2019-2020中考数学一模试卷(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020中考数学一模试卷(含答案)
一、选择题
1.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )
A .1 个
B .2 个
C .3 个
D .4个 2.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析
式为( )
A .23(2)3y x =++
B .23(2)3y x =-+
C .23(2)3y x =+-
D .23(2)3y x =--
3.已知二次函数y =ax 2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )
A .abc >0
B .b 2﹣4ac <0
C .9a+3b+c >0
D .c+8a <0
4.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有( )
A .2个
B .3个
C .4个
D .5个
5.如图抛物线y =ax 2+bx +c 的对称轴为直线x =1,且过点(3,0),下列结论:①abc >0;②a ﹣b +c <0;③2a +b >0;④b 2﹣4ac >0;正确的有( )个.
A .1
B .2
C .3
D .4 6.如果一组数据6、7、x 、9、5的平均数是2x ,那么这组数据的方差为( )
A .4
B .3
C .2
D .1 7.如图,若锐角△ABC 内接于⊙O ,点D 在⊙O 外(与点C 在AB 同侧),则下列三个结论:①sin ∠C >sin ∠D ;②cos ∠C >cos ∠D ;③tan ∠C >tan ∠D 中,正确的结论为( )
A .①②
B .②③
C .①②③
D .①③ 8.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k
y x
=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =;
②当0<x <3时,12y y <;
③如图,当x=3时,EF=83; ④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小.
其中正确结论的个数是( )
A .1
B .2
C .3
D .4
9.不等式组213312x x +⎧⎨+≥-⎩
<的解集在数轴上表示正确的是( ) A . B .
C .
D .
10.已知直线//m n ,将一块含30°角的直角三角板ABC 按如图方式放置
(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )
A .10︒
B .20︒
C .30°
D .40︒
11.根据以下程序,当输入x =2时,输出结果为( )
A .﹣1
B .﹣4
C .1
D .11
12.均匀的向一个容器内注水,在注水过程中,水面高度h 与时间t 的函数关系如图所示,则该容器是下列中的( )
A .
B .
C .
D .
二、填空题
13.如图,⊙O 是△ABC 的外接圆,∠A =45°,则cos ∠OCB 的值是________.
14.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________
15.已知62x =,那么222x x -的值是_____.
16.分式方程3
2x x 2--+22x
-=1的解为________. 17.已知(a -4)(a -2)=3,则(a -4)2+(a -2)2的值为__________.
18.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点处,当△为直角三角形时,BE 的长为 .
19.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____. 20.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .
三、解答题
21.某小微企业为加快产业转型升级步伐,引进一批A ,B 两种型号的机器.已知一台A 型机器比一台B 型机器每小时多加工2个零件,且一台A 型机器加工80个零件与一台B 型机器加工60个零件所用时间相等.
(1)每台A ,B 两种型号的机器每小时分别加工多少个零件?
(2)如果该企业计划安排A ,B 两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A ,B 两种型号的机器可以各安排多少台?
22.解方程:x 21x 1x
-=-. 23.已知222111
x x x A x x ++=---. (1)化简A ;
(2)当x 满足不等式组1030
x x -≥⎧⎨-<⎩,且x 为整数时,求A 的值. 24.解不等式组3415122
x x x x ≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来 25.已知n 边形的内角和θ=(n-2)×180°.
(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;
(2)若n 边形变为(n+x )边形,发现内角和增加了360°,用列方程的方法确定x.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
【详解】
解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;
②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;
③由横纵坐标看出,乙比甲先到达终点,故③错误;
④由纵坐标看出,甲乙二人都跑了20千米,故④正确;
故选C .
2.A
解析:A
【解析】
【分析】
直接根据“上加下减,左加右减”的原则进行解答即可.
【详解】
将抛物线2
3y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 3.D
解析:D
【解析】
【分析】
【详解】
试题分析:根据图象可知抛物线开口向下,抛物线与y 轴交于正半轴,对称轴是x=1>0,所以a <0,c >0,b >0,所以abc <0,所以A 错误;因为抛物线与x 轴有两个交点,所以24b ac ->0,所以B 错误;又抛物线与x 轴的一个交点为(-1,0),对称轴是x=1,所以另一个交点为(3,0),所以930a b c ++=,所以C 错误;因为当x=-2时,
42y a b c =-+<0,又12b x a
=-=,所以b=-2a ,所以42y a b c =-+8a c =+<0,所
以D正确,故选D.
考点:二次函数的图象及性质.
4.C
解析:C
【解析】
【分析】
【详解】
试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,
∴△ABE是等腰直角三角形,
∴AB,
∵AB,
∴AE=AD,
又∠ABE=∠AHD=90°
∴△ABE≌△AHD(AAS),
∴BE=DH,
∴AB=BE=AH=HD,
∴∠ADE=∠AED=1
2
(180°﹣45°)=67.5°,
∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;
∵∠AHB=1
2
(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),
∴∠OHE=∠AED,
∴OE=OH,
∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,
∴∠OHD=∠ODH,
∴OH=OD,
∴OE=OD=OH,故②正确;
∵∠EBH=90°﹣67.5°=22.5°,
∴∠EBH=∠OHD,
又BE=DH,∠AEB=∠HDF=45°
∴△BEH≌△HDF(ASA),
∴BH=HF,HE=DF,故③正确;
由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;
∵AB=AH,∠BAE=45°,
∴△ABH不是等边三角形,
∴AB≠BH,
∴即AB≠HF ,故⑤错误;
综上所述,结论正确的是①②③④共4个.
故选C .
【点睛】
考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质
5.B
解析:B
【解析】
【分析】
由图像可知a >0,对称轴x=-
2b a
=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断.
【详解】 解:∵抛物线开口向上,
∴a >0,
∵抛物线的对称轴为直线x =﹣
2b a
=1, ∴b =﹣2a <0,
∵抛物线与y 轴的交点在x 轴下方,
∴c <0,
∴abc >0,所以①正确;
∵抛物线与x 轴的一个交点为(3,0),而抛物线的对称轴为直线x =1,
∴抛物线与x 轴的另一个交点为(﹣1,0),
∵x =﹣1时,y =0,
∴a ﹣b +c =0,所以②错误;
∵b =﹣2a ,
∴2a +b =0,所以③错误;
∵抛物线与x 轴有2个交点,
∴△=b 2﹣4ac >0,所以④正确.
故选B .
【点睛】
此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义. 6.A
解析:A
【解析】
分析:先根据平均数的定义确定出x 的值,再根据方差公式进行计算即可求出答案. 详解:根据题意,得:67955
x ++++=2x
解得:x=3,
则这组数据为6、7、3、9、5,其平均数是6, 所以这组数据的方差为15
[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4, 故选A .
点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数. 7.D
解析:D
【解析】
如图,连接BE ,
根据圆周角定理,可得∠C=∠AEB ,
∵∠AEB=∠D+∠DBE ,
∴∠AEB>∠D ,
∴∠C>∠D ,
根据锐角三角形函数的增减性,可得,
sin ∠C>sin ∠D ,故①正确;
cos ∠C<cos ∠D ,故②错误;
tan ∠C>tan ∠D ,故③正确;
故选D .
8.C
解析:C
【解析】
试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;
∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x =
,由函数图象得:当0<x <2时,12y y <,选项②错误;
当x=3时,14y =,243y =,即EF=443-=83
,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题.
9.A
解析:A
【解析】
【分析】
先求出不等式组的解集,再在数轴上表示出来即可.
【详解】
213312x x +⎧⎨+≥-⎩
<①② ∵解不等式①得:x <1,
解不等式②得:x≥-1,
∴不等式组的解集为-1≤x <1, 在数轴上表示为:

故选A .
【点睛】
本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 10.B
解析:B
【解析】
【分析】
根据平行线的性质判断即可得出结论.
【详解】
解:Q 直线//m n ,
21180ABC BAC ∴∠+∠∠+∠=+︒,
30ABC =︒∠Q ,90BAC ∠=︒,140∠=︒,
218030904020∴∠=---︒︒=︒︒︒,
故选:B .
【点睛】
本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.
11.D
解析:D
【解析】
【分析】
根据流程图所示顺序,逐框分析代入求值即可.
【详解】
当x =2时,x 2﹣5=22﹣5=﹣1,结果不大于1,
代入x 2﹣5=(﹣1)2﹣5=﹣4,结果不大于1,
代入x 2﹣5=(﹣4)2﹣5=11,
故选D .
【点睛】
本题考查了代数式求值,正确代入求值是解题的关键.
12.D
解析:D
【解析】
【分析】
由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.
【详解】
根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D 几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;
故选D.
【点睛】
此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.
二、填空题
13.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC 从而可得cos∠OCB 的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC 由勾股定理得BC=OC∴cos∠OCB=故答案为【点睛】
解析:2
【解析】
【分析】
根据圆周角定理可得∠BOC=90°,易求OC ,从而可得cos ∠OCB 的值.
【详解】
∵∠A =45°,
∴∠BOC=90°
∵OB=OC ,
由勾股定理得,OC ,
∴cos ∠OCB =
2OC BC ==.
. 【点睛】 本题考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,属较简单题目
14.<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f (x)=ax2-3x-1如图∵实数根都在-1
解析:
9
4
-<a<-2
【解析】
【分析】
【详解】
解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,
解得:a>−9 4
设f(x)=ax2-3x-1,如图,
∵实数根都在-1和0之间,
∴-1<−
3
2a
-
<0,
∴a<−3
2

且有f(-1)<0,f(0)<0,
即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,
∴−9
4
<a<-2,
故答案为−9
4
<a<-2.
15.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确
解析:4
【解析】
将所给等式变形为x =
【详解】
∵x =,
∴x -=
∴(2
2x =,
∴226x -+=,
∴24x -=,
故答案为:4
【点睛】
本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.
16.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分 解析:x 1=
【解析】
【分析】
根据解分式方程的步骤,即可解答.
【详解】
方程两边都乘以x 2-,得:32x 2x 2--=-,
解得:x 1=,
检验:当x 1=时,x 21210-=-=-≠,
所以分式方程的解为x 1=,
故答案为x 1=.
【点睛】
考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.
17.10【解析】【分析】试题分析:把(a ﹣4)和(a ﹣2)看成一个整体利用完全平方公式求解【详解】(a ﹣4)2+(a ﹣2)2=(a ﹣4)2+(a ﹣2)2-2(a ﹣4)(a ﹣2)+2(a ﹣4)(a ﹣2)=
解析:10
【解析】
【分析】
试题分析:把(a ﹣4)和(a ﹣2)看成一个整体,利用完全平方公式求解.
【详解】
(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)
=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)
=(-2)2+2×3
=10
故答案为10
【点睛】
本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.18.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角
解析:3或.
【解析】
【分析】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当
△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,
在Rt△ABC中,AB=3,BC=4,
∴AC==5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=3,
∴CB′=5-3=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得,
∴BE=;
②当点B′落在AD边上时,如答图2所示.
此时ABEB′为正方形,∴BE=AB=3.
综上所述,BE的长为或3.
故答案为:或3.
19.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键
解析:1
【解析】
解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.
点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.
20.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF
解析:.
【解析】
试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.
由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,
∴∠EFC+∠AFB=90°,∵∠B=90°,
∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,
∴cos∠EFC=,故答案为:.
考点:轴对称的性质,矩形的性质,余弦的概念.
三、解答题
21.(1)每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.
【分析】
(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,根据工作时间=工作总量÷工作效率结合一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设A型机器安排m台,则B型机器安排(10m)
-台,根据每小时加工零件的总量
8A
=⨯型机器的数量6B
+⨯型机器的数量结合每小时加工的零件不少于72件且不能超过76件,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各安排方案.
【详解】
(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,
依题意,得:
8060
x2x
=
+

解得:x=6,
经检验,x=6是原方程的解,且符合题意,
x28
∴+=.
答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;
(2)设A型机器安排m台,则B型机器安排(10m)
-台,
依题意,得:
()
() 861072 861076
m
m m
π
⎧+-


+-
⎪⎩

…,
解得:6m8
剟,
m
Q为正整数,
m678
∴=、、,
答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.【点睛】
本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.22.2
x=.
【解析】
【分析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
去分母得:x2-2x+2=x2-x,
解得:x=2,
检验:当x=2时,方程左右两边相等,
所以x=2是原方程的解.
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
23.(1)
1
1
x-
;(2)1
【解析】
【分析】
(1)根据分式四则混合运算的运算法则,把A式进行化简即可.
(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x的值代入化简后的A式进行计算即可.
【详解】
(1)原式=
2
(1)
(1)(1)1
x x
x x x
+
-
+--
=
1
11
x x
x x
+
-
--
=
1
1
x x
x
+-
-
=
1
1
x-
(2)不等式组的解集为1≤x<3
∵x为整数,
∴x=1或x=2,
①当x=1时,
∵x﹣1≠0,
∴A=
1
1
x-
中x≠1,
∴当x=1时,A=
1
1
x-
无意义.
②当x=2时,
A=
1
1
x-

1
=1
2-1
考点:分式的化简求值、一元一次不等式组.
24.-1<x≤1
【解析】
【分析】
分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.
【详解】
解:
341
{51
2
2
x x
x
x
≥-
-
-



解不等式①可得x≤1,
解不等式②可得x>-1
在数轴上表示解集为:
所以不等式组的解集为:-1<x≤1.
【点睛】
本题考查了解不等式组,熟练掌握计算法则是解题关键.
25.(1)甲对,乙不对,理由见解析;(2)2.
【解析】
试题分析:(1)根据多边形的内角和公式判定即可;(2)根据题意列方程,解方程即可.试题解析:(1)甲对,乙不对.
∵θ=360°,∴(n-2)×180°=360°,
解得n=4.
∵θ=630°,∴(n-2)×180°=630°,
解得n=.
∵n为整数,∴θ不能取630°.
(2)由题意得,(n-2)×180+360=(n+x-2)×180,
解得x=2.
考点:多边形的内角和.。

相关文档
最新文档