,可得∠P 2P 1P 3=2∠A=2a
同理可得,∠P 1P 3P 2=∠P 2P 1P 3=2a ,
∠P 3P 2P 4=∠P 3P 4P 2=∠A+∠P 1P 3P 2=3a ,
∠P 4P 3P 5=∠P 4P 5P 3=∠A+∠P 3P 4P 2=4a ,
在△P 4P 3P 5中,∠P 3P 4P 5=180°-2∠P 4P 3P 5=180°-8a
当∠P 5P 4B ≥90°即∠P 5P 4A ≤90°时,不能再放钢管,
∴3180890+-≤a a ,解得a ≥18°
又∵等腰三角形底角只能是锐角,
∴4a <90°,解得a <22.5
∴1822.5οο≤<a
故选C.
【点睛】
本题考查等腰三角形的性质,掌握等腰三角形的底角只能是锐角是关键.
18.如图,点D ,E 是等边三角形ABC 的边BC ,AC 上的点,且CD =AE ,AD 交BE 于点P ,BQ ⊥AD 于点Q ,已知PE =2,PQ =6,则AD 等于( )
A .10
B .12
C .14
D .16
【答案】C
【解析】
【分析】
由题中条件可得△ABE≌△CAD,得出AD=BE,∠ABE=∠CAD,进而得出∠BPD=60°.在Rt△BPQ中,根据30度角所对直角边等于斜边的一半,求出BP的长,进而可得结论.【详解】
∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°.
又∵AE=CD,∴△ABE≌△CAD(SAS),∴∠ABE=∠CAD,AD=BE,
∴∠BPD=∠ABE+∠BAP=∠CAD+∠BAP=∠BAC=60°.
∵BQ⊥AD,∴∠PBQ=30°,∴BP=2PQ=2×6=12,∴AD=BE=BP+PE=12+2=14.
故选C.
【点睛】
本题考查了含30度角的直角三角形的性质、等边三角形的性质以及全等三角形的判定和性质,证明∠BPD=60°是解答本题的关键.
19.如图,∠AOB=30º,∠AOB 内有一定点P,且OP=12,在OA 上有一动点Q,OB 上有一动点R。

若△PQR 周长最小,则最小周长是( )
A.6 B.12 C.16 D.20
【答案】B
【解析】
作点P关于OA的对称点点E,点P关于OB的对称点点F,连接EF分别交OA于点Q,交OB于点R,连=接OE、OF,
∵P、E关于OA对称,∴OE=OP=12,∠EOA=∠AOP,QE=QP,
同理可证OP=OF=12,∠BOP=∠BOF,RP=RF,
∴OE=OF=12,∠EOF=∠EOP+∠FOP=2∠AOB=60°,
∴△OEF是等边三角形,
∴EF=12,
∴C△PQR=PQ+PR+QR=EQ+QR+RF=EF=12.
故选B.
点睛:本题关键在于利用轴对称的性质确定△PQR 周长最小时点Q 、R 的位置,再结合等边三角形的判定求出△PQR 的周长.
20.如图,ABC △,AB AC =,56BAC ︒∠=,BAC ∠的平分线与AB 的垂直平分线交于O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与O 点恰好重合,则∠OEC 的度数为( )
A .132︒
B .130︒
C .112︒
D .110︒
【答案】C
【解析】
【分析】 连接OB 、OC ,根据角平分线的定义求出∠BAO ,根据等腰三角形两底角相等求出∠ABC ,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB ,根据等边对等角可得∠ABO=∠BAO ,再求出∠OBC ,然后判断出点O 是△ABC 的外心,根据三角形外心的性质可得OB=OC ,再根据等边对等角求出∠OCB=∠OBC ,根据翻折的性质可得OE=CE ,然后根据等边对等角求出∠COE ,再利用三角形内角和定理列式计算即可得出答案.
【详解】
如图,连接OB 、OC ,
∵56BAC ︒∠=,AO 为BAC ∠的平分线
∴11562822
BAO BAC ︒︒∠=∠=⨯= 又∵AB AC =, ∴()()
11180180566222ABC BAC ︒︒︒︒∠=-∠=-= ∵DO 是AB 的垂直平分线,
∴OA OB =.
∴28ABO BAO ︒∠=∠=,
∴622834OBC ABC ABO ︒︒︒∠=∠-∠=-=
∵DO 是AB 的垂直平分线,AO 为BAC ∠的平分线
∴点О是ABC △的外心,
∴OB OC =,
∴34OCB OBC ︒∠=∠=,
∵将C ∠沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合
∴OE CE =,
∴34COE OCB ︒∠=∠=,
在OCE △中,1801803434112OEC COE OCB ︒︒︒︒︒∠=-∠-∠=--=
【点睛】
本题主要考查了线段垂直平分线上的点到线段两端点距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,做辅助线构造出等腰三角形是解决本题的关键.。

相关文档
最新文档