八年级数学全册全套试卷模拟训练(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学全册全套试卷模拟训练(Word版含解析)
一、八年级数学全等三角形解答题压轴题(难)
1.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且
PA=PE,PE交CD于F
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
【答案】(1)证明见解析(2)90°(3)AP=CE
【解析】
【分析】
(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,
∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.
【详解】
(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,
在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS),∴PA=PC,∵PA=PE,
∴PC=PE;
(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,
∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),
∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;
(3)、AP=CE
理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,
在△ABP和△CBP中,又∵ PB=PB ∴△ABP≌△CBP(SAS),
∴PA=PC,∠BAP=∠DCP,
∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC ∴∠DAP=∠E,∴∠DCP=∠E
∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,
即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,
∴AP=CE
考点:三角形全等的证明
2.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.
(1)如图1,求证:OA是第一象限的角平分线;
(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;
(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求
2HK+EF的值.
【答案】(1)证明见解析(2)答案见解析(3)8
【解析】
【分析】
(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,
根据非负数的性质求出a、b的值即可得结论;
(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM 与NE交于K,则∠MKN=180°﹣2∠ONE=90°﹣∠NEA,即2∠ONE﹣∠NEA=90°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得
OE+OF=2OP=8,等量代换即可得2HK+EF的值.
【详解】
解:(1)∵|a﹣b|+b2﹣8b+16=0
∴|a﹣b|+(b﹣4)2=0
∵|a﹣b|≥0,(b﹣4)2≥0
∴|a﹣b|=0,(b﹣4)2=0
∴a=b=4
过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM
∴OA平分∠MON
即OA是第一象限的角平分线
(2)过A作AH平分∠OAB,交BM于点H
∴∠OAH =∠HAB =45°
∵BM ⊥AE
∴∠ABH =∠OAE 在△AOE 与△BAH 中
OAE ABH OA AB
AOE BAH ==∠∠⎧⎪=⎨⎪∠∠⎩
, ∴△AOE ≌△BAH (ASA )
∴AH =OE
在△ONE 和△AMH 中
OE AH NOE MAH ON AM =⎧⎪∠∠⎨⎪=⎩
=, ∴△ONE ≌△AMH (SAS )
∴∠AMH =∠ONE
设BM 与NE 交于K
∴∠MKN =180°﹣2∠ONE =90°﹣∠NEA
∴2∠ONE ﹣∠NEA =90°
(3)过H 作HM ⊥OF ,HN ⊥EF 于
M 、N
可证:△FMH ≌△FNH (SAS )
∴FM =FN
同理:NE =EK
∴OE+OF ﹣EF =2HK
过A 作AP ⊥y 轴于P ,AQ ⊥x 轴于Q
可证:△APF ≌△AQE (SAS )
∴PF =EQ
∴OE+OF =2OP =8
∴2HK+EF =OE+OF =8
【点睛】
本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.
3.如图1,在长方形ABCD 中,AB=CD=5 cm , BC=12 cm ,点P 从点B 出发,以2cm/s 的速度沿BC 向点C 运动,设点P 的运动时间为ts .
(1)PC=___cm ;(用含t 的式子表示)
(2)当t 为何值时,△ABP ≌△DCP ?.
(3)如图2,当点P 从点B 开始运动,此时点Q 从点C 出发,以vcm/s 的速度沿CD 向点D 运动,是否存在这样的v 值,使得某时刻△ABP 与以P ,Q ,C 为顶点的直角三角形全等?若存在,请求出v 的值;若不存在,请说明理由.
【答案】(1)()122t -;(2)3t =;(3)存在,2v =或53
v =
【解析】
【分析】
(1)根据P 点的运动速度可得BP 的长,再利用BC 的长减去BP 的长即可得到PC 的长; (2)先根据三角形全等的条件得出当BP=CP ,列方程求解即得;
(3)先分两种情况:当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ;或当BA=CQ ,PB=PC 时,△ABP ≌△QCP ,然后分别列方程计算出t 的值,进而计算出v 的值.
【详解】
解:(1)当点P 以2cm/s 的速度沿BC 向点C 运动时间为ts 时2BP tcm =
∵12BC cm =
∴()122PC BC BP t cm =-=-
故答案为:()122t -
(2)∵ABP DCP ∆≅∆
∴BP CP =
∴2122t t =-
解得3t =.
(3)存在,理由如下:
①当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ,
∴PC=AB=5
∴BP=BC-PC=12-5=7
∵2BP tcm =
∴2t=7
解得t=3.5
∴CQ=BP=7,则3.5v=7
解得2v =.
②当BA CQ =,PB PC =时,ABP QCP ∆≅∆
∵12BC cm =
∴162
BP CP BC cm ==
= ∵2BP tcm =
∴26t = 解得3t =
∴3CQ vcm = ∵5AB CQ cm ==
∴35v =
解得53
v =. 综上所述,当2v =或53v =
时,ABP ∆与以P ,Q ,C 为顶点的直角三角形全等. 【点睛】
本题考查全等三角形的判定及性质和矩形的性质,解题关键是将动态情况化为某一状态情况,并以这一状态为等量关系建立方程求解.
4.如图,在ABC ∆中,5BC = ,高AD 、BE 相交于点O , 23BD CD =
,且AE BE = . (1)求线段 AO 的长;
(2)动点 P 从点 O 出发,沿线段 OA 以每秒 1 个单位长度的速度向终点 A 运动,动点 Q 从 点 B 出发沿射线BC 以每秒 4 个单位长度的速度运动,,P Q 两点同时出发,当点 P 到达 A 点时,,P Q 两点同时停止运动.设点 P 的运动时间为 t 秒,POQ ∆的面积为 S ,请用含t 的式子表示 S ,并直接写出相应的 t 的取值范围;
(3)在(2)的条件下,点 F 是直线AC 上的一点且 CF BO =.是否存在t 值,使以点 ,,B O P 为顶 点的三角形与以点 ,,F C Q 为顶点的三角形全等?若存在,请直接写出符合条件的 t 值; 若不存在,请说明理由.
【答案】(1)5;(2)①当点Q 在线段BD 上时,24QD t =-,t 的取值范围是102t <<;②当点Q 在射线DC 上时,42QD t =-,,t 的取值范围是152
t <≤;(3)
存在,1t =或
53
. 【解析】
【分析】 (1)只要证明△AOE ≌△BCE 即可解决问题;
(2)分两种情形讨论求解即可①当点Q 在线段BD 上时,QD=2-4t ,②当点Q 在射线DC 上时,DQ=4t-2时;
(3)分两种情形求解即可①如图2中,当OP=CQ 时,BOP ≌△FCQ .②如图3中,当OP=CQ 时,△BOP ≌△FCQ ;
【详解】
解:(1)∵AD 是高,∴90ADC ∠=
∵BE 是高,∴90AEB BEC ∠=∠=
∴90EAO ACD ∠+∠=,90EBC ECB ∠+∠=,
∴EAO EBC ∠=∠
在AOE ∆和BCE ∆中,
EAO EBC AE BE
AEO BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴AOE ∆≌BCE ∆
∴5AO BC ==;
(2)∵23
BD CD =,=5BC ∴=2BD ,=3CD ,
根据题意,OP t =,4BQ t =,
①当点Q 在线段BD 上时,24QD t =-, ∴21(24)22S t t t t =
-=-+,t 的取值范围是102
t <<. ②当点Q 在射线DC 上时,42QD t =-, ∴21(42)22S t t t t =-=-,t 的取值范围是152
t <≤ (3)存在.
①如图2中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .
∴CQ=OP,
∴5-4t═t,
解得t=1,
②如图3中,当OP=CQ时,∵OB=CF,∠POB=∠FCQ,∴△BOP≌△FCQ.
∴CQ=OP,
∴4t-5=t,
解得t=5
3
.
综上所述,t=1或5
3
s时,△BOP与△FCQ全等.
【点睛】
本题考查三角形综合题、全等三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
5.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.
(1)若AB∥x轴,如图1,求t的值;
(2)设点A关于x轴的对称点为A′,连接A′B,在点P运动的过程中,∠OA′B的度数是否会发生变化,若不变,请求出∠OA′B的度数,若改变,请说明理由.
(3)如图2,当t=3时,坐标平面内有一点M(不与A重合)使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标.
【答案】(1)4;(2)∠OA′B的度数不变,∠OA′B=45 ,理由见解析;(3)点M的坐标为(6,﹣4),(4,7),(10,﹣1)
【解析】
【分析】
(1)利用等腰直角三角形的性质以及平行线的性质,可证明△AOP为等腰直角三角形,从而求得答案;
(2)根据对称的性质得:PA=PA'=PB,由∠PAB+∠PBA=90°,结合三角形内角和定理即可求得∠OA'B=45°;
(3)分类讨论:分别讨论当△ABP≌△MBP、△ABP≌△MPB、△ABP≌△MPB时,点M的坐标的情况;过点M作x轴的垂线、过点B作y轴的垂线,利用等腰直角三角形的性质及全等三角形的判定和性质求得点M的坐标即可.
【详解】
(1)∵AB∥x轴,△APB为等腰直角三角形,
∴∠PAB=∠PBA=∠APO=45°,
∴△AOP为等腰直角三角形,
∴OA=OP=4.
∴t=4÷1=4(秒),
故t的值为4.
(2)如图2,∠OA′B的度数不变,∠OA′B=45°,
∵点A关于x轴的对称点为A′,
∴PA=PA',
又AP=PB,
∴PA=PA'=PB,
∴∠PAA'=∠PA'A,∠PBA'=∠PA'B,
又∵∠PAB+∠PBA=90°,
∴∠PAA'+∠PA'A+∠PA'B+∠PBA'
=180()PAB PBA ∠∠︒-+
180=︒-90°
=90°,
∴∠AA 'B =45°,
即∠OA 'B =45°;
(3)当t =3时,M 、P 、B 为顶点的三角形和△ABP 全等, ①如图3,若△ABP ≌△MBP ,
则AP =PM ,过点M 作MD ⊥OP 于点D ,
∵∠AOP =∠PDM ,∠APO =∠DPM ,
∴△AOP ≌△MDP (AAS ),
∴OA =DM =4,OP =PD =3,
∴M 的坐标为:(6,-4).
②如图4,若△ABP ≌△MPB ,则AB PM =,
过点M 作M E ⊥x 轴于点E ,过点B 作BG ⊥x 轴于点G ,过点B 作BF ⊥y 轴于点F ,
∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形, ∴∠BAP =∠MPB=45︒,PA PB =
∵139023∠+∠=︒=∠+∠,
∴12∠=∠
∴Rt AOP Rt PGB ≅
∴34BG OP PG AO ====,
∵BG ⊥x 轴BF ,⊥y 轴
∴四边形BGOF 为矩形,
∴3OP BG ==,则431AF OA OF =-=-=
347BF OG OP PG ==+=+=
在Rt ABF 和Rt PME 中
∠BAF =45︒+1∠,∠MPE =45︒+2∠,
∴∠BAF =∠MPE
∵AB PM =
∴Rt ABF Rt PME ≅
∴71ME BF PE AF ====,
∴M 的坐标为:(4,7),
③如图5,若△ABP ≌△MPB ,则AB PM =,
过点M 作M E ⊥x 轴于点D ,过点B 作BG ⊥x 轴于点E ,过点B 作BF ⊥y 轴于点F ,
∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形, ∴∠BAP =∠MPB=45︒,PA PB =
∵139023∠+∠=︒=∠+∠,
∴12∠=∠
∴Rt AOP Rt PEB ≅
∴34BE OP PE AO ====,
∵BE ⊥x 轴BF ,⊥y 轴
∴四边形BEOF 为矩形,
∴3OP BG ==,则431AF OA OF =-=-=
347BF OE OP PE ==+=+=
在Rt ABF 和Rt PMD 中
∵BF ⊥y 轴
∴42∠=∠
∵42ABF PMD ∠∠∠+=∠+
∴ABF PMD ∠∠=
∵AB PM =
∴Rt ABF Rt PMD ≅
∴17MD AF PD BF ====,
∴M 的坐标为:(10,﹣1).
综合以上可得点M的坐标为:(6,﹣4),(4,7),(10,﹣1).
【点睛】
本题考查了等腰三角形的性质,全等三角形的判定和性质,矩形的判定和性质,第(3)小题要注意分类讨论,作此类型的题要结合图形,构建适当的辅助线,寻找相等的量才能得出结论.
二、八年级数学轴对称解答题压轴题(难)
6.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).
(1)请运用所学数学知识构造图形求出AB的长;
(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;
(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).
【答案】(1)AB=25;(2)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P.
【解析】
【分析】
(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;
(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;
(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.
【详解】
解:(1)如图,连结AB,作B关于y轴的对称点D,
由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=25
(2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2.
②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4.
③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C7.(用三角板画找出也可)由图可知,C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0).
(3)不存在这样的点P.
作AB的垂直平分线l3,则l3上的点满足PA=PB,
作B关于x轴的对称点B′,连结AB′,
由图可以看出两线交于第一象限.
∴不存在这样的点P.
【点睛】
本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分
析,解题的关键是学会分类讨论,学会画好图形解决问题.
7.(1)如图①,D是等边△ABC的边BA上一动点(点D与点B不重合),连接DC,以DC为边,在BC上方作等边△DCF,连接AF,你能发现AF与BD之间的数量关系吗?并证明你发现的结论;
(2)如图②,当动点D运动至等边△ABC边BA的延长线时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?若成立,请证明;
(3)Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与B不重合),连接DC,以DC为边在BC上方和下方分别作等边△DCF和等边△DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你的探究的结论;
Ⅱ.如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.
【答案】(1)AF=BD,理由见解析;(2)AF与BD在(1)中的结论成立,理由见解析;(3)Ⅰ. AF+BF′=AB,理由见解析,Ⅱ.Ⅰ中的结论不成立,新的结论是AF=AB+BF′,理由见解析.
【解析】
【分析】
(1)由等边三角形的性质得BC=AC,∠BCA=60°,DC=CF,∠DCF=60°,从而得
∠BCD=∠ACF,根据SAS证明△BCD≌△ACF,进而即可得到结论;
(2)根据SAS证明△BCD≌△ACF,进而即可得到结论;
(3)Ⅰ.易证△BCD≌△ACF(SAS),△BCF′≌△ACD(SAS),进而即可得到结论;Ⅱ.证明△BCF′≌△ACD,结合AF=BD,即可得到结论.
【详解】
(1)结论:AF=BD,理由如下:
如图1中,∵△ABC是等边三角形,
∴BC=AC,∠BCA=60°,
同理知,DC=CF,∠DCF=60°,
∴∠BCA-∠DCA=∠DCF-∠DCA,即:∠BCD=∠ACF,
在△BCD和△ACF中,
∵
BC AC
BCD ACF
DC FC
=
∠=∠
=
⎧
⎪
⎨
⎪
⎩
,
∴△BCD ≌△ACF (SAS ),
∴BD =AF ;
(2)AF 与BD 在(1)中的结论成立,理由如下:
如图2中,∵△ABC 是等边三角形,
∴BC =AC ,∠BCA =60°,
同理知,DC =CF ,∠DCF =60°,
∴∠BCA +∠DCA =∠DCF +∠DCA ,即∠BCD =∠ACF ,
在△BCD 和△ACF 中,
∵BC AC BCD ACF DC FC =∠=∠=⎧⎪⎨⎪⎩
,
∴△BCD ≌△ACF (SAS ),
∴BD =AF ;
(3)Ⅰ.AF +BF ′=AB ,理由如下:
由(1)知,△BCD ≌△ACF (SAS ),则BD =AF ;
同理:△BCF ′≌△ACD (SAS ),则BF ′=AD ,
∴AF +BF ′=BD +AD =AB ;
Ⅱ.Ⅰ中的结论不成立,新的结论是AF =AB +BF ′,理由如下:
同理可得:BCF ACD ∠=∠′,F C DC =′,
在△BCF ′和△ACD 中,
BC AC BCF ACD F C DC =∠⎧⎪=∠=⎪⎨⎩
′
′, ∴△BCF ′≌△ACD (SAS ),
∴BF ′=AD ,
又由(2)知,AF =BD ,
∴AF =BD =AB +AD =AB +BF ′,即AF =AB +BF ′.
【点睛】
本题主要考查等边三角形的性质定理,三角形全等的判定和性质定理,熟练掌握三角形全等的判定和性质定理,是解题的关键.
8.如图,在等边三角形ABC 右侧作射线CP ,∠ACP =α(0°<α<60°),点A 关于射线CP 的对称点为点D ,BD 交CP 于点E ,连接AD ,AE .
(1)求∠DBC的大小(用含α的代数式表示);
(2)在α(0°<α<60°)的变化过程中,∠AEB的大小是否发生变化?如果发生变化,请直接写出变化的范围;如果不发生变化,请直接写出∠AEB的大小;
(3)用等式表示线段AE,BD,CE之间的数量关系,并证明.
【答案】(1)∠DBC60α
=︒-;(2)∠AEB的大小不会发生变化,且∠AEB=60°;(3)BD=2AE+CE,证明见解析.
【解析】
【分析】
(1)如图1,连接CD,由轴对称的性质可得AC=DC,∠DCP=∠ACP=α,由△ABC是等边三角形可得AC=BC,∠ACB=60°,进一步即得∠BCD=602α
︒+,BC=DC,然后利用三角形的内角和定理即可求出结果;
(2)设AC、BD相交于点H,如图2,由轴对称的性质可证明△ACE≌△DCE,可得
∠CAE=∠CDE,进而得∠DBC=∠CAE,然后根据三角形的内角和可得∠AEB=∠BCA,即可作出判断;
(3)如图3,在BD上取一点M,使得CM=CE,先利用三角形的外角性质得出
∠BEC60
=︒,进而得△CME是等边三角形,可得∠MCE=60°,ME=CE,然后利用角的和差关系可得∠BCM=∠DCE,再根据SAS证明△BCM≌△DCE,于是BM=DE,进一步即可得出线段AE,BD,CE之间的数量关系.
【详解】
解:(1)如图1,连接CD,∵点A关于射线CP的对称点为点D,∴AC=DC,
∠DCP=∠ACP=α,
∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,
∴∠BCD=602α
︒+,BC=DC,
∴∠DBC=∠BDC
()
180602
180
60
22
BCDα
α
︒-︒+
︒-∠
===︒-;
(2)∠AEB 的大小不会发生变化,且∠AEB =60°.
理由:设AC 、BD 相交于点H ,如图2,∵点A 关于射线CP 的对称点为点D ,
∴AC=DC ,AE=DE ,又∵CE=CE ,∴△ACE ≌△DCE (SSS ),∴∠CAE =∠CDE ,
∵∠DBC =∠BDC ,∴∠DBC =∠CAE ,又∵∠BHC =∠AHE ,∴∠AEB =∠BCA =60°, 即∠AEB 的大小不会发生变化,且∠AEB =60°;
(3)AE ,BD ,CE 之间的数量关系是:BD =2AE +CE .
证明:如图3,在BD 上取一点M ,使得CM=CE ,
∵∠BEC =∠BDC +∠DCE =6060αα︒-+=︒,
∴△CME 是等边三角形,∴∠MCE =60°,ME=CE ,
∴60260BCM BCD MCE DCE ααα∠=∠-∠-∠=︒+-︒-=,
∴∠BCM =∠DCE ,又∵BC=DC ,CM=CE ,
∴△BCM ≌△DCE (SAS ),∴BM=DE ,
∵AE=DE ,
∴BD=BM+ME+DE =2DE+ME =2AE+CE .
【点睛】
本题考查了等边三角形的判定和性质、全等三角形的判定和性质、三角形的内角和定理和轴对称的性质等知识,熟练掌握并运用上述知识解题的关键.
9.如图1,△ABD,△ACE都是等边三角形,
(1)求证:△ABE≌△ADC;
(2)若∠ACD=15°,求∠AEB的度数;
(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.
【答案】(1)见解析(2) ∠AEB=15°(3) 见解析
【解析】
试题分析:(1)由等边三角形的性质可得AB=AD,AE=AC,∠DAB=∠EAC=60°,即可得
∠DAC=∠BAE,利用SAS即可判定△ABE≌△ADC;(2)根据全等三角形的性质即可求解;(3)由(1)的方法可证得△ABE≌△ADC,根据全等三角形的性质和等边三角形的性质可得∠AEB=∠ACD =60°,即可得∠AEB=∠EAC,从而得AC∥BE.
试题解析:
(1)证明:∵△ABD,△ACE都是等边三角形
∴AB=AD,AE=AC,
∠DAB=∠EAC=60°,
∴∠DAC=∠BAE,
在△ABE和△ADC中,
∴,
∴△ABE≌△ADC;
(2)由(1)知△ABE≌△ADC,
∴∠AEB=∠ACD,
∵∠ACD=15°,
∴∠AEB=15°;
(3)同上可证:△ABE≌△ADC,
∴∠AEB=∠ACD,
又∵∠ACD=60°,
∴∠AEB=60°,
∵∠EAC=60°,
∴∠AEB=∠EAC ,
∴AC ∥BE .
点睛:本题主要考查了等边三角形的性质、全等三角形的判定及性质,证得△ABE ≌△ADC 是解决本题的关键.
10.如图,已知ABC ∆()AB AC BC <<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):
(1)在边BC 上找一点M ,使得:将ABC ∆沿着过点M 的某一条直线折叠,点B 与点C 能重合,请在图①中作出点M ;
(2)在边BC 上找一点N ,使得:将ABC ∆沿着过点N 的某一条直线折叠,点B 能落在边AC 上的点D 处,且ND AC ⊥,请在图②中作出点N .
【答案】(1)见详解;(2)见详解.
【解析】
【分析】
(1)作线段BC 的垂直平分线,交BC 于点M ,即可;
(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即可.
【详解】
(1)作线段BC 的垂直平分线,交BC 于点M ,即为所求.点M 如图①所示:
(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即为所求.点N 如图②所示:
【点睛】
本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.
三、八年级数学整式的乘法与因式分解解答题压轴题(难)
11.阅读下列材料:利用完全平方公式,可以将多项式2
(0)ax bx c a ++≠变形为2()a x m n ++的形式,我们把这种变形方法,叫做配方法.运用配方法及平方差公式能对一些多项式进行因式分解.例如:
22222111111251151151124112422242222x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=++-+=+-=+++- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝
⎭⎝⎭⎝⎭根据以上材料,解答下列问题:
(1)用配方法将281x x +-化成2()x m n ++的形式,则281=x x +- ________;
(2)用配方法和平方差公式把多项式228x x --进行因式分解;
(3)对于任意实数x ,y ,多项式222416x y x y +--+的值总为______(填序号).
①正数②非负数 ③ 0
【答案】(1)2(4)17x +-;(2)(2)(4)x x +-;(3)①
【解析】
【分析】
(1)根据材料所给方法解答即可;
(2)材料所给方法进行解答即可;
(3)局部进行因式分解,最后写成非负数的积的形式即可完成解答.
【详解】
解:(1)281x x +-
=2816116x x ++--
2(4)17x +-.
(2)原式=22118x x -+--
=2(1)9x --
=(13)(13)x x -+--
=(2)(4)x x +-.
(3)222416x y x y +--+
=()()22214411x x y y -++-++
=()()221211x y -+-+
>11
故答案为①.
【点睛】
本题考查了配方法,根据材料学会配方法并灵活运用配方法解题是解答本题的关键.
12.阅读材料:若m 2﹣2mn+2n 2﹣8n+16=0,求m 、n 的值.
解:∵m 2﹣2mn+2n 2﹣8n+16=0,∴(m 2﹣2mn+n 2)+(n 2﹣8n+16)=0
∴(m ﹣n )2+(n ﹣4)2=0,∴(m ﹣n )2=0,(n ﹣4)2=0,∴n=4,m=4. 根据你的观察,探究下面的问题:
(1)已知x 2﹣2xy+2y 2+6y+9=0,求xy 的值;
(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足a 2+b 2﹣10a ﹣12b+61=0,求△ABC 的最大边c 的值;
(3)已知a ﹣b=8,ab+c 2﹣16c+80=0,求a+b+c 的值.
【答案】(1)9;(2)△ABC 的最大边c 的值可能是6、7、8、9、10;(3)8.
【解析】
试题分析:(1)直接利用配方法得出关于x ,y 的值即可求出答案;
(2)直接利用配方法得出关于a ,b 的值即可求出答案;
(3)利用已知将原式变形,进而配方得出答案.
试题解析:(1)∵x 2﹣2xy+2y 2+6y+9=0,
∴(x 2﹣2xy+y 2)+(y 2+6y+9)=0,
∴(x ﹣y )2+(y+3)2=0,
∴x ﹣y=0,y+3=0,
∴x=﹣3,y=﹣3,
∴xy=(﹣3)×(﹣3)=9,
即xy 的值是9.
(2)∵a 2+b 2﹣10a ﹣12b+61=0,
∴(a 2﹣10a+25)+(b 2﹣12b+36)=0,
∴(a ﹣5)2+(b ﹣6)2=0,
∴a ﹣5=0,b ﹣6=0,
∴a=5,b=6,
∵6﹣5<c <6+5,c≥6,
∴6≤c <11,
∴△ABC的最大边c的值可能是6、7、8、9、10.
(3)∵a﹣b=8,ab+c2﹣16c+80=0,
∴a(a﹣8)+16+(c﹣8)2=0,
∴(a﹣4)2+(c﹣8)2=0,
∴a﹣4=0,c﹣8=0,
∴a=4,c=8,b=a﹣8=4﹣8=﹣4,
∴a+b+c=4﹣4+8=8,
即a+b+c的值是8.
13.把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.
例如,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2
(1)如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论?请用等式表示出来.
(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.
(3)如图3,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF.若这两个正方形的边长满足a+b=10,ab=20,请求出阴影部分的面积.【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)45;(3)20.
【解析】
【分析】
(1)此题根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积,种是大正方形的面积,可得等式(a+b+c)
2=a2+b2+c2+2ab+2bc+2ac;
(2)利用(1)中的等式直接代入求得答案即可;
(3)利用S阴影=正方形ABCD的面积+正方形ECGF的面积-三角形BGF的面积-三角形ABD 的面积求解.
【详解】
(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;
(2)∵a+b+c=11,ab+bc+ac=38,
∴a2+b2+c2 =(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;
(3)∵a+b=10,ab=20,
∴S阴影=a2+b2﹣1
2
(a+b)•b﹣
1
2
a2
=1
2
a2+
1
2
b2﹣
1
2
ab
=1
2
(a+b)2﹣3
2
ab
=1
2
×102﹣
3
2
×20
=50﹣30
=20.
【点睛】
本题考查了完全平方公式几何意义,解题的关键是注意图形的分割与拼合,会用不同的方法表示同一图形的面积.
14.观察以下等式:
(x+1)(x2-x+1)=x3+1
(x+3)(x2-3x+9)=x3+27
(x+6)(x2-6x+36)=x3+216
............
(1)按以上等式的规律,填空:(a+b)(___________________)=a3+b3
(2)利用多项式的乘法法则,证明(1)中的等式成立.
(3)利用(1)中的公式化简:(x+y)(x2-xy+y2)-(x-y)(x2+xy+y2)
【答案】(1)a2-ab+b2;(2)详见解析;(3)2y3.
【解析】
【分析】
(1)根据所给等式可直接得到答案(a+b)(a2-ab+b2)=a3+b3;(2)利用多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加进行计算即可得到答案;(3)结合题目本身的特征,利用(1)中的公式直接运用即可.
【详解】
(1)(a+b)(a2-ab+b2)=a3+b3;
(2)(a+b)(a2-ab+b2)
=a3-a2b+ab2+a2b-ab2+b3
=a3+b3;
(3)(x+y)(x2-xy+y2)-(x-y)(x2+xy+y2)
=x3+y3-(x3-y3)
=2y3.
【点睛】
本题考查了多项式乘以多项式,关键是掌握多项式乘法法则,注意观察所给例题,找出其中的规律是解决本题的基本思路.
15.阅读材料:要把多项式am+an+bm+bn 因式分解,可以先把它进行分组再因式分解:am+an+bm+bn=(am +an )+(bm +bn )=a (m +n )+b (m +n )=(a +b )(m +n ),这种因式分解的方法叫做分组分解法.
(1)请用上述方法因式分解:x 2-y 2+x-y
(2)已知四个实数a 、b 、c 、d 同时满足a 2+ac=12k ,b 2+bc=12k .c 2+ac=24k ,d 2+ad=24k ,且a≠b ,c≠d ,k≠0
①求a+b+c 的值;
②请用含a 的代数式分别表示b 、c 、d
【答案】(1)(x −y )(x +y +1);(2)①0a b c ++=;②3b a =-,2c a =,3d a =-
【解析】
【分析】
(1)将x 2 - y 2分为一组,x-y 分为一组,前一组利用平方差公式化为(x+y)(x-y),再提取公因式即可求解.
(2)①已知22a ac b bc +=+=12k ,可得220a b ac bc -+-=,将等号左边参照(1)因式分解,即可求解.
②由a 2+ac=12k ,c 2+ac=24k 可得2(a 2+ac)= c 2+ac ,即可得出c=2a ,同理得出3b a =-,3d a =-
【详解】
(1)x 2-y 2+x-y = (x 2 -y 2)+(x-y)=(x+y)(x-y)+(x-y)=(x-y)(x+y+1)
故答案为:(x-y)(x+y+1)
(2)①22a ac b bc +=+=12k
220a b ac bc -+-=
()()0a b a b c -++=
∵a b
∴0a b c ++=
②∵a 2+ac=12k ,c 2+ac=24k
2(a 2+ac)= c 2+ac
∴2a 2+ac- c 2=0
得(2a-c)(a+c)=0
∵a 2+ac=12k ≠0即a(a+c)≠0
∴c=2a ,a 2=4k
∵b 2+bc=12k
∴b 2+2ba=3a 2
则(a −b )(3a +b )=0
∵a ≠b
∴3b a =-
同理可得d 2+ad=24k ,c 2+ac=24k
d 2+ad=c 2+ac
(d −c )(a +d +c )=0
∵c d ≠
∴0a d c ++=
∴3d a =-
故答案为:0a b c ++=;3b a =-,2c a =,3d a =-
【点睛】 本题考查了用提取公因式法、运用公式法、分组分解法进行因式分解.
四、八年级数学分式解答题压轴题(难)
16.阅读理解:
把一个分式写成两个分式的和叫做把这个分式表示成部分分式.如何将
2131x x --表示成部分分式?
设分式
2131x x --=11m n x x +-+,将等式的右边通分得:(1)(1)(1)(1)m x n x x x ++-+-=()(1)(1)m n x m n x x ++-+-,由2131
x x --= ()(1)(1)m n x m n x x ++-+-得:31m n m n +=-⎧⎨-=⎩,解得:12m n =-⎧⎨=-⎩
,所以2131x x --=1211x x --+-+. (1)把分式1(2)(5)x x --表示成部分分式,即1(2)(5)x x --=25
m n x x +--,则m = ,n = ;
(2)请用上述方法将分式
43(21)(2)x x x -+-表示成部分分式. 【答案】(1)13-,
13;(2)21212
x x ++-. 【解析】
【分析】
仿照例子通分合并后,根据分子的对应项的系数相等,列二元一次方程组求解.
【详解】 解:(1)∵()()()
522525m n x m n m n x x x x +--+=----, ∴0521m n m n +=⎧⎨--=⎩
,
解得:1313m n ⎧=-⎪⎪⎨⎪=⎪⎩
. (2)设分式()()43212x x x -+-=212m n x x ++-
将等式的右边通分得:()()()()
221212m x n x x x -+++-=()()()22212m n x m n x x +-++-, 由()()43212x x x -+-=()()()
22212m n x m n x x +-++-, 得2423
m n m n +=⎧⎨-+=-⎩, 解得21
m n =⎧⎨=⎩. 所以
()()43212x x x -+-=21212x x ++-.
17.“绿色环保,健康出行”新能源汽车越来越占领汽车市场,以“北汽”和“北汽 新能源 EV500”为例,分别在某加油站和某充电站加油和充电的电费均为 300 元,而续 航里程之比则为 1∶4.经计算新能源汽车相比燃油车节约 0.6 元/公里.
(1)分别求出燃油车和新能源汽车的续航单价(每公里费用);
(2)随着更多新能源车进入千家万户,有条件的小区及用户将享受 0.48 元/度的优惠专用电费.以新能源 EV500 为例,充电 55 度可续航 400 公里,试计算每公里所需电费, 并求出与燃油车相同里程下的所需费用(油电)百分比.
【答案】(1)燃油车0.8;新能源汽车0.2;(2)8.25%
【解析】
【分析】
(1)设新能源汽车续航单价为x 元/公里,则燃油车续航单价为(x+0.6)元/公里,根据等量关系式:新能源汽车续航里程:燃油车续航里程=4∶1,列出方程,解之即可.
(2)根据总价=单价×数量可得新能源汽车400公里所需费用,再用此费用÷总公里数即可得新能源汽车每公里所需电电费;由(1)知燃油汽车每公里费用,用此费用乘以总公里数可得燃油汽车总费用,再用新能源汽车的总费用÷燃油车相同里程下的所需费用即可得答案.
【详解】
解:(1)设新能源汽车续航单价为x 元/公里,则燃油车续航单价为(x+0.6)元/公里,依题可得:
300x :3000.6x
+ =4:1, 解得:x=0.2,
∴燃油车续航单价为:x+0.6=0.2+0.6=0.8(元/公里),
答:新能源汽车续航单价为0.2元/公里,燃油车续航单价为0.8元/公里.
(2)依题可得新能源汽车400公里所需费用为:
0.48×55=26.4(元),
∴新能源汽车每公里所需电电费为:
26.4÷400=0.066(元/公里),
依题可得燃油汽车400公里所需费用为:
400×0.8=320(元),
∴新能源汽车与燃油车相同里程下的所需费用(油电)百分比为:
26.4÷320=0.0825=8.25%.
答:新能源汽车每公里所需电电费为0.066元;新能源汽车与燃油车相同里程下的所需费用(油电)百分比为8.25%.
【点睛】
本题主要考查了分式方程的实际应用,找准等量关系,正确列出分式方程是解题的关键.
18.(1)请你写出五个正的真分数,____,____,____,____,____,给每个分数的分子和分母加上同一个正数得到五个新分数:____,____,____,_____,____.
(2)比较原来每个分数与对应新分数的大小,可以得出下面的结论:
一个真分数是a
b
(a、b均为正数),给其分子分母同加一个正数m,得
a m
b m
+
+
,则两个分
数的大小关系是a m
b m
+
+
_____
a
b
.
(3)请你用文字叙述(2)中结论的含义:
(4)你能用图形的面积说明这个结论吗?
(5)解决问题:如图1,有一个长宽不等的长方形绿地,现给绿地四周铺一条宽相等的路,问原来的长方形与现在铺过小路后的长方形是否相似?为什么?
(6)这个结论可以解释生活中的许多现象,解决许多生活与数学中的问题.请你再提出一个类似的数学问题,或举出一个生活中与此结论相关例子.
【答案】(1) 1
2
;
1
4
;
1
6
;
1
8
;
1
9
;
2
3
;
2
5
;
2
7
;
2
9
;
1
5
;(2)>;(3)给一个正的真
分数的分子、分母同加一个正数,得到的新分数大于原来的分数;(4)答案见解析;(5)不相似,理由见解析;(6)答案见解析.
【解析】
【分析】
(1)小于1的数叫做真分数;(2)根据实例易得规律;(3)抓住新分数大于原分数即可;(4)根据图形进行分析解答;(5)利用相关规律解决问题即可;(6)结合生活中的现象进行解答.
【详解】
解:(1)12、14、16、18、19,23、25、27、29、15;(2)a m a b m b +>+; (3)给一个正的真分数的分子、分母同加一个正数,得到的新分数大于原来的分数; (4)思路1:如图2所示,
由a b <,得12s s s s +>+,即ab bm ab am +>+,()().a b m b a m +=+,可推出a m a b m b
+>+; 思路2:构造两个面积为1的长方形(如图3),将它们分成两部分,比较右侧的两个长方形面积可以发现:
1a b a b b --=,1a m b a b m b m
+--=++,
因为a 、b 、0m >,且a b <,
故1a b - 1a m b m +>-+,即a m a b m b
+>+ (5)不相似.因为两个长方形长与宽的比值不相等;
(6)数学问题举例:
①若a b
是假分数,会有怎样的结论? ②a 、b 不是正数,或不全是正数,情况如何?
【点睛】
本题实际考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键.
19.某建设工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.
(1)求甲、乙两队单独完成这项工程各需要多少天?
(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.【答案】(1)甲、乙两队单独完成这项工程各需要30天和60天(2)工程预算的施工费用不够用,需追加预算1万元
【解析】
【分析】
(1)求的是工效,时间较明显,一定是根据工作总量来列等量关系,等量关系为:甲6天的工作总量+甲乙合作16天的工作总量=1;
(2)应先算出甲乙合作所需天数,再算所需费用,和19万进行比较.
【详解】
解:(1)设甲队单独完成这项目需要x天,
则乙队单独完成这项工程需要2x天,
根据题意,得611
161 x x2x
⎛⎫
++=
⎪
⎝⎭
,
解得x=30
经检验,x=30是原方程的根,
则2x=2×30=60
答:甲、乙两队单独完成这项工程各需要30天和60天.(2)设甲、乙两队合作完成这项工程需要y天,
则有
11
y1
3060
⎛⎫
+=
⎪
⎝⎭
,
解得y=20
需要施工费用:20×(0.67+0.33)=20(万元)
∵20>19,∴工程预算的施工费用不够用,需追加预算1万元.
【点睛】
本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.
20.杨梅是漳州的特色时令水果.杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价每件比第一批多了5元.
(1)第一批杨梅每件进价多少元?
(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销.要使得第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折(利润。