稔田镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稔田镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)如图,若∠1=∠2,DE∥BC,则下列结论中正确的有()
①FG∥DC;②∠AED=∠ACB;③CD平分∠ACB;④∠1+∠B=90°;⑤∠BFG=∠BDC.
A. 1个
B. 2个
C. 3个
D. 4个
【答案】C
【考点】平行线的判定与性质
【解析】【解答】解:∵DE∥BC
∴∠1=∠DCB,∠AED=∠ACB,因此②正确;
∵∠1=∠2
∴∠2=∠DCB
∴FG∥DC,因此①正确;
∴∠BFG=∠BDC,因此⑤正确;
∵∠1=∠2,
∠2+∠B不一定等于90°,因此④错误;
∠ACD不一定等于∠BCD,因此③错误
正确的有①②⑤
故答案为:C
【分析】根据已知DE∥BC可证得∠1=∠DCB,∠AED=∠ACB,可对②作出判断;再根据∠1=∠2,可对①作出判断;由∠2=∠DCB,可对⑤作出判断;③④不能证得,即可得出答案。

2、(2分)如图所示,直线L1,L2,L3相交于一点,则下列答案中,全对的一组是()
A. ∠1=90°,∠2=30°,∠3=∠4=60°;
B. ∠1=∠3=90°,∠2=∠4=30°
C. ∠1=∠3=90°,∠2=∠4=60°;
D. ∠1=∠3=90°,∠2=60°,∠4=30°
【答案】D
【考点】对顶角、邻补角
【解析】【解答】解:根据对顶角相等,可知∠2=60°,∠4=30°.
由平角的定义知,∠3=180°-∠2-∠4=90°,所以∠1=∠3=90°.
故答案为:D
【分析】因为∠1和∠3是对顶角,所以相等,∠2和的角,∠4和的角分别是对顶角.
3、(2分)对于等式2x+3y=7,用含x的代数式来表示y,下列式子正确的是()
A. B. C. D.
【答案】A
【考点】二元一次方程的解
【解析】【解答】解;移项得:3y=7-2x
系数化为1得:
故答案为:A
【分析】先将左边的2x移项(移项要变号)到方程的右边,再将方程两边同时除以3,即可求解。

4、(2分)若方程组中的x是y的2倍,则a等于()
A. ﹣9
B. 8
C. ﹣7
D. ﹣6
【答案】D
【考点】三元一次方程组解法及应用
【解析】【解答】解:由题意可得方程组,
把③代入①得,
代入②得a=﹣6.故答案为:D.
【分析】根据x是y的2倍,建立三元一次方程组,根据方程①③求出x、y的值,再将x、y的值代入方程②,建立关于a的方程求解即可。

5、(2分)已知两数之和是25,两数之差是3,则这两个数分别为()
A. 12,10
B. 12,9
C. 15,10
D. 14,11
【答案】D
【考点】解二元一次方程组,二元一次方程组的应用-数字问题
【解析】【解答】解:设两个数分别为x、y,根据题意得:

解得:,
故这两个数分别为14、11.
故答案为:D.
【分析】抓住题中关键的已知条件,将其转化为等量关系是:两数之和=25;两数之差=3,设未知数,建立方程组,利用加减消元法求出方程组的解即可。

6、(2分)下列方程组是二元一次方程组的有()个.
(1 )(2)(3)(4).
A. 1个
B. 2个
C. 3个
D. 4个
【答案】B
【考点】二元一次方程组的定义
【解析】【解答】解:根据二元一次方程组的定义,可知(1)(2)为二元一次方程组;
∵x=1和x2+y=5不是二元一次方程,
∴(3)(4)不是二元一次方程组.
∴二元一次方程组为3个.
故答案为:B.
【分析】根据二元一次方程组的定义,两个方程中,含有两个未知数,且含未知数项的次数都是1的整式方程。

判断即可得出答案。

7、(2分)已知a、b满足方程组,则3a+b的值为()
A. 8
B. 4
C. ﹣4
D. ﹣8
【答案】A
【考点】代数式求值,解二元一次方程组
【解析】【解答】解:,
①×2+②得:5a=10,即a=2,
将a=2代入①得:b=2,
则3a+b=6+2=8.
故答案为:A
【分析】先利用加减消元法求出方程组的解,再将a、b的值代入3a+b,计算即可。

8、(2分)某车间工人刘伟接到一项任务,要求10天里加工完190个零件,最初2天,每天加工15个,要在规定时间内完成任务,以后每天至少加工零件个数为()
A. 18
B. 19
C. 20
D. 21
【答案】C
【考点】一元一次不等式的应用
【解析】【解答】解:设平均每天至少加工x个零件,才能在规定的时间内完成任务,
因为要求10天里加工完190个零件,最初2天,每天加工15个,还剩8天,
依题意得2×15+8x≥190,
解之得,x≥20,
所以平均每天至少加工20个零件,才能在规定的时间内完成任务.故答案为:C
【分析】设平均每天至少加工x个零件,才能在规定的时间内完成任务,因为要求10天里加工完190个零件,最初2天,每天加工15个,还剩8天,从而根据前两天的工作量+后8天的工作量应该不小于190,列出不等式,求解即可。

9、(2分)2010年温州市初中毕业、升学考试各学科及满分值情况如下表:
()度.
A. 72
B. 144
C. 53
D. 106
【答案】A
【考点】扇形统计图
【解析】【解答】解:根据表格,得总分=150+150+120+100+200+30=750.
所以数学所在的扇形的圆心角= ×360°=72°.
故答案为:A
【分析】根据表格先计算总分值,从而得出数学所占的百分比,然后根据圆心角的度数=360°×数学所占的百分比即可得出结果.
10、(2分)如图,将三个相同的三角尺不重叠不留空隙地拼在一起,观察图形,在线段AB,AC,AE,
ED,EC中,相互平行的线段有()
A. 4组
B. 3组
C. 2组
D. 1组
【答案】B
【考点】平行线的判定
【解析】【解答】解:∠B=∠DCE,则AB∥EC(同位角相等,两直线平行);
∠BCA=∠CAE,则AE∥BC(内错角相等,两直线平行);
则AE∥CD,
∠ACE=∠DEC,则AC∥DE(内错角相等,两直线平行).
则线段AB、AC、AE、ED、EC中,相互平行的线段有:AE∥BC,AB∥EC,AC∥DE共3组.
故答案为:C.
【分析】∠B和∠DCE是同位角,同位角相等,两直线平行;∠ACE和∠DEC是内错角,∠BCA和∠CAE 是内错角,内错角相等,两直线平行;
11、(2分)如果2x a﹣2b﹣3y a+b+1=0是二元一次方程,那么a,b的值分别是()
A.1,0
B.0,1
C.﹣1,2
D.2,﹣1
【答案】A
【考点】二元一次方程的定义
【解析】【解答】解:∵2x a﹣2b﹣3y a+b+1=0是二元一次方程,
∴a﹣2b=1,a+b=1,解得:a=1,b=0.
故答案为:A
【分析】根据二元一次方程的定义:含有两个未知数,且两个未知数的最高次数是1次的整式方程,就可建立关于a、b的二元一次方程组,解方程组求出a、b的值。

12、(2分)在实数, ,,中,属于无理数是()
A. 0
B.
C.
D.
【答案】D
【考点】无理数的认识
【解析】【解答】在实数, ,,中,属于无理数是,
故答案为:D.【分析】根据无理数的定义可得.无限不循环小数叫无理数,常见形式有:开方开不尽的数、无限不循环小数和字母表示的无理数,如π等.
二、填空题
13、(3分)的绝对值是________,________的倒数是,的算术平方根是________.
【答案】;3;2
【考点】绝对值及有理数的绝对值,有理数的倒数,算术平方根
【解析】【解答】解:(1);(2)的倒数是3;(3),4的算术平方根是2;
【分析】一个负数的绝对值等于它的相反数;一个分数的倒数,只需要将这个分数的分子分母交换位置;将
先化简为4,再根据算数平方根的意义算出4的算数平方根即可。

14、(1分)请你写出三个大于1的无理数:________.
【答案】,,π
【考点】无理数的认识
【解析】【解答】写出三个大于1的无理数:,,π,
故答案为:,,π.
【分析】无理数是指无限不循环小数,则符合题意的无理数不唯一,只要大于1即可。

15、(2分)如图所示,数轴上点A表示的数是﹣1,O是原点,以AO为边作正方形AOBC,以A为圆心、AB长为半径画弧交数轴于P1、P2两点,则点P1表示的数是________,点P2表示的数是________.
【答案】﹣1﹣;﹣1+
【考点】实数在数轴上的表示
【解析】【解答】解:∵点A表示的数是﹣1,O是原点,
∴AO=1,BO=1,
∴AB= = ,
∵以A为圆心、AB长为半径画弧,
∴AP1=AB=AP2= ,
∴点P1表示的数是﹣1﹣,
点P2表示的数是﹣1+ ,
故答案为:﹣1﹣;﹣1+
【分析】根据在数轴上表示无理数的方法,我们可知与AB大小相等,都是,因在-1左侧,所以表示-1-,而在-1右侧,所以表示-1+
16、(2分)平方等于的数是________,-64的立方根是_______
【答案】;-4
【考点】平方根,立方根及开立方
【解析】【解答】解:∵(±)2=
∴平方等于的数是±;
-64的立方根是-4
故答案为:±;-4
【分析】根据平方根的定义及立方根的定义求解即可。

17、(1分)实数a在数轴上的位置如图,则|a﹣3|=________.
【答案】3﹣a
【考点】实数在数轴上的表示
【解析】【解答】由数轴上点的位置关系,得
a<3.
|a﹣3|=3﹣a,
故答案为:3﹣a.
【分析】由数轴上点的位置关系可得a<3,即a-3<3=0,根据绝对值的性质可得原式=3﹣a。

18、(1分)任何实数a,可用[a]表示不超过a的最大整数,如[2]=2,[3.7]=3,现对72进行如下操作:

这样对72只需进行3次操作后变为1,类似地:对109只需进行________次操作后变为1.
【答案】3
【考点】估算无理数的大小
【解析】【解答】解:85→第一次[ ]=9→第二次[ ]=3→第三次[ ]=1
故对85只需进行3次操作后变为1
【分析】根据[a]表示不超过a的最大整数,由102=100,112=121可知,对109进行第一次操作等于10,由32=9,42=16可知第二次操作等于3,以此类推即可得出答案。

三、解答题
19、(5分)如图,已知AB∥CD∥EF,PS ⊥ GH交GH于P.在∠FRG=110°时,求∠PSQ.
【答案】解:∵AB∥EF,
∴∠FRG=∠APR,
∵∠FRG=110°,
∴∠APR=110°,
又∵PS⊥GH,
∴∠SPR=90°,
∴∠APS=∠APR-∠SPR=20°,
∵AB∥CD,
∴∠PSQ=∠APS=20°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得内错角∠FRG=∠APR=110°,再由垂直性质得∠SPR=90°,从而求得∠APS=20°;由平行线的性质得内错角∠PSQ=∠APS=20°.
20、(5分)把下列各数填在相应的大括号里:
,,-0.101001,,― ,0.202002…, ,0,
负整数集合:(…);
负分数集合:(…);
无理数集合:(…);
【答案】解:= -4,= -2,= ,所以,负整数集合:(,,…);
负分数集合:(-0.101001,― ,,…);无理数集合:(0.202002…,,…);【考点】有理数及其分类,无理数的认识
【解析】【分析】根据实数的分类填写。

实数包括有理数和无理数。

有理数包括整数(正整数,0,负整数)和分数(正分数,负分数),无理数是指无限不循环小数。

21、(5分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解
为;乙看错了方程②中的b,得到方程组的解为,试计算的值.
【答案】解:由题意可知:
把代入,得,


把代入,得,

∴= = .
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,将甲得到的方程组的解代入方程②求出b的值;而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出的值,然后将a、b的值代入代数式求值即可。

22、(5分)如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)
理由是:▲.
【答案】解:垂线段最短。

【考点】垂线段最短
【解析】【分析】直线外一点到直线上所有点的连线中,垂线段最短。

所以要求水池M和河流之间的渠道最短,过点M作河流所在直线的垂线即可。

23、(5分)如图所示是小明自制对顶角的“小仪器”示意图:
(1 )将直角三角板ABC的AC边延长且使AC固定;
(2 )另一个三角板CDE的直角顶点与前一个三角板直角顶点重合;
(3 )延长DC,∠PCD与∠ACF就是一组对顶角,已知∠1=30°,∠ACF为多少?
【答案】解:∵∠PCD=90°-∠1,又∵∠1=30°,∴∠PCD=90°-30°=60°,而∠PCD=∠ACF,∴∠ACF=60°.【考点】角的运算,对顶角、邻补角
【解析】【分析】根据题意画出图形,根据三角板各个角的度数和∠1的度数以及对顶角相等,求出∠ACF 的度数.
24、(5分)试将100分成两个正整数之和,其中一个为11的倍数,另一个为17的倍数.
【答案】解:依题可设:
100=11x+17y,
原题转换成求这个方程的正整数解,
∴x==9-2y+,
∵x是整数,
∴11|1+5y,
∴y=2,x=6,
∴x=6,y=2是原方程的一组解,
∴原方程的整数解为:(k为任意整数),
又∵x>0,y>0,
∴,
解得:-<k<,
∴k=0,
∴原方程正整数解为:.
∴100=66+34.
【考点】二元一次方程的解
【解析】【分析】根据题意可得:100=11x+17y,从而将原题转换成求这个方程的正整数解;求二元一次不定方程的正整数解时,可先求出它的通解。

然后令x>0,y>0,得不等式组.由不等式组解得k的范围.在这范围内取k的整数值,代人通解,即得这个不定方程的所有正整数解.
25、(5分)如图,直线AB和CD相交于点O,OD平分∠BOF,OE⊥CD于点O,∠AOC=40°,求∠EOF 的度数.
【答案】解:OE⊥CD,∴∠EOD=90°,∵∠AOC=40°,∴∠BOD=40°,∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∴∠BOF=2∠DOF=80°,∴∠EOF=90°+40°=130°
【考点】角的平分线,角的运算,对顶角、邻补角
【解析】【分析】根据题意和对顶角相等,求出∠BOD的度数,由角平分线性质求出∠BOF=2∠DOF=2∠BOD 的度数,求出∠EOF的度数.
26、(5分)把下列各数填在相应的括号内:
整数:
分数:
无理数:
实数:
【答案】解:整数:
分数:
无理数:
实数:
【考点】实数及其分类
【解析】【分析】实数分为有理数和无理数,有理数分为整数和分数,无理数就是无限不循环的小数,根据定义即可一一判断。

相关文档
最新文档