2019_2020学年高中数学第1章三角函数1.2.2同角三角函数的基本关系教案(含解析)新人教A版必修4
高中数学必修四 第一章三角函数 1.2.2 同角三角函数的基本关系
![高中数学必修四 第一章三角函数 1.2.2 同角三角函数的基本关系](https://img.taocdn.com/s3/m/7cd2b1899b89680203d825bf.png)
故 tan ������
1 sin2������
-1
=
tan
������
1-sin2������ sin2������
=
tan
������
cos������ sin������
=
sin������ cos������
·-scions������������
=
−1.
(2)证法一:sin2α+cos2α=1⇒1-cos2α=sin2α
sin������ 1 + cos������ ∴ 1-cos������ = sin������ .
题型一 题型二 题型三 题型四 题型五
题型四 已知 tan α 的值求其他代数式的值
【例4】 已知tan α=7,求下列各式的值.
(1)
sin������+cos������ 2sin������-cos������
则 sin α=−
1-cos2 ������
=
−
15 17
,
tan
������
=
sin������ cos������
=
185.
反思已知cos α(或sin α)求tan α时,先利用平方关系求出sin α(或 cos α),再利用商关系求出tan α.注意在求sin α(或cos α)时,往往需分 类讨论α所在的象限.
证明三角恒等式就是通过转化和消去等式两边的差异来促成统 一的过程,证明的方法在形式上显得较为灵活.常用的有以下几种:
(1)直接法——从等式的一边开始直接化为等式的另一边,常从比 较复杂的一边开始化简到另一边,其依据是相等关系的传递性.
(2)综合法——由一个已知成立的等式(如公式等)恒等变形得到 所要证明的等式,其依据是等价转化的思想.
高中数学第一章三角函数1.2任意的三角函数1.2.2同角三角函数的基本关系
![高中数学第一章三角函数1.2任意的三角函数1.2.2同角三角函数的基本关系](https://img.taocdn.com/s3/m/0366422252d380eb62946d39.png)
1.2.2 同角三角函数的基本关系学习目标:1.理解并掌握同角三角函数基本关系式的推导及应用.(重点)2.会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.(难点)[自 主 预 习·探 新 知]1.平方关系(1)公式:sin 2α+cos 2α=1.(2)语言叙述:同一个角α的正弦、余弦的平方和等于1. 2.商数关系(1)公式:sin αcos α=tan_α(α≠k π+π2,k ∈Z ).(2)语言叙述:同一个角α的正弦、余弦的商等于角α的正切. 思考:对任意的角α,sin 22α+cos 22α=1是否成立?[提示] 成立.平方关系中强调的同一个角且是任意的,与角的表达形式无关.[基础自测]1.思考辨析(1)对任意角α,sinα2cosα2=tan α2都成立.( )(2)因为sin 2 94π+cos 2 π4=1,所以sin 2α+cos 2β=1成立,其中α,β为任意角.( )(3)对任意角α,sin α=cos α·tan α都成立.( )[解析] 由同角三角函数的基本关系知(2)错,由正切函数的定义域知α不能取任意角,所以(1)错,(3)错.[答案] (1)× (2)× (3)× 2.化简1-sin23π5的结果是( ) A .cos 3π5B .sin 3π5C .-cos 3π5D .-sin 3π5C [因为3π5是第二象限角,所以cos 3π5<0,所以1-sin23π5=cos23π5=⎪⎪⎪⎪⎪⎪cos 3π5=-cos 3π5.]3.若cos α=35,且α为第四象限角,则tan α=________.-43 [因为α为第四象限角,且cos α=35, 所以sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫352=-45,所以tan α=sin αcos α=-43.][合 作 探 究·攻 重 难](1)已知α∈⎝ ⎛⎭⎪⎫π,2,tan α=2,则cos α=________.(2)已知cos α=-817,求sin α,tan α的值. 【导学号:84352041】[思路探究] (1)根据tan α=2和sin 2α+cos 2α=1列方程组求cos α. (2)先由已知条件判断角α是第几象限角,再分类讨论求sin α,tan α. (1)-55[(1)由已知得⎩⎪⎨⎪⎧sin αcos α=2,①sin 2α+cos 2α=1,②由①得sin α=2cos α代入②得4cos 2α+cos 2α=1, 所以cos 2α=15,又α∈⎝ ⎛⎭⎪⎫π,3π2,所以cos α<0,所以cos α=-55.] (2)∵cos α=-817<0,∴α是第二或第三象限的角. 如果α是第二象限角,那么 sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-8172=1517, tan α=sin αcos α=1517-817=-158.如果α是第三象限角,同理可得sin α=-1-cos 2α=-1517,tan α=158.[规律方法] 利用同角三角函数的基本关系解决给值求值问题的方法:(1)已知角α的某一种三角函数值,求角α的其余三角函数值,要注意公式的合理选择,一般是先选用平方关系,再用商数关系.(2)若角α所在的象限已经确定,求另两种三角函数值时,只有一组结果;若角α所在的象限不确定,应分类讨论,一般有两组结果.提醒:应用平方关系求三角函数值时,要注意有关角终边位置的判断,确定所求值的符号.[跟踪训练]1.已知sin α+3cos α=0,求sin α,cos α的值. [解] ∵sin α+3cos α=0, ∴sin α=-3cos α. 又sin 2α+cos 2α=1, ∴(-3cos α)2+cos 2α=1, 即10cos 2α=1, ∴cos α=±1010. 又由sin α=-3cos α,可知sin α与cos α异号, ∴角α的终边在第二或第四象限. 当角α的终边在第二象限时,cos α=-1010,sin α=31010; 当角α的终边在第四象限时,cos α=1010,sin α=-31010.(1)已知sin α+cos α=13,α∈(0,π),则tan α=________.(2)已知sin α+cos αsin α-cos α=2,计算下列各式的值.①3sin α-cos α2sin α+3cos α;②sin 2α-2sin αcos α+1. 【导学号:84352042】[思路探究] (1)法一求sin αcos α→求sin α-cos α→求sin α和cos α→求tan α法二求sin αcos α→弦化切构建关于tan α的方程→求tan α (2)求tan α→换元或弦化切求值 (1)-125 [法一:(构建方程组)因为sin α+cos α=713,①所以sin 2α+cos 2α+2sin αcos α=49169,即2sin αcos α=-120169.因为α∈(0,π),所以sin α>0,cos α<0. 所以sin α-cos α=sin α-cos α2=1-2sin αcos α=1713.②由①②解得sin α=1213,cos α=-513,所以tan α=sin αcos α=-125.法二:(弦化切)同法一求出sin αcos α=-60169,sin αcos αsin 2α+cos 2α=-60169,tan αtan 2α+1=-60169, 整理得60tan 2α+169tan α+60=0,解得tan α=-512或tan α=-125.由sin α+cos α=713>0知|sin α|>|cos α|,故tan α=-125.(2)由sin α+cos αsin α-cos α=2,化简,得sin α=3cos α, 所以tan α=3.①法一(换元)原式=3×3cos α-cos α2×3cos α+3cos α=8cos α9cos α=89.法二(弦化切)原式=3tan α-12tan α+3=3×3-12×3+3=89.②原式=sin 2α-2sin αcos αsin 2α+cos 2α+1=tan 2α-2tan αtan 2α+1+1=32-2×332+1+1=1310.] 母题探究:1.将本例(1)条件“α∈(0,π)”改为“α∈(-π,0)”其他条件不变,结果又如何?[解] 由例(1)求出2sin αcos α=-120169,因为α∈(-π,0),所以sin α<0,cos α>0, 所以sin α-cos α=-α-cos α2=-1-2sin αcos α=-1713.与sin α+cos α=713联立解得sin α=-513,cos α=1213,所以tan α=sin αcos α=-512.2.将本例(1)的条件“sin α+cos α=713”改为“sin α·cos α=-18”其他条件不变,求cos α-sin α.[解] 因为sin αcos α=-18<0,所以α∈⎝ ⎛⎭⎪⎫π2,π,所以cos α-sin α<0,cos α-sin α=-1-2sin αcos α=-1-2×⎝ ⎛⎭⎪⎫-18=-52.[规律方法] 1.sin α+cos α,sin α-cos α,sin αcos α三个式子中,已知其中一个,可以求其他两个,即“知一求二”,它们之间的关系是:(sin α±cos α)2=1±2sin αcos α.2.已知tan α=m ,求关于sin α,cos α的齐次式的值解决这类问题需注意以下两点:(1)一定是关于sin α,cos α的齐次式(或能化为齐次式)的三角函数式;(2)因为cos α≠0,所以可除以cos α,这样可将被求式化为关于tan α的表示式,然后代入tan α=m 的值,从而完成被求式的求值.提醒:求sin α+cos α或sin α-cos α的值,要注意根据角的终边位置,利用三角函数线判断它们的符号.(1)化简1-2cos 2α=________. (2)化简sin α1-cos α·tan α-sin αtan α+sin α.(其中α是第三象限角)[思路探究] (1)将cos 2α=1-sin 2α代入即可化简.(2)首先将tan α化为sin αcos α,然后化简根式,最后约分.(1)1 [(1)原式=2sin 2α-11--sin 2α=2sin 2α-12sin 2α-1=1. (2)原式=sin α1-cos α·sin αcos α-sin αsin αcos α+sin α=sin α1-cos α·1-cos α1+cos α=sin α1-cos α·-cos α21-cos 2α=sin α1-cos α·1-cos α|sin α|.又因为α是第三象限角,所以sin α<0. 所以原式=sin α1-cos α·1-cos α-sin α=-1.][规律方法] 三角函数式化简的常用方法化切为弦,即把正切函数都化为正、余弦函数,从而减少函数名称,达到化简的目的.对于含有根号的,常把根号里面的部分化成完全平方式,然后去根号达到化简的目的.对于化简含高次的三角函数式,往往借助于因式分解,或构造sin 2α+cos 2α=1,以降低函数次数,达到化简的目的.提醒:在应用平方关系式求sin α或cos α时,其正负号是由角α所在的象限决定,不可凭空想象.[跟踪训练] 2.化简tan α1sin 2α-1,其中α是第二象限角. [解] 因为α是第二象限角,所以sin α>0,cos α<0. 故tan α1sin 2α-1=tan α1-sin 2αsin 2α=tan αcos 2αsin 2α=sin αcos α⎪⎪⎪⎪⎪⎪cos αsin α=sin αcos α·-cos αsin α=-1.1.证明三角恒等式常用哪些方法?提示:(1)从右证到左. (2)从左证到右. (3)证明左右归一.(4)变更命题法.如:欲证明M N =P Q ,则可证MQ =NP ,或证Q N =P M等.2.在证明1+sin α+cos α+2sin αcos α1+sin α+cos α=sin α+cos α时如何巧用“1”的代换.提示:在求证1+sin α+cos α+2sin αcos α1+sin α+cos α=sin α+cos α时,观察等式左边有2sin αcos α,它和1相加应该想到“1”的代换,即1=sin 2α+cos 2α,所以等式左边=2α+cos 2α+2sin αcos α+sin α+cos α1+sin α+cos α=α+cos α2+sin α+cos α1+sin α+cos α=α+cos αα+cos α+sin α+cos α+1=sin α+cos α=右边.求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α.【导学号:84352043】[思路探究] 解答本题可由关系式tan α=sin αcos α将两边“切”化“弦”来证明,也可由右至左或由左至右直接证明.[证明] 法一:(切化弦)左边=sin 2αsin α-sin αcos α=sin α1-cos α,右边=sin α+sin αcos αsin 2α=1+cos αsin α. 因为sin 2α=1-cos 2α=(1+cos α)(1-cos α), 所以sin α1-cos α=1+cos αsin α,所以左边=右边.所以原等式成立. 法二:(由右至左) 因为右边=tan 2α-sin 2αα-sin ααsin α=tan 2α-tan 2αcos 2αα-sin ααsin α=tan 2α-cos 2αtan α-sin ααsin α=tan 2αsin 2αα-sin ααsin α=tan αsin αtan α-sin α=左边, 所以原等式成立.[规律方法] 1.证明恒等式常用的思路是:(1)从一边证到另一边,一般由繁到简;(2)左右开弓,即证左边、右边都等于第三者;(3)比较法(作差,作比法).2.技巧感悟:朝目标奔.常用的技巧有:(1)巧用“1”的代换;(2)化切为弦;(3)多项式运算技巧的应用(分解因式).提醒:解决此类问题要有整体代换思想.[跟踪训练]3.求证:(1)sin α-cos α+1sin α+cos α-1=1+sin αcos α;(2)2(sin 6θ+cos 6θ)-3(sin 4θ+cos 4θ)+1=0. [证明] (1)左边 =α-cos α+α+cos α+α+cos α-α+cos α+=α+2-cos 2αα+cos α2-1=2 α+2sin α+--sin 2αsin 2 α+cos 2α+2sin αcos α-1=2sin 2α+2sin α1+2sin αcos α-1 =2sin αα+2sin αcos α=1+sin α cos α=右边, ∴原等式成立.(2)左边=2[(sin 2θ)3+(cos 2θ)3]-3(sin 4θ+cos 4θ)+1 =2(sin 2θ+cos 2θ)(sin 4θ-sin 2θcos 2θ+cos 4θ)-3(sin 4θ +cos 4θ)+1=(2sin 4θ-2sin 2θcos 2θ+2cos 4θ)-(3sin 4θ+3cos 4θ)+1 =-(sin 4θ+2sin 2θcos 2θ+cos 4θ)+1 =-(sin 2θ+cos 2θ)2+1=-1+1=0=右边, ∴原等式成立.[当 堂 达 标·固 双 基]1.如果α是第二象限的角,下列各式中成立的是( ) A .tan α=-sin αcos αB .cos α=-1-sin 2α C .sin α=-1-cos 2 α D .tan α=cos αsin αB [由商数关系可知A ,D 均不正确.当α为第二象限角时,cos α<0,sin α>0,故B 正确.]2.sin α=55,则sin 2α-2cos 2α的值为( ) 【导学号:84352044】A .-35B .-75C .35D .75B [因为sin α=55,所以cos 2α=1-sin 2α=45, 所以sin 2α-2cos 2α=15-2×45=-75.]3.已知tan α=-12,则2sin αcos αsin 2α-cos 2α的值是( ) A .43 B .3 C .-43D .-3A [因为tan α=-12,所以2sin αcos αsin 2α-cos 2α=2tan αtan 2α-1=2×⎝ ⎛⎭⎪⎫-12⎝ ⎛⎭⎪⎫-122-1=43.] 4.已知α是第二象限角,tan α=-12,则cos α=________.-255 [因为sin αcos α=-12,且sin 2α+cos 2α=1,又因为α是第二象限角,所以cosα<0,所以cos α=-255.]5.(1)化简sin 2α-sin 4α,其中α是第二象限角. (2)求证:1+tan 2α=1cos 2α.【导学号:84352045】[解] (1)因为α是第二象限角,所以sin α>0,cos α<0, 所以sin αcos α<0,所以sin 2α-sin 4α=sin 2α1-sin 2α=sin 2αcos 2α=-sin αcos α.(2)证明:1+tan 2α=1+sin 2αcos 2α=cos 2α+sin 2αcos 2α=1cos 2α.。
同角三角函数的基本关系和诱导公式5题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测
![同角三角函数的基本关系和诱导公式5题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测](https://img.taocdn.com/s3/m/c17a5169bb1aa8114431b90d6c85ec3a86c28b44.png)
专题17同角三角函数的基本关系和诱导公式5题型分类一、同角三角函数基本关系1、同角三角函数的基本关系(1)平方关系:22sin cos 1αα+=.(2)商数关系:sin tan ()cos 2k απααπα=≠+;【记忆口诀】奇变偶不变,符号看象限,说明:(1)先将诱导三角函数式中的角统一写作2n πα⋅±;(2)无论有多大,一律视为锐角,判断2n πα⋅±所处的象限,并判断题设三角函数在该象限的正负;(3)当n 为奇数是,“奇变”,正变余,余变正;当n 为偶数时,“偶不变”函数名保持不变即可.注:1、利用22sin cos 1αα+=可以实现角α的正弦、余弦的互化,利用sin tan cos =aa a可以实现角α的弦切互化.2、“sin cos sin cos sin cos αααααα+-,,”方程思想知一求二.222(sin cos )sin cos 2sin cos 1sin 2ααααααα+=++=+222(sin cos )sin cos 2sin cos 1sin 2ααααααα-=+-=-22(sin cos )(sin cos )2αααα++-=(一)同角求值(1)若已知角的象限条件,先确定所求三角函数的符号,再利用三角形三角函数定义求未知三角函数值.(2)若无象限条件,一般“弦化切”.(二)诱导求值与变形(1)诱导公式用于角的变换,凡遇到与2π整数倍角的和差问题可用诱导公式,用诱导公式可以把任意角的三角函数化成锐角三角函数.(2)通过2,,2πππ±±±等诱导变形把所给三角函数化成所需三角函数.(3)2,,2παβππ±=±±±等可利用诱导公式把,αβ的三角函数化(三)同角三角函数基本关系式和诱导公式的综合应用)利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式(π(四)三角恒等式的证明三角恒等式的证明中涉及到同角三角函数基本关系,和角公式,差角公式,二角公式,辅助角公式等基本知识点,理解和掌握这些基本知识点是解答该类问题的基础和关键原式得证【点睛】本题考查了利用同角三角函数关系证明三角函数恒等式,属于基础题.5-4.(2024高三·全国·专题练习)(1)求证:tan 2αsin 2α=tan 2α-sin 2α;(2)已知tan 2α=2tan 2β+1,求证:2sin 2α=sin 2β+1.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)将22sin 1cos αα=-代入左式,化简即可得到右式.(2)将sin tan cos ααα=,sin tan cos βββ=代入条件,通分化简得到2212cos cos αβ=,即2cos 2α=cos 2β,然后由22sin cos 1αα+=,将余弦化成正弦即可证得结论.【详解】解析:(1)tan 2αsin 2α=tan 2α(1-cos 2α)=tan 2α-tan 2αcos 2α=tan 2α-sin 2α,则原等式得证.(2)因为tan 2α=2tan 2β+1,所以22sin cos αα+1=222sin 1cos ββ⎛⎫+ ⎪⎝⎭,即2212cos cos αβ=,从而2cos 2α=cos 2β,于是2-2sin 2α=1-sin 2β,也即2sin 2α=sin 2β+1,则原等式得证.一、单选题1.(2024·全国·模拟预测)已知2cos tan sin 5xx x =+,则cos2x =()A .13B .79C .23D .59【答案】B【分析】利用三角函数的基本关系式得到关于sin x 的方程,再利用倍角公式即可得解.【详解】因为2cos tan sin 5x x x =+,又sin tan cos xx x=,所以sin 2cos cos sin 5x xx x =+,则222cos sin 5sin x x x =+,即2222sin sin 5sin x x x -=+,则23sin 5sin 20x x +-=,即()()3sin 1sin 20x x -+=,所以1sin 3x =或sin 2x =-(舍去),所以217cos212sin 1299x x =-=-⨯=.故选:B.2.(2024·四川巴中·模拟预测)勾股定理,在我国又称为“商高定理”,最早的证明是由东汉末期数学家赵爽在为《周髀算经》作注时给出的,他利用了勾股圆方图,此图被称为“赵爽弦图”.“赵爽弦图”是由四个全等的直角三角形和中间的一个小正方形组成的大正方形图案(如图所示),若在大正方形内随机取一点,该点落在小正方形内的概率为917,则“赵爽弦图”里的直角三角形中最小角的正弦值为()A .217B C .217D 【答案】D【分析】设正方形的边长1,较小的角为θ,则中间小正方形的边长为cos sin θθ-,由题意可得29(cos sin )17θθ-=,显然可得π04θ<<,即可得到cos sin 0θθ>>,从而求出sin θ.【详解】设正方形的边长1,较小的角为θ,则中间小正方形的边长为cos sin θθ-,由题意可得29(cos sin )17θθ-=,显然π04θ<<,所以cos sin 0θθ>>,所以cos sin 17θθ-=,又229cos sin 2cos sin 17θθθθ+-=,所以2cos si 8n 17θθ=,所以22225(cos sin )cos sin 2cos sin 17θθθθθθ+==++,所以cos sin 17θθ+=,所以sin 17θ=.故选:D3.(2024·全国·模拟预测)已知2π2cos 53θ⎛⎫-= ⎪⎝⎭,则19π13π2sin cos 105θθ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭()A .2-B .2C .23-D .23【答案】A【分析】利用已知的三角函数值,利用换元法,结合三角函数的诱导公式,可得答案.【详解】令25m πθ=-,则22,cos 53m m πθ=+=,从而19π13π19π2π2π13π2sin cos 2sin cos 10510555m m θθ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-++=-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦3π2sin cos(3π)3cos 22m m m ⎛⎫=-++=-=- ⎪⎝⎭.故选:A.4.(2024·山西·模拟预测)已知α为锐角,且cos 6πα⎛⎫+= ⎪⎝⎭,则tan 3πα⎛⎫-= ⎪⎝⎭()A.2B.CD.2【答案】D【分析】注意到πππ632αα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,利用同角三角函数的关系求角π6α+的正弦,再利用诱导公式求角π3α-的正弦、余弦,从而得到π3α-的正切.【详解】因为α为锐角,所以ππ2π,663α⎛⎫+∈ ⎪⎝⎭且πcos 6α⎛⎫+= ⎪⎝⎭,所以22πsin 06ππsin cos 166ααα⎧⎛⎫+> ⎪⎪⎪⎝⎭⎨⎛⎫⎛⎫⎪+++= ⎪ ⎪⎪⎝⎭⎝⎭⎩得πsin 6α⎛⎫+= ⎪⎝⎭由诱导公式得ππππsin sin cos 3266ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ππcos sin 363αα⎛⎫⎛⎫-=+=⎪ ⎪⎝⎭⎝⎭.所以πsin π33tan π32cos 3ααα⎛⎫- ⎪⎛⎫⎝⎭-== ⎪⎛⎫⎝⎭- ⎪⎝⎭.故选:D5.(2024高三上·安徽合肥·阶段练习)已知角α为钝角,且角(02π)θθ<<终边上有一点()sin ,cos P αα-,则角θ=()A .πα+B .π2α+C .2πα-D .3π2α-【答案】B【分析】利用三角函数的诱导公式及三角函数的定义即可求解.【详解】点()sin ,cos P αα-,由诱导公式可化为ππcos ,sin 22P αα⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由三角函数的定义知,π2π2k θα=++,又因为α为钝角,02πθ<<,所以π2θα=+.故选:B.6.(2024高三上·宁夏银川·阶段练习)在平面直角坐标系中,在()1,3P 在角α终边上,则()()()3333sin πcos ππsin cos 2αααα++-⎛⎫--- ⎪⎝⎭的值为()A .1327B .1427C .1427-D .1413【答案】B【分析】根据三角函数的定义求角α的三角函数值,再利用诱导公式化简求值.【详解】因为点()1,3P 在角α终边上,则1x =,3y =,所以tan 3yxα==,()()()333333333sin πcos πsin cos 1114π227sin sin 2tan sin cos 2ααααααααα++---==+⎛⎫----- ⎪⎝⎭.故选:B7.(2024高三上·四川成都·期中)已知角α的顶点与坐标原点重合,始边与x 轴的正半轴重合,若角α的终边与23π角的终边相同,则sin()cos(2)3sin()2παπαπα+--=+()A1B1C.1D.1-【答案】C【分析】利用三角函数定义求得tan α=,再利用诱导公式化简即可.【详解】由题意得2tan tanπ3α==sin(π)cos(2π)sin cos sin cos sin cos tan 113ππcos cos sin()sin 22ααααααααααααα+------+====+=+-⎛⎫+-+ ⎪⎝⎭,故选:C.8.(2024·全国·模拟预测)已知直线:2310l x y +-=的倾斜角为θ,则()πsin πsin 2θθ⎛⎫-⋅-= ⎪⎝⎭()A .613B .613-C .25D .25-【答案】A【分析】根据直线一般方程可求得2tan 3θ=-,再利用诱导公式及同角三角函数之间的基本关系可得其结果.【详解】由直线l 的方程为2310x y +-=,得斜率2tan 3k θ==-,则()πsin cos sin πsin sin cos 21θθθθθθ-⋅⎛⎫-⋅-=-⋅= ⎪⎝⎭22222sin cos tan 63sin cos tan 113213θθθθθθ-⋅-====++⎛⎫-+ ⎪⎝⎭;故选:A .9.(2024·陕西宝鸡·一模)已知4ππsin 2sin 36αα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,则πsin 23α⎛⎫+= ⎪⎝⎭()A .34-B .34C .45-D .45【答案】C【分析】先利用诱导公式对已知条件化简得ππcos 2sin 66αα⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭;再利用同角三角函数基本关系求出2π1sin 65α⎛⎫+= ⎪⎝⎭;最后利用二倍角公式即可求解.【详解】4π3πππsin sin cos 3266ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.由4ππsin 2sin 36αα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭可得:ππcos 2sin 66αα⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭.因为22ππsin cos 166αα⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,所以2π1sin 65α⎛⎫+= ⎪⎝⎭.所以2ππππ4sin 22sin cos 4sin 36665αααα⎛⎫⎛⎫⎛⎫⎛⎫+=++=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:C.10.(2024·全国·模拟预测)已知(ππtan cos 3cos 44ααα⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,则cos2α=()AB.2C .12-D .1-【答案】B 【分析】由诱导公式和同角三角函数关系得到(πtan 3tan 4αα⎛⎫=-+ ⎪⎝⎭,再利用正切和角公式得到方程,求出tan 1α=,利用余弦二倍角,齐次化求出答案.【详解】因为ππππcos sin sin 4244ααα⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以(ππtan cos 3sin 44ααα⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,故(πtan 3tan 4αα⎛⎫=-+ ⎪⎝⎭,因为πtan tanπtan 14tan π41tan 1tan tan 4ααααα++⎛⎫+== ⎪-⎝⎭-,所以(tan 1tan 31tan ααα+=--,故)(2tan 21tan 30αα-+-=,解得tan 1α=,所以)()2222222211cos sin 1tan cos2cos sin 1tan 11ααααααα---=====+++-故选:B .11.(2024·全国·模拟预测)已知圆22:(1)(1)1C x y -+-=,过点()3,2P ,作圆C 的两条切线,切点分别为,A B ,则tan ACB ∠=()A .43-B .43C .12-D .34【答案】A【分析】设切线的方程为2(3)y k x -=-,求得圆心C到切线的距离1d ==,求得k 的值,得到4tan 3APB ∠=,结合180APB ACB ∠+∠=︒,即可求解.【详解】由题意知,圆22:(1)(1)1C x y -+-=的圆心为(1,1)C ,半径1r =,且切线PA ,PB 的斜率都存在,设切线的方程为2(3)y k x -=-,即320kx y k --+=,因为直线与圆相切,所以圆心C到切线的距离1d =,解得10k =或2k =43,所以4tan 3APB ∠=,在四边形APBC 中,因为90APC ABC ∠=∠= ,可得180APB ACB ∠+∠=︒,所以4tan tan(180)tan 3ACB APB APB ∠=-∠=-∠=-.故选:A .12.(2024·河南郑州·模拟预测)已知tan 2θ=,则3πsin sin 2θθ⎛⎫+= ⎪⎝⎭()A .35B .12C .12-D .25-【答案】D【分析】利用诱导公式,平方关系和商关系即可求解.【详解】3πsin sin sin cos 2θθθθ⎛⎫+=- ⎪⎝⎭222sin cos tan 2sin cos tan 15θθθθθθ=-=-=-++.故选:D13.(2024·陕西西安·二模)已知π5cos 513α⎛⎫-= ⎪⎝⎭,则7πsin 10α⎛⎫-= ⎪⎝⎭()A .513-B .513C .-1213D .1213【答案】A 【分析】因为7πππ1052αα⎛⎫-=-- ⎪⎝⎭,由诱导公式可得选项.【详解】7ππππ5sin sin cos 1052513ααα⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:A.14.(2024·广东深圳·模拟预测)已知π4sin 35α⎛⎫+= ⎪⎝⎭,则5πcos 6α⎛⎫+ ⎪⎝⎭的值为()A .35-B .35C .45-D .45【答案】C 【分析】根据5πππ623αα⎛⎫+=++ ⎪⎝⎭,借助于诱导公式,即可求得结果.【详解】5πππcos cos 623αα⎡⎤⎛⎫⎛⎫+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ sin 3πα⎛⎫=-+ ⎪⎝⎭45=-,5πcos 6α⎛⎫∴+ ⎪⎝⎭的值为45-,故选:C15.(2024高三上·陕西西安·阶段练习)若1sin 3A =,则()sin 6A π-的值为()A .13B .13-C.3-D.3【答案】B【分析】本题考查诱导公式的基础运用,套用公式即可.【详解】利用诱导公式可得()()1sin 6sin sin 3A A A π-=-=-=-,故选:B.16.(2024高三上·陕西西安·阶段练习)若()1sin 2πα+=-,则cos α的值为()A .12±B .12CD.【答案】D【分析】先化简已知得1sin =2α,再求cos α的值.【详解】由()1sin 2πα+=-得1sin =2α,所以α在第一、二象限,所以cos =2α=±.故选:D.17.(2024·贵州贵阳·模拟预测)已知πsin sin 2θθ⎛⎫-+= ⎪⎝⎭,则tan θ=()A.B .1-C .1D【答案】B【分析】利用诱导公式以及同角三角函数的平方关系可得出关于sin θ、cos θ的方程组,求出这两个量的值,即可求得tan θ的值.【详解】因为πsin sin sin cos 2θθθθ⎛⎫-+=-= ⎪⎝⎭,由题意可得22sin cos sin cos 1θθθθ⎧-=⎪⎨+=⎪⎩sin 2cos 2θθ⎧=⎪⎪⎨⎪=-⎪⎩,因此,sin tan 1cos θθθ==-.故选:B.18.(2024高一下·湖南长沙·阶段练习)已知1sin cos 5αα+=,且()0,πα∈,sin cos αα-=()A .75±B .75-C .75D .4925【答案】C【分析】将已知等式两边平方,利用三角函数的基本关系求得2sin cos αα的值,结合α的范围确定sin α与cos α的正负,再利用完全平方公式及三角函数的基本关系可求得sin cos αα-的值.【详解】因为1sin cos 5αα+=,两边平方得()21sin cos 12sin cos 25αααα+=+=,故242sin cos 025αα=-<,所以sin α与cos α导号,又因为0πα<<,所以sin 0α>,cos 0α<,所以7sin cos 5αα-====.故选:C.19.(2024高三下·重庆渝中·阶段练习)已知θ是三角形的一个内角,且满足sin cos 5θθ-=,则tan θ=()A .2B .1C .3D .12【答案】A【分析】利用平方关系可求得42sin cos 5θθ=,可解得29(sin cos )5θθ+=,再结合θ是三角形的一个内角即可得sin ,cos θθ==tan 2θ=.【详解】将sin cos θθ-=两边同时平方可得112sin cos 5θθ-=,即42sin cos 5θθ=;所以29(sin cos )12sin cos 5θθθθ+=+=若sin +cos θθ=,解得sin θθ==,这与θ是三角形的一个内角矛盾,所以sin +cos θθ=,解得sin θθ==,此时求得tan 2θ=.故选:A.20.(2024高三上·北京·阶段练习)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于直线y x =对称,若4sin 5α=,则cos β=()A .45-B .45C .35-D .35【答案】B【分析】根据题意利用任意角的三角函数的定义,结合诱导公式可求得结果.【详解】因为平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于直线y x =对称,所以ππ,Z 24k k αβ+=+∈,即π2π,Z 2k k αβ+=+∈,所以π2π,Z 2k k βα=-+∈,因为4sin 5α=,所以π4cos cos 2πsin (Z)25k k βαα⎛⎫=-+==∈ ⎪⎝⎭,故选:B21.(2024·辽宁抚顺·模拟预测)已知(),0,a βπ∈,则“tan tan 1αβ=”是“2a πβ+=”的()A .充要条件B .既不充分也不必要条件C .充分不必要条件D .必要不充分条件【答案】D【分析】根据诱导公式的逆运用以及由三角函数的概念即可判断其充分性,由2a πβ+=代入tan α化简计算即可判断其必要性,从而得出结论.【详解】若tan tan 1αβ=,则1tan ta 2n tan παββ⎛⎫==- ⎪⎝⎭,故()2k k παπβ=+-∈Z ,即()2k k παβπ+=+∈Z .又()0,2αβπ+∈,故0k =或1k =,充分性不成立;若2παβ+=,即2παβ=-,所以1tan tan 2tan παββ⎛⎫=-= ⎪⎝⎭,所以tan tan 1αβ=,所以必要性成立.故选:D .22.(2024·陕西榆林·二模)已知π7π1cos cos 12125αα⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,则2πc 23os +α⎛⎫ ⎪⎝⎭=()A .2325-B .2325C .2425-D .2425【答案】C【分析】利用诱导公式和倍角公式化简求值.【详解】7ππππcos cos sin 1212212ααα⎛⎫⎛⎫⎛⎫+=++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由π7π1cos cos 12125αα⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,有ππ1cos sin 12125αα⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,两边平方得π11sin 2625α⎛⎫-+= ⎪⎝⎭,则π24sin 2625α⎛⎫+= ⎪⎝⎭,故2ππππ24cos 2+=cos 2+=sin 2=225366ααα⎛⎫⎛⎫⎛⎫+-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:C.23.(2024高三上·北京海淀·阶段练习)已知α为第二象限的角,且3cos 5α=-,则()sin πα-的值为()A .45B .45-C .35-D .35【答案】A【分析】先根据平方关系求出sin α,再利用诱导公式即可得解.【详解】因为α为第二象限的角,且3cos 5α=-,所以4sin 5α=,所以()4sin πsin 5αα-==.故选:A.24.(2024高一上·山西太原·阶段练习)已知π02α<<,且π1sin 34α⎛⎫-= ⎪⎝⎭,则5πsin 6α⎛⎫-= ⎪⎝⎭()A .4B .14-C .4D .14【答案】C【分析】根据角的范围及正弦值求出余弦值,进而利用诱导求出答案.【详解】因为π02α<<,所以ππ36π3α-<-<,又π1sin 34α⎛⎫-= ⎪⎝⎭,所以πcos 3α⎛⎫-== ⎪⎝⎭45πππππs 62in c 3sin cos os 33αααα⎛⎫⎛⎫⎛⎫⎛⎫-=+-=-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:C25.(2024·全国·模拟预测)已知π1tan 22θ⎛⎫+= ⎪⎝⎭,则()33sin 2cos sin πθθθ+=+()A .35B .56C .56-D .35-【答案】D【分析】结合诱导公式与同角三角函数的基本关系运算即可得.【详解】由题意得πsin cos 12πsin 2cos 2θθθθ⎛⎫+ ⎪⎝⎭==-⎛⎫+ ⎪⎝⎭,则tan 2θ=-,故()()33333322sin 2cos sin 2cos sin 2cos sin πsin sin sin cos θθθθθθθθθθθ+++==-+-+333323sin 2cos tan 2823sin sin cos tan tan 825θθθθθθθθ++-+=-=-=-=-++--.故选:D.26.(2024高三上·云南昆明·阶段练习)若π2αβ+=sin αβ+=tan α=()A.2BC .1D【答案】B【分析】由诱导公式可得出sin cos βα=,根据已知条件可得出关于sin α、cos α的方程组,解出这两个量的值,结合同角三角函数的商数关系可求得tan α的值.【详解】因为π2αβ+=,则π2βα=-,πsin sin cos 2αβαααα⎛⎫+=+-=+= ⎪⎝⎭联立22cos sin cos 1αααα+=+=⎪⎩sin cos αα⎧=⎨⎪=⎪⎩因此,sin tan cos 3ααα==故选:B.27.(2024高三上·四川成都·阶段练习)已知角α的终边过点()1,3,则πcos(π)cos()2αα-++的值是()A.B.C.D【答案】A【分析】利用三角函数定义,结合诱导公式计算得解.【详解】由角α的终边过点()1,3,得r =,31sin r r αα====,所以πcos(π)cos()cos sin 210105αααα-++=--=--=-.故选:A28.(2024高三上·安徽·阶段练习)在平面直角坐标系xOy 中,设角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,若角α的终边过点()4,3P -,则()3πsin 2cos π22αα⎛⎫++-= ⎪⎝⎭()A .1425-B .1425C .1725-D .1725【答案】A【分析】根据任意角的三角函数的定义可得sin α,再利用诱导公式、二倍角公式运算求解.【详解】由题意得,5OP ==,则3sin 5α=-,则()3πsin 2cos π2cos 2cos 22cos 22ααααα⎛⎫++-=--=- ⎪⎝⎭()22314212sin 212525α⎡⎤⎛⎫=--=-⨯-⨯-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.故选:A .29.(2024高三上·安徽·期中)已知()sin ,cos P θθ是角π3-的终边上一点,则tan θ=()A .B .C D 【答案】B【分析】由三角函数的定义可得sin ,cos θθ,进而由商数关系可求tan θ.【详解】因为()sin ,cos P θθ是角π3-的终边上一点,所以π1πcos sin ,sin cos 3232θθ⎛⎫⎛⎫-==-==- ⎪ ⎪⎝⎭⎝⎭,则sin tan cos 3θθθ==,故选:B.30.(2024高三上·安徽·期中)已知角θ的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点()2,4P -,则()cos 2cos 2πθπθ⎛⎫--+= ⎪⎝⎭()A .5-B .5-C .0D .5【答案】C【分析】根据终边上的点可求得:sinθ=cos θ=,再结合三角函数诱导公式从而求解.【详解】因为:r OP ==(O 为坐标原点),所以:由三角函数的定义,得sin θ==cos θ==所以:()cos 2cos sin 2cos 02πθπθθθ⎛⎫--+=+= ⎪⎝⎭.故C 项正确.故选:C.31.(2024高一上·江苏常州·阶段练习)若π1cos()63α+=,则5π5πcos()sin()63αα--+=()A .0B .23C.13+D.13-【答案】A【分析】利用整体代换法与诱导公式化简求值即可.【详解】依题,令π6t α+=,则15ππsin ,ππ366t t αα⎛⎫=-=-+=- ⎪⎝⎭,5π3ππ3π3262t αα+=++=+,所以5π5πcos()sin()63αα--+3π=cos(π)sin()2t t --+cos cos 0t t =-+=.故选:A32.(2024高三上·重庆永川·期中)已知π0,2θ⎛⎫∈ ⎪⎝⎭,π2tan tan 43θθ⎛⎫+=- ⎪⎝⎭,则πcos cos 22π4θθθ⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭()A .12-B .35-C .3D .53【答案】B【分析】由条件π2tan tan 43θθ⎛⎫+=- ⎪⎝⎭化简求得tan 3θ=,将所求式子利用三角恒等变换化简再根据同角三角函数关系式转化为正切求得结果.【详解】由π2tan tan 43θθ⎛⎫+=- ⎪⎝⎭,即tan 12tan 1tan 3θθθ+=--,又π0,2θ⎛⎫∈ ⎪⎝⎭,解得tan 3θ=,()()22πcos cos2sin cos sin2sin cos sinπsin cos4θθθθθθθθθθθ⎛⎫-⎪-⎝⎭∴==-+⎛⎫+⎪⎝⎭2222222sin cos sin tan tan333sin cos tan1315θθθθθθθθ---====-+++.故选:B.33.(2024高一下·山东潍坊·阶段练习)下列化简正确的是()A.()tanπ1tan1+=-B.()()sincostan360ααα-=-C.()()sinπtancosπααα-=+D.()()()cosπtanπ1sin2πααα---=-【答案】B【分析】应用诱导公式以及同角三角函数的基本关系对四个选项验证即可.【详解】对于A,由诱导公式得,()tanπ1tan1+=,故A错误;对于B,()()sin sin sincossintantan360cos aααααααα--===-- ,故B正确;对于C,()()sinπsintancosπcosααααα-==-+-,故C错误;对于D,()()()()()sincoscosπtanπcos tan cos1sin2πsin sinαααααααααα⋅----==-=---,故D错误.故选:B.二、多选题34.(2024·辽宁·模拟预测)设α为第一象限角,π1cos83α⎛⎫-=⎪⎝⎭,则()A.5π1sin83α⎛⎫-=-⎪⎝⎭B.7π1cos83α⎛⎫+=-⎪⎝⎭C.13πsin83α⎛⎫-=-⎪⎝⎭D.πtan8α⎛⎫-=-⎪⎝⎭【答案】BD【分析】首先由题意得π8α-是第一象限角,所以πsin 83α⎛⎫-=⎪⎝⎭,再利用诱导公式和同角三角函数关系式对选项逐个计算确定正确答案.【详解】由题意得π2π2π,Z 2k k k α<<+∈,则ππ3π2π2π,Z 888k k k α-<-<+∈,若π8α-在第四象限,则ππ1cos cos 8423α⎛⎫->=⎪⎝⎭,所以π8α-也是第一象限角,即πsin 8α⎛⎫-=⎪⎝⎭5πππππ1sin sin cos cos 828883αααα⎛⎫⎛⎫⎛⎫⎛⎫-=+-=-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,A 项错误;7πππ1cos cos πcos 8883ααα⎛⎫⎛⎫⎛⎫+=-+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,B 项正确;13π3ππππ1sin sin cos cos 828883αααα⎛⎫⎛⎫⎛⎫⎛⎫-=+-=--=--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,C 项错误;πsin ππ8tan tan 2π88cos 8αααα⎛⎫- ⎪⎛⎫⎛⎫⎝⎭-=--=-=- ⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭项正确.故选:BD.35.(江苏省宜兴中学、泰兴中学、泰州中学2023-2024学年高一上学期12月联合质量检测数学试卷)质点P 和Q 在以坐标原点O 1的圆O 上逆时针作匀速圆周运动,同时出发.P 的角速度大小为2rad /s ,起点为圆O 与x 轴正半轴的交点,Q 的角速度大小为5rad /s ,起点为角π3-的终边与圆O 的交点,则当Q 与P 重合时,Q 的坐标可以为()A .2π2πcos ,sin 99⎛⎫ ⎪⎝⎭B .ππcos ,sin 99⎛⎫- ⎪⎝⎭C .5π5πcos ,sin 99⎛⎫-- ⎪⎝⎭D .ππcos ,sin 99⎛⎫- ⎪⎝⎭【答案】ACD【分析】由题意列出重合时刻t 的表达式,进而可得Q 点的坐标,通过赋值对比选项即可得解.【详解】点Q 的初始位置1Q ,锐角1π3Q OP ∠=,设t 时刻两点重合,则π522π(N)3t t k k -∈=+,即π2π(N)93k t k +∈=,此时点ππcos 5,sin 533Q t t ⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即2π10π2π10πcos ,sin 9393k k Q ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(N)k ∈,当0k =时,2π2πcos ,sin 99Q ⎛⎫ ⎪⎝⎭,故A 正确;当1k =时,32π32πcos ,sin 99Q ⎛⎫ ⎪⎝⎭,即5π5πcos ,sin 99Q ⎛⎫-- ⎪⎝⎭,故C 正确;当2k =时,9,62π62πcos sin 9Q ⎛⎫ ⎪⎝⎭,即ππcos ,sin 99Q ⎛⎫- ⎪⎝⎭,故D 正确;由三角函数的周期性可得,其余各点均与上述三点重合,故B 错误,故选:ACD.36.(2024高一下·河南焦作·阶段练习)已知角,A B ,C 是锐角三角形ABC 的三个内角,下列结论一定成立的有()A .()sin sinBC A +=B .sin cos 22A B C +⎛⎫= ⎪⎝⎭C .()cos cos A B C +<D .sin cos A B<【答案】ABC【分析】根据三角形内角和及诱导公式,三角函数单调性一一判定选项即可.【详解】由题易知()()πsin sin πsin 2A B C A B C B C A A π⎛⎫++=<⇒+=-= ⎪⎝⎭、、,πsin sin cos 222A B C C +-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()()cos cos πcos 0cos A B C C C +=-=-<<,即A 、B 、C 结论成立.对于D ,由锐角三角形知,2A B π+>,得ππ022B A <-<<,因此πsin sin cos 2A B B ⎛⎫>-= ⎪⎝⎭,所以错误.故选:ABC37.(2024高一下·河北沧州·阶段练习)在△ABC 中,下列关系式恒成立的有()A .()sin sin ABC +=B .cos sin 22A B C +⎛⎫= ⎪⎝⎭C .()sin 22sin20A B C ++=D .()cos 22cos20A B C ++=【答案】ABC【分析】结合三角形的内角和定理和诱导公式,准确运算,即可求解.【详解】对于A 中,由()()sin sin sin A B C C π+=-=,所以A 正确;对于B 中由cos cos sin 2222A B C C π+⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,所以B 正确;对于C 中,由()()()sin 22sin2sin 2sin2sin 2sin2A B C A B C C Cπ⎡⎤⎡⎤++=++=-+⎣⎦⎣⎦()sin 22sin2sin2sin20C C C C π=-+=-+=,所以C 正确;对于D 中,()cos(22)cos2cos 2cos2cos[2()]cos2A B C A B C C Cπ⎡⎤++=++=-+⎣⎦()cos 22cos2cos2cos22cos2C C C C C π=-+=+=,所以D 错误.故选:ABC.38.(2024高一上·江苏无锡·阶段练习)下列结论正确的有()A .sin cos 63ππαα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭B .52cos sin 063ππθθ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭C .()()22sin 15cos 751αα-++=D .()()22sin 15sin 751αα-++=【答案】ABD【解析】本题可通过诱导公式将sin 6απ⎛⎫+ ⎪⎝⎭转化为cos 3πα⎛⎫- ⎪⎝⎭,A 正确,然后通过诱导公式将5cos 6πθ⎛⎫+⎪⎝⎭转化为2sin 3πθ⎛⎫-- ⎪⎝⎭,B 正确,最后根据()()sin 15cos 75 αα-=+以及同角三角函数关系判断出C 错误以及D 正确.【详解】A 项:sin sin cos cos 63332πππππαααα⎛⎫⎛⎫⎛⎫⎛⎫+=+-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,A 正确;B 项:因为522cos sin sin sin 6333ππππθθπθθ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+=---=-- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,所以52cos sin 063ππθθ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,B 正确;C 项:因为()()()sin 15sin 75cos 752πααα⎡⎤-=-+=+⎢⎥⎣⎦,所以()()()222sin 15cos 752cos 751ααα-++=+≠,C 错误;D 项:()()()()2222sin 15sin 75cos 75sin 751αααα-++=+++=,D 正确,故选:ABD.【点睛】关键点点睛:本题考查诱导公式以及同角三角函数关系的应用,考查的公式有sin cos 2παα⎛⎫+= ⎪⎝⎭、()cos cos αα=-、sin cos 2παα⎛⎫-= ⎪⎝⎭、22cos sin 1αα+=等,考查化归与转化思想,是中档题.39.(2024高一上·黑龙江齐齐哈尔·期末)已知下列等式的左右两边都有意义,则下列等式恒成立的是()A .cos 1sin 1sin cos x xx x-=+B .221sin 12tan sin cos tan x x x x x++=C .()()sin 53cos 37x x -=+D .()()sin 60cos 480x x -=+【答案】ABC【分析】对于A 、B ,由同角三角函数的基本关系进行化简证明即可,对于C 、D ,由诱导公式进行化简证明即可.【详解】对于A ,()()()()()22cos 1sin cos 1sin cos 1sin cos 1sin 1sin 1sin 1sin 1sin cos cos x x x x x x x x x x x x x x----====++--,故A 正确;对于B ,()2222222sin cos sin 1sin cos 2sin 12tan sin cos sin cos sin cos tan x x x x x x x x x x x x x x+++++===,故B 正确;对于C ,()()()sin 53sin 9037=cos 37x x x ⎡⎤-=-++⎣⎦,故C 正确;对于D ,()()()()cos 480=cos 0=cos 18060=cos 0126x x x x -⎡⎤++---⎣⎦,故D 错误.故选:ABC.三、填空题40.(2024·全国)若π10,,tan 22⎛⎫∈= ⎪⎝⎭θθ,则sin cos θθ-=.【答案】5-【分析】根据同角三角关系求sin θ,进而可得结果.【详解】因为π0,2θ⎛⎫∈ ⎪⎝⎭,则sin 0,cos 0θθ>>,又因为sin 1tan cos 2θθθ==,则cos 2sin θθ=,且22222cos sin 4sin sin 5sin 1+=+==θθθθθ,解得sin θ=或sin θ=(舍去),所以sin cos sin 2sin sin -=-=-=-θθθθθ故答案为:5-.41.(2024高一上·福建莆田·阶段练习)已知tan α=-2απ<<π,那么sin cos 1αα=+.【分析】由同角三角函数关系及已知条件求得1sin 33αα==-,代入目标式求值即可.【详解】由tan α=-2απ<<π,则1sin 33αα==-,所以sin cos 1αα=+.42.(2024高三·全国·对口高考)若sin cos 2sin cos x xx x-=+,求sin cos x x 的值为.【答案】310-/0.3-【分析】由已知求出tan 3x =-,再将sin cos x x 化为22sin cos sin cos x xx x+,利用齐次式法求值,即得答案.【详解】由sin cos 2sin cos x xx x-=+可得sin cos 2(sin cos ),sin 3cos x x x x x x -=+∴=-,因为cos 0x =不适合sin cos 2sin cos x xx x-=+,故cos 0x ≠,所以tan 3x =-,故222sin cos tan 33sin cos sin cos tan 19110x x x x x x x x -====-+++,故答案为:310-43.(2024高三上·江西南昌·阶段练习)若4tan 3θ=,则sin cos sin cos θθθθ-=+.【答案】17【分析】分式上下同除以cos θ,化弦为切,代入4tan 3θ=求值即可.【详解】4tan 3θ= ,sin 411sin cos tan 11cos 3sin 4sin cos tan 1711cos 3θθθθθθθθθθ----∴====++++.故答案为:17.44.(2024·上海浦东新·模拟预测)已知sin cos αα、是关于x 的方程2320x x a -+=的两根,则=a .【答案】56-【分析】先通过根与系数的关系得到sin ,cos αα的关系,再通过同角三角函数的基本关系即可解得.【详解】由题意:Δ41202sin cos 3sin cos 3a a αααα⎧⎪=-≥⎪⎪+=⎨⎪⎪=⎪⎩,所以13a ≤,所以()224sin cos 12sin cos 139a αααα+=+=+=,即650a +=,解得56a =-.故答案为:56-.45.(2024高三·全国·专题练习)已知1sin cos 4αα-=,则33sin cos αα-=.【答案】47128【分析】由立方差公式,得()()3322sin cos sin cos sin cos sin cos αααααααα-=-++.将1sin cos 4αα-=两边平方,解得15sin cos 32αα=,代入即可得解.【详解】由题知()()3322sin cos sin cos sin cos sin cos αααααααα-=-++,因为1sin cos 4αα-=,两边平方有112sin cos 16αα-=,所以15sin cos 32αα=,所以()3311547sin cos 1432128αα-=⨯+=.故答案为:47128.46.(2024高三上·安徽合肥·阶段练习)已知23sin 2m m α-=+,1cos 2m m α+=-+,且α为第二象限角,则()()sin 2024πcos 2023π2021πcos 2ααα+++=⎛⎫+ ⎪⎝⎭.【答案】73-/123-【分析】由已知可求出m 的取值范围,由同角三角函数的平方关系求出m 的值,可求出tan α的值,再利用诱导公式结合弦化切可求得所求代数式的值.【详解】因为23sin 2m m α-=+,1cos 2m m α+=-+,且α为第二象限角,则2302102m m m m -⎧>⎪⎪+⎨+⎪-<⎪+⎩,解得2m <-或32m >,因为22222223151010sin cos 12244m m m m m m m m αα-+-+⎛⎫⎛⎫+=+-== ⎪ ⎪++++⎝⎭⎝⎭,整理可得22730m m -+=,即()()2130m m --=,解得12m =(舍)或3m =,所以,233sin 25m m α-==+,14cos 25m m α+=-=-+,所以,sin 353tan cos 544ααα⎛⎫==⨯-=- ⎪⎝⎭,因此,()()sin 2024πcos 2023πsin cos 147112021πsin tan 33cos 2ααααααα+++-==-+=--=--⎛⎫+ ⎪⎝⎭.故答案为:73-.47.(2024·全国·模拟预测)若()223ππ1cos cos 714f x x x ⎡⎤⎤⎛⎫⎛⎫=--++ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎭⎣⎦⎦,则()f x 的最大值为,()f x 的最小值为.【答案】91【分析】借助诱导公式将函数式转化,再利用两点间的距离公式将数转化为形,利用形的直观来求最值.【详解】因为πππ3π3πcos sin sin sin 1421477x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+=--=-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,=,此式可看作点(到点3π3πcos ,sin 77x x ⎡⎤⎛⎫⎛⎫--⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的距离.而点3π3πcos ,sin 77x x ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的轨迹是圆221+=m n .又点(到圆心()0,0的距离为2,所以()f x 的最大值()()2max 219f x =+=,()f x 的最小值()()2min 211f x =-=.故答案为:9;1【点睛】将所给函数式展开必将陷入命题人的圈套,此时要整体把握目标,借助诱导公式将函数式转化,再利用两点间的距离公式将数转化为形,利用形的直观来求最值,既简单又节省时间.本题不仅要求学生具备扎实的基本功,具有整体把握目标的能力,还对学生分析问题和解决问题的能力、逻辑推理能力、运算求解能力等要求较高.48.(2024·四川绵阳·三模)已知π,π2θ⎛⎫∈ ⎪⎝⎭,()sin π3θ+=-,则tan θ=.【答案】【分析】根据诱导公式以及同角关系即可求解.【详解】由()sin π3θ+=-得sin 3θ=,由π,π2θ⎛⎫∈ ⎪⎝⎭可得cos θ=-,故sin tan cos θθθ==故答案为:2-49.(2024·山西阳泉·三模)已知πsin 6α⎛⎫+= ⎪⎝⎭ππ,44α⎛⎫∈- ⎪⎝⎭,则πsin 3α⎛⎫-=⎪⎝⎭.【分析】整体法诱导公式结合同角三角函数关系求出答案.【详解】因为ππ,44α⎛⎫∈- ⎪⎝⎭,所以ππ5π,61212α⎛⎫+∈- ⎪⎝⎭,故πcos 06α⎛⎫+> ⎪⎝⎭,所以πcos 6α⎛⎫+= ⎪⎝⎭ππππsin sin cos 3266ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦50.(2024·浙江温州·二模)已知tan x =,则23sin 2sin cos x x x -=.【分析】利用同角三角函数的关系化简23sin 2sin cos x x x -为齐次式,再代入tan x =.【详解】因为tan x =,所以2222223sin 2sin cos 3tan 2tan 3sin 2sin cos sin cos 1tan x x x x xx x x x x x---==++、()2231⨯-==+51.(2024·黑龙江哈尔滨·二模)已知tan 2θ=,则1sin 2cos 2θθ+的值是.【答案】5【分析】利用正弦、余弦的二倍角公式以及弦化切的公式先化简,在将tan 2θ=代入即可.【详解】因为tan 2θ=,所以2211sin 2cos 22sin cos cos sin θθθθθθ=++-2222cos sin 2sin cos cos sin θθθθθθ+=+-221tan 2tan 1tan θθθ+=+-221252212+==⨯+-,故答案为:5.52.(2024高三·全国·专题练习)已知()7sin cos 0π13ααα+=<<,则tan α=.【答案】125-【分析】由同角三角函数的平方关系和商数关系,并分析三角函数值的正负即可求解.【详解】解:已知7sin cos 13αα+=①,则()2sin cos 12sin cos 69491αααα+=+=,60sin cos 0169αα=-<,0πα<< ,sin 0α∴>,则cos 0α<,sin cos 0αα->,17sin cos13αα∴-===②,联立①②,得12sin 13α=,5cos 13α=-12tan 5α∴=-,故答案为:125-.53.(2024高三上·湖南衡阳·期中)已知sin cos 3αα-=-,则sin 2α=.【答案】79【分析】sin cos 3αα-=-平方,结合同角三角函数平方关系即正弦二倍角公式求解.【详解】sin cos αα-=两边平方得:()22sin cos 12sin cos 1sin 29ααααα-=-=-=,解得:7sin 29α=.故答案为:7954.(2024·全国·模拟预测)已知π1sin 35α⎛⎫-= ⎪⎝⎭,则cos 6α5π⎛⎫-=⎪⎝⎭.【答案】15/0.2【分析】由三角函数的诱导公式化简可得.【详解】由题可得5π5ππππ1cos cos cos sin 663235αααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:1555.(2024高三上·内蒙古包头·阶段练习)若πtan 4θ⎛⎫+= ⎪⎝⎭πtan 4θ⎛⎫-=⎪⎝⎭.【答案】【分析】以π4θ+为整体,根据诱导公式运算求解.【详解】由题意可得:πππ1tan tanπ442tan 4θθθ⎡⎤⎛⎫⎛⎫-=+-=-=- ⎪ ⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+ ⎪⎝⎭故答案为:56.(2024高一下·黑龙江佳木斯·开学考试)已知()1sin 535α︒-=,且27090α-︒<<-︒,则()sin 37α︒+=.【答案】【分析】设53βα︒=-,37γα︒=+,则90βγ︒+=,90γβ︒=-,从而将所求式子转化成求cos β的值,利用α的范围确定cos β的符号.【详解】设53βα︒=-,37γα︒=+,那么90βγ︒+=,从而90γβ︒=-.于是()sin sin 90cos γββ︒=-=.因为27090α︒︒-<<-,所以143323β︒︒<<.由1sin 05β=>,得143180β︒︒<<.所以cos β===所以()sin 37sin 5αγ︒+==-.故答案为:57.(2024高一上·新疆乌鲁木齐·期末)已知角α的终边与单位圆221x y +=交于点1,2⎛⎫⎪⎝⎭y P ,则3πsin 2α⎛⎫-= ⎪⎝⎭.【答案】12-/-0.5【分析】根据任意角三角比的定义和诱导公式求解.【详解】因为角α的终边与单位圆221x y +=交于点1,2⎛⎫⎪⎝⎭y P ,所以||1r OP ==13π12sin cos 212x r αα⎛⎫-=-=-=-=- ⎪⎝⎭,故答案为:12-.58.(2024高一·全国·课后作业)若角α的终边落在直线y x =上,则co 3si 22n s παπα⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭-.【分析】化简得到3sin cos cos sin 22ππαααα⎛⎫⎫⎪⎪-++=--⎝⎭⎝⎭,考虑角α为第一或第三象限角两种情况,计算得到答案.【详解】因为角α的终边落在直线y x =上,所以角α为第一或第三象限角,3sin cos cos sin 22ππαααα⎛⎫⎛⎫⎪ ⎪-++=--⎝⎭⎝⎭,当角α为第一象限角时,cos sin αα==,cos sin αα--==当角α为第三象限角时,cos sin αα==cos sin 22αα--=+=或.四、解答题59.(2024高三·全国·专题练习)已知角α的终边落在直线2y x =上.求(1)4sin 2cos 5sin 3cos αααα-+的值;(2)25sin 3sin cos 2ααα+-的值.【答案】(1)613(2)165【分析】由角α的终边落在直线2y x =上可得tan 2α=,再根据同角函数的关系求解即可.【详解】(1)由角α的终边落在直线2y x =上可得tan 2α=则原式=4tan 28265tan 310313αα--==++;(2)原式222225sin 3sin cos 5tan 3tan 20616222sin cos tan 155αααααααα+++=-=-=-=++.60.(2024高一下·安徽·期中)已知角θ的顶点为坐标原点O ,始边为x 轴的非负半轴,终边与单位圆相交于点P (),x y ,若点P 位于x 轴上方且12x y +=.(1)求sin cos θθ-的值;(2)求44sin cos θθ+的值.【答案】(2)2332【分析】(1)根据cos sin θθ+,cos sin θθ-,cos sin θθ三个直接的关系,可得sin cos θθ-.(2)由4422sin cos 12sin cos θθθθ+=-可得.【详解】(1)由三角函数的定义,1cos sin 2θθ+=,sin 0θ>,两边平方,得221cos sin 2sin cos 4θθθθ++=则32sin cos 04θθ=-<,sin 0θ>,cos 0θ<,所以sin cos 0θθ->,sin cos2θθ-=.(2)由(1)知,3sin cos 8θθ=-,4422222923sin cos (sin cos )2sin cos 126432θθθθθθ+=+-=-⨯=.。
高中数学 第一章 三角函数 1.2.2 同角三角函数的基本关系课件2 新人教A版必修4.ppt
![高中数学 第一章 三角函数 1.2.2 同角三角函数的基本关系课件2 新人教A版必修4.ppt](https://img.taocdn.com/s3/m/cd2efe545a8102d276a22faa.png)
5
55
5
5
3.已知cos α= 1 ,且α是第四象限角,则sin α=( )
2
A . 1
B .3 C .3 D . 1
2
2
2
2
【解析】选C.因为α是第四象限角,所以sin α<0,
所以 sin 1cos21(1)23.
22
6
4.化简:s i n =_______.
tan
【解析】
sin tan
10
10 10
方法二:(cosα+2sinα)2= cos24sincos4sin2
sin2cos2
1 4 ta n 4 ta n 2 1 4 3 4 3 2 4 9
由已知条件得
分子分母同除以cos2α可得关于tanα的方程.
(cos2sin)2 sin2cos2
5,
12
【解析】方法一:因为cosα+2sinα= 5 , 所以cosα=-2sinα 5 , 又因为sin2α+cos2α=1,所以sin2α+(-2sinα- )2=5 1, 整理得5sin2α+4 s5 inα+4=0,( si5 nα+2)2=0,
sin sin
cos.
答案:cos θ cos
7
5.已知tan φ=- 2 ,φ∈( ,π),则sin φ=_____.
2
sin 2 cos 2 1,
【解析】由已知得
sin cos
所以
2,
sin2(sin)2 1, 2
所以sin2φ= 2 ,由φ∈( , π)得sin φ>0,
3
2
限决定的,不可凭空想象.
11
高一数学 《1.2.2同角三角函数的基本关系》课件(二)
![高一数学 《1.2.2同角三角函数的基本关系》课件(二)](https://img.taocdn.com/s3/m/f580ccd1561252d381eb6e21.png)
在初中我们已经知道,对于同一个 锐角α,存在关系式:
si2n co 2 s1
sin tan cos
上述公式是否对任意的角α都成立? 你能证明吗?
注意:1、“同角”是指公式与角的表达 形式无关, 如: si23 n co 23 s1
2、上述关系(公式2)都必须在定义域 允许的范围内成立。
3、根据公式,由一个角的任一个三角函 数值就可求出这个角的另两个三角函数值, 但若利用“平方关系” ,则最终需要求平 方根,因而会出现两解,此时要根据角的 象限进行选择。
应用 1.利用同角三角函数的基本关系 求某个角的三角数值
例1.已知sinα=-3/5,且α在 第三象限,求cosα和tanα的值.
2019_2019年高中数学第一章三角函数1.2任意角的三角函数1.2.2同角三角函数关系课件苏教版必修
![2019_2019年高中数学第一章三角函数1.2任意角的三角函数1.2.2同角三角函数关系课件苏教版必修](https://img.taocdn.com/s3/m/4ba64185b8f67c1cfad6b8be.png)
1-[(sin2x+cos2x)2-2sin2xcos2x] 1-(sin2x+cos2x)(sin4x+cos4x-sin2xcos2x)
=1-
1-1+2sin2xcos2x [(sin2x+cos2x)2-3sin2xcos2x]
=23ssiinn22xxccooss22xx=
2 3.
方法归纳 解答此类题目的关键在于公式的灵活运用,切实分析好同角 三角函数间的关系,化简过程中常用的方法有: (1)化切为弦,即把非正、余弦的函数都化为正、余弦函数, 从而减少函数名称,达到化简的目的. (2)对于含有根号的,常把根号下的式子化成完全平方式,然 后去根号达到化简的目的.
第1章 三角函数
1.2.2 同角三角函数关系
第1章 三角函数
学习导航
1.理解同角三角函数的两种基本关系.(重点) 学习 2.了解同角三角函数的基本关系的常见变形形式. 目标 3.学会应用同角三角函数的基本关系,掌握化简求
值与证明的方法.(重点、难点)
第1章 三角函数
1.推导和牢记同角三角函数间的基本关系是进行三角函
α=2tan α 4tan
αα--93=24××22--39=-1.
(2)4sin2α-3sin αcos α-5cos2α=
4sin2α-s3insi2nα+αccoossα2α-5cos2α,
这时分子和分母均为关于 sin α,cos α 的二次齐次式.
因为 cos2α≠0,所以分子和分母同除以 cos2α,则 4sin2α-3sin
∴sin3α+cos3α=15×(1+1225)=13275.
技法导学
整体代换解决求值问题
已知 tan α=2,求下列各式的值.
2sin (1)4sin
人教A版高中数学必修4第一章三角函数1.2.2同角三角函数的基本关系导学案
![人教A版高中数学必修4第一章三角函数1.2.2同角三角函数的基本关系导学案](https://img.taocdn.com/s3/m/af9d049eda38376bae1fae55.png)
1.2.2.同角三角函数的基本关系学习目标.1.能通过三角函数的定义推导出同角三角函数的基本关系式.2.理解同角三角函数的基本关系式.3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明.知识点.同角三角函数的基本关系式 思考1.计算下列式子的值: (1)sin 230°+cos 230°; (2)sin 245°+cos 245°; (3)sin 290°+cos 290°.由此你能得出什么结论?尝试证明它. 答案.3个式子的值均为1.由此可猜想:对于任意角α,有sin 2α+cos 2α=1,下面用三角函数的定义证明:设角α的终边与单位圆的交点为P (x ,y ),则由三角函数的定义,得sin α=y ,cos α=x .∴sin 2α+cos 2α=x 2+y 2=|OP |2=1.思考2.由三角函数的定义知,tan α与sin α和cos α间具有怎样的等量关系?答案.∵tan α=y x ,∴tan α=sin αcos α.梳理.(1)同角三角函数的基本关系式 ①平方关系:sin 2α+cos 2α=1.②商数关系:tan α=sin αcos α (α≠k π+π2,k ∈Z ).(2)同角三角函数基本关系式的变形 ①sin 2α+cos 2α=1的变形公式 sin 2α=1-cos 2α;cos 2α=1-sin 2α. ②tan α=sin αcos α的变形公式sin α=cos αtan α;cos α=sin αtan α.类型一.利用同角三角函数的关系式求值命题角度1.已知角α的某一三角函数值及α所在象限,求角α的其余三角函数值例1.若sin α=-513,且α为第四象限角,则tan α的值为(..)A.125B.-125C.512D.-512 答案.D解析.∵sin α=-513,且α为第四象限角,∴cos α=1213,∴tan α=sin αcos α=-512,故选D.反思与感悟.同角三角函数的关系揭示了同角三角函数之间的基本关系,其常用的用途是“知一求二”,即在sin α,cos α,tan α三个值之间,知道其中一个可以求其余两个.解题时要注意角α的象限,从而判断三角函数值的正负.跟踪训练1.已知tan α=43,且α是第三象限角,求sin α,cos α的值.解.由tan α=sin αcos α=43,得sin α=43cos α.①又sin 2α+cos 2α=1,②由①②得169cos 2α+cos 2α=1,即cos 2α=925.又α是第三象限角,∴cos α=-35,sin α=43cos α=-45.命题角度2.已知角α的某一三角函数值,未给出α所在象限,求角α的其余三角函数值 例2.已知cos α=-817,求sin α,tan α的值.解.∵cos α=-817<0,且cos α≠-1,∴α是第二或第三象限角. (1)当α是第二象限角时,则 sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-8172=1517, tan α=sin αcos α=1517-817=-158.(2)当α是第三象限角时,则sin α=-1-cos 2α=-1517,tan α=158.反思与感悟.利用同角三角函数关系式求值时,若没有给出角α是第几象限角,则应分类讨论,先由已知三角函数的值推出α的终边可能在的象限,再分类求解. 跟踪训练2.已知cos α=-513,求13sin α+5tan α的值. 解.方法一.∵cos α=-513<0,∴α是第二或第三象限角. (1)若α是第二象限角, 则sin α=1-cos 2α =1-(-513)2=1213,tan α=sin αcos α=1213-513=-125,故13sin α+5tan α=13×1213+5×(-125)=0.(2)若α是第三象限角, 则sin α=-1-cos 2α=- 1-(-513)2=-1213,tan α=sin αcos α=-1213-513=125,故13sin α+5tan α=13×(-1213)+5×125=0.综上可知,13sin α+5tan α=0. 方法二.∵tan α=sin αcos α,∴13sin α+5tan α=13sin α(1+513·1cos α)=13sin α[1+513×(-135)]=0.类型二.利用同角三角函数关系化简 例3.已知α是第三象限角,化简: 1+sin α1-sin α-1-sin α1+sin α.解.原式= (1+sin α)(1+sin α)(1+sin α)(1-sin α)-(1-sin α)(1-sin α)(1+sin α)(1-sin α)=(1+sin α)21-sin 2α- (1-sin α)21-sin 2α=1+sin α|cos α|-1-sin α|cos α|.∵α是第三象限角,∴cos α<0.∴原式=1+sin α-cos α-1-sin α-cos α=-2tan α(注意象限、符号).反思与感悟.解答这类题目的关键在于公式的灵活运用,切实分析好同角三角函数间的关系,化简过程中常用的方法有:(1)化切为弦,即把非正弦、余弦的函数都化为正弦、余弦函数,从而减少函数名称,达到化简的目的.(2)对于含有根号的,常把根号下化成完全平方式,然后去根号达到化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解,或构造sin 2α+cos 2α=1,以降低函数次数,达到化简的目的.跟踪训练3.化简:(1)cos 36°-1-cos 236°1-2sin 36°cos 36°;(2)1cos 2α1+tan 2α-1+sin α1-sin α(α为第二象限角).解.(1)原式= cos 36°- sin 236°sin 236°+cos 236°-2sin 36°cos 36°=cos 36°-sin 36°(cos 36°-sin 36°)2=cos 36°-sin 36°|cos 36°-sin 36°|=cos 36°-sin 36°cos 36°-sin 36°=1.(2)∵α是第二象限角,∴cos α<0, 则原式=1cos 2α 1+sin 2αcos 2α-(1+sin α)21-sin 2α=1cos 2α cos 2αcos 2α+sin 2α-1+sin α|cos α|=-cos αcos 2α+1+sin αcos α=-1+1+sin αcos α=sin αcos α=tan α. 类型三.利用同角三角函数关系证明例4.求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α.证明.∵右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α=tan 2α(1-cos 2α)(tan α-sin α)tan αsin α =tan 2αsin 2α(tan α-sin α)tan αsin α=tan αsin αtan α-sin α=左边,∴原等式成立.反思与感悟.证明三角恒等式的过程,实质上是化异为同的过程,证明恒等式常用以下方法:(1)证明一边等于另一边,一般是由繁到简. (2)证明左、右两边等于同一个式子(左、右归一). (3)比较法:即证左边-右边=0或左边右边=1(右边≠0).(4)证明与已知等式等价的另一个式子成立,从而推出原式成立. 跟踪训练4.求证:cos x 1-sin x =1+sin xcos x .证明.方法一.(比较法——作差)∵cos x 1-sin x -1+sin x cos x =cos 2x -(1-sin 2x )(1-sin x )cos x =cos 2x -cos 2x (1-sin x )cos x =0, ∴cos x 1-sin x =1+sin xcos x.方法二.(比较法——作商)∵左右=cos x 1-sin x 1+sin x cos x =cos x ·cos x (1+sin x )(1-sin x )=cos 2x 1-sin 2x =cos 2x cos 2x =1. ∴cos x 1-sin x =1+sin xcos x.方法三.(综合法)∵(1-sin x )(1+sin x )=1-sin 2x =cos 2x =cos x ·cos x , ∴cos x 1-sin x =1+sin xcos x.类型四.齐次式求值问题例5.已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α;(2)14sin 2α+13sin αcos α+12cos 2α. 解.(1)原式=4tan α-25+3tan α=611.(2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α =14tan 2α+13tan α+12tan 2α+1 =14×4+13×2+125=1330. 反思与感悟.(1)关于sin α、cos α的齐次式,可以通过分子、分母同除以cos α或cos 2α转化为关于tan α的式子后再求值.(2)注意(2)式中不含分母,可以视分母为1,灵活地进行“1”的代换,由1=sin 2α+cos 2α代换后,再同除以cos 2α,构造出关于tan α的代数式. 跟踪训练5.已知sin α+cos αsin α-cos α=2,计算下列各式的值.(1)3sin α-cos α2sin α+3cos α; (2)sin 2α-2sin αcos α+1.解.由sin α+cos αsin α-cos α=2,化简,得sin α=3cos α,所以tan α=3.(1)原式=3×3cos α-cos α2×3cos α+3cos α=8cos α9cos α=89.(2)原式=sin 2α-2sin αcos αsin 2α+cos 2α+1 =tan 2α-2tan αtan 2α+1+1=32-2×332+1+1=1310.1.若sin α=45,且α是第二象限角,则tan α的值等于(..)A.-43B.34C.±34D.±43答案.A解析.∵α为第二象限角,sin α=45,∴cos α=-35,tan α=-43.2.已知sin α-cos α=-54,则sin αcos α等于(..)A.74 B.-916 C.-932 D.932答案.C解析.由题得(sin α-cos α)2=2516,即sin 2α+cos 2α-2sin αcos α=2516,又sin 2α+cos 2α=1,∴1-2sin αcos α=2516,∴sin αcos α=-932.故选C.3.化简1-sin23π5的结果是(..) A.cos 3π5B.sin 3π5C.-cos 3π5D.-sin 3π5答案.C 解析.1-sin23π5= cos23π5=|cos 3π5|, ∵π2<3π5<π,∴cos 3π5<0, ∴|cos 3π5|=-cos 3π5,即1-sin23π5=-cos 3π5,故选C. 4.若tan θ=-2,则sin θcos θ= . 答案.-25解析.sin θcos θ=sin θcos θsin 2θ+cos 2θ=tan θtan 2θ+1=-25. 5.已知sin α=15,求cos α,tan α.解.∵sin α=15>0,∴α是第一或第二象限角.当α为第一象限角时,cos α=1-sin 2α =1-125=265, tan α=sin αcos α=612;当α为第二象限角时,cos α=-265,tan α=-612.1.利用同角三角函数的基本关系式,可以由一个角的一个三角函数值,求出这个角的其他三角函数值.2.利用同角三角函数的关系式可以进行三角函数式的化简,结果要求:(1)项数尽量少;(2)次数尽量低;(3)分母、根式中尽量不含三角函数;(4)能求值的尽可能求值.3.在三角函数的变换求值中,已知sin α+cos α,sin αcos α,sin α-cos α中的一个,可以利用方程思想,求出另外两个的值.4.在进行三角函数式的化简或求值时,细心观察题目的特征,灵活、恰当地选用公式,统一角、统一函数、降低次数是三角函数关系式变形的出发点.利用同角三角函数的基本关系主要是统一函数,要掌握“切化弦”和“弦化切”的方法.5.在化简或恒等式证明时,注意方法的灵活运用,常用技巧:(1)“1”的代换;(2)减少三角函数的个数(化切为弦、化弦为切等);(3)多项式运算技巧的应用(如因式分解、整体思想等);(4)对条件或结论的重新整理、变形,以便于应用同角三角函数关系来求解.课时作业一、选择题1.已知cos α=-35,α∈(π2,π),sin β=-1213,β为第三象限角,则sin α·tan β等于(..) A.-4825B.4825 C.13 D.-13答案.B解析.∵cos α=-35,α∈(π2,π),sin β=-1213,β是第三象限角,∴sin α=1-cos 2α=45,cos β=-1-sin 2β=-513,即tan β=125,则sin α·tan β=4825.故选B.2.已知α是第二象限角,tan α=-12,则cos α等于(..)A.-55B.-15C.-255D.-45答案.C解析.∵α是第二象限角,∴cos α<0. 又sin 2α+cos 2α=1,tan α=sin αcos α=-12,∴cos α=-255.3.已知A 是三角形的一个内角,sin A +cos A =23,则这个三角形是(..)A.锐角三角形B.钝角三角形C.直角三角形D.等腰直角三角形答案.B解析.∵sin A +cos A =23,∴1+2sin A cos A =49,∴sin A cos A =-518<0,又∵A ∈(0,π),sin A >0, ∴cos A <0,即A 为钝角.故选B.4.函数y =1-sin 2x cos x +1-cos 2xsin x 的值域是(..)A.{0,2}B.{-2,0}C.{-2,0,2}D.{-2,2}答案.C解析.y =|cos x |cos x +|sin x |sin x .当x 为第一象限角时,y =2;当x 为第三象限角时,y =-2; 当x 为第二、四象限角时,y =0. 5.已知sin α-cos α=-52,则tan α+1tan α的值为(..) A.-4 B.4 C.-8 D.8 答案.C解析.tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α.∵sin αcos α=1-(sin α-cos α)22=-18,∴tan α+1tan α=-8. 6.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于(..) A.-43B.54C.-34D.45答案.D解析.sin 2θ+sin θcos θ-2cos 2θ=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-2tan 2θ+1, 又tan θ=2,故原式=4+2-24+1=45.7.已知cos x sin x -1=12,则1+sin xcos x 等于(..)A.12B.-12C.2D.-2答案.B解析.利用1-sin 2x =cos 2x ,可得1+sin x cos x =-cos x sin x -1=-12.二、填空题8.已知sin α+2cos αcos α=1,则α在第 象限.答案.二或四解析.sin α+2cos αcos α=tan α+2=1,tan α=-1<0,∴α在第二或第四象限.9.已知α∈R ,sin α+2cos α=102,则tan α= . 答案. 3或-13解析.因为sin α+2cos α=102,又sin 2α+cos 2α=1, 联立解得⎩⎪⎨⎪⎧ sin α=-1010,cos α=31010或⎩⎪⎨⎪⎧ sin α=31010,cos α=1010,故tan α=sin αcos α=-13或3. 10.在△ABC 中,2sin A =3cos A ,则角A = .答案.π3解析.由题意知cos A >0,即A 为锐角. 将2sin A =3cos A 两边平方,得2sin 2A =3cos A .∴2cos 2A +3cos A -2=0, 解得cos A =12或cos A =-2(舍去), ∴A =π3. 11.若sin θ=-22,tan θ>0,则cos θ= . 答案.-22 12.已知sin αcos α=18,且π<α<5π4,则cos α-sin α= . 答案.-32解析.因为π<α<5π4, 所以cos α<0,sin α<0.利用三角函数线知,cos α<sin α,cos α-sin α=-(cos α-sin α)2=- 1-2×18=-32. 三、解答题13.已知tan α=-12,求1+2sin αcos αsin 2α-cos 2α的值. 解.原式=(sin α+cos α)2sin 2α-cos 2α=sin α+cos αsin α-cos α=tan α+1tan α-1=-12+1-12-1=-13. 四、探究与拓展14.若sin α+cos α=1,则sin n α+cos n α(n ∈Z )的值为 .答案.1解析.∵sin α+cos α=1,∴(sin α+cos α)2=1,又sin 2α+cos 2α=1,∴sin αcos α=0,∴sin α=0或cos α=0.当sin α=0时,cos α=1,此时有sin n α+cos n α=1;当cos α=0时,sin α=1,也有sin n α+cos n α=1,∴sin n α+cos n α=1.15.已知关于x 的方程2x 2-(3+1)x +2m =0的两根为sin θ和cos θ(θ∈(0,π)),求:(1)m 的值;(2)sin θ1-cot θ+cos θ1-tan θ的值(其中cot θ=1tan θ); (3)方程的两根及此时θ的值.解.(1)由根与系数的关系可知,sin θ+cos θ=3+12,① sin θ·cos θ=m .② 将①式平方得1+2sin θ·cos θ=2+32, 所以sin θ·cos θ=34,代入②得m =34. (2)sin θ1-cot θ+cos θ1-tan θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ=3+12. (3)由(1)得m =34,所以原方程化为2x 2-(3+1)x +32=0,解得x 1=32,x 2=12. 所以⎩⎪⎨⎪⎧sin θ=32,cos θ=12或⎩⎪⎨⎪⎧ sin θ=12,cos θ=32.又因为θ∈(0,π), 所以θ=π3或π6.。
高中数学第一章三角函数1.2.2同角三角函数的基本关系教材省公开课一等奖新优质课获奖课件
![高中数学第一章三角函数1.2.2同角三角函数的基本关系教材省公开课一等奖新优质课获奖课件](https://img.taocdn.com/s3/m/0288b99f4128915f804d2b160b4e767f5bcf8041.png)
的结果是(
B.sin
3
4
5
)
3π
5
3π
D.-sin
3π
2
cos
5
2
5
= cos
3π
5
=-cos
3π
5
.
答案:C
25/29
1
3
2.已知 α 是第三象限角,sin α=- ,则 tan α 等于(
3
5
4
A.-
B.-
4
C.
3
3
3
4
D.
2
3
4
5
)
4
3
解析:∵sin α=- ,α 为第三象限角,
5
∴cos α=-
)
B.tan 40°-sin 40°
D.cos 40°-sin 40°
解析:原式= sin2 40° + cos 2 40°-2sin40°cos40°
= (sin40°-cos40°)2 =|sin 40°-cos 40°|
=cos 40°-sin 40°.
答案:D
17/29
探究一
探究二
探究三
思想方法
探究三证明三角恒等式
【例 4】 求证:
sin
1-cos
=
1+cos
sin
分析:思路一:平方关系
.
平方差公式展开→作商→结论
思路二:作差:左-右
变形
差为 0→结论
证法一:sin2α+cos2α=1⇒1-cos2α=sin2α⇒(1-cos α)·
(1+cos α)=sin
α·
sin α⇒
高中数学必修四 第1章 三角函数课件 1.2.2 同角三角函数的基本关系
![高中数学必修四 第1章 三角函数课件 1.2.2 同角三角函数的基本关系](https://img.taocdn.com/s3/m/4ee15893910ef12d2af9e7d4.png)
互动探究 探究点1 同角三角函数的基本关系式对任意角α都成立吗?
提示 同角三角函数的基本关系式成立的条件是使式子两边都
有意义.所以sin2α+cos2α=1对于任意角α∈R都成立,而
sin cos
αα=tan
α并不是对任意角α∈R都成立,这时α≠kπ+π2,k∈
Z.
探究点2 在利用平方关系求sin α或cos α时,其正负号应怎样确 定?
=tan
tan2αsin2α α-sin αtan
αsin
α=tatnanαα-sisninαα=左边,
∴原等式成立.
[规律方法] (1)证明三角恒等式的实质:清除等式两端的差异, 有目的的化简. (2)证明三角恒等式的基本原则:由繁到简. (3)常用方法:从左向右证;从右向左证;左、右同时证.
ቤተ መጻሕፍቲ ባይዱ
【活学活用2】 化简:
1-2sinα2cosα2+ 1+2sinα2cosα20<α<π2.
解 原式=
cosα2-sinα22+
cosα2+sinα22
=cosα2-sinα2+cosα2+sinα2.
∵α∈0,π2,∴α2∈0,π4.
利用tan α=csoins αα和sin2α+cos2α=1向等号左边式子进行转化;
也可利用tan
α=
sin cos
α α
将等号左、右两边式子进行切化弦,结
合sin2α+cos2α=1达到两边式子相等的目的.
证明
∵右边= tan
tan2α-sin2α α-sin αtan αsin
α
=tantaαn2-α-sintaαn2tαacnoαs2sαin α=tantαan-2αsi1n-αctaons2ααsin α
【课件】同角三角函数的基本关系课件-2022-2023学年高一上数学人教A版(2019)必修第一册
![【课件】同角三角函数的基本关系课件-2022-2023学年高一上数学人教A版(2019)必修第一册](https://img.taocdn.com/s3/m/5a20f9f0d05abe23482fb4daa58da0116c171f99.png)
1
cos
公式变形
2
2
cos 1
2
cos
1
sin
商数关系: =
其中( ≠
应用一:已知, 求, .
+ , ∈ )
sin
2
sin
cos 1 sin
以利用平方关系求其他两个,即“知一求二”.
(2)sinθ±cosθ 的符号的判定方法
sinθ-cosθ 的符号的判定方法:由
三角函数的定义知,当 θ 的终边落在
直线 y=x 上时,sinθ=cosθ,即 sinθ
-cosθ=0,当 θ 的终边落在直线 y=x
的上半平面区域内时,sinθ>cosθ,即 sinθ-cosθ>0;当 θ 的终边落在直线 y
课本182页、大本172页 双色笔、
演草纸、课堂笔记
5.2.2 同角三角函数的基本关系
学习目标
1.根据三角函数的定义推导出同角三角函
数的基本关系式,
2.熟练掌握同角三角函数平方关系和商的
关系,并能正用、逆用、变形用。
3、会用同角三角函数基本关系求值、化简
与证明.
复习巩固:二定义、一法则、三公式
二定义:
证明:法一:由cosx≠0,知sinx≠±1,所以1±sinx≠0
cos x(1 sin x)
再将分母 1 变形为
解.
++
sin2α+cos2α,转化为形如
的分式求
+
任意角的三角函数值、同角三角函数的关系
![任意角的三角函数值、同角三角函数的关系](https://img.taocdn.com/s3/m/22cf49cb5022aaea998f0f93.png)
第1章 三角函数§1.2.1-2任意角的三角函数值、同角三角函数的关系考纲总要求:①理解任意角三角函数(正弦、余弦、正切)的定义.②能利用单位圆中的三角函数线推导出2πα±,απ±的正弦、余弦、正切的诱导公式,能画出sin y x =,cos y x =,tan y x =的图像,了解三角函数的周期性.③理解正弦函数、余弦函数在区间[]0,2π的性质(单调性、最大和最小值与x 轴交点等),理解正切函数在区间,22ππ-⎛⎫ ⎪⎝⎭的单调性.④理解同角三角函数的基本关系式22sin sin cos 1,tan cos xx x x x+==. ⑤了解函数sin()y A x ωϕ=+的物理意义;能画出sin()y A x ωϕ=+的图像,了解参数,,A ωϕ对函数图像变化的影响.⑥了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.§1.2.1-2任意角的三角函数值、同角三角函数的关系重难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式;能利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集合形式表示出来;掌握同角三角函数的基本关系式,三角函数值的符号的确定,同角三角函数的基本关系式的变式应用以及对三角式进行化简和证明.经典例题:已知α为第三象限角,问是否存在这样的实数m ,使得αsin 、αcos 是关于x 的方程286210x mx m +++=的两个根,若存在,求出实数m ,若不存在,请说明理由.当堂练习:1.已知)20(παα<<的正弦线与余弦线相等,且符号相同,那么α的值为( )A .ππ434或 B .ππ4745或C .ππ454或 D .ππ474或 2.若θ为第二象限角,那么)2cos(sin )2sin(cos θθ⋅的值为( ) A .正值 B .负值 C .零D .为能确定3.已知αααααtan ,5cos 5sin 3cos 2sin 那么-=+-的值为( )A .-2B .2C .1623D .-1623 4.函数1sec tan sin cos 1sin 1cos )(222---+-=x xx x x xx f 的值域是 ( )A .{-1,1,3}B .{-1,1,-3}C .{-1,3}D .{-3,1}5.已知锐角α终边上一点的坐标为(),3cos 2,3sin 2-则α=( )A .3-πB .3C .3-2π D .2π-36.已知角α的终边在函数||x y -=的图象上,则αcos 的值为( )A .22 B .-22 C .22或-22D .21 7.若,cos 3sin 2θθ-=那么2θ的终边所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 8.1sin 、1cos 、1tan 的大小关系为 ( )A .1tan 1cos 1sin >>B .1cos 1tan 1sin >>C .1cos 1sin 1tan >>D .1sin 1cos 1tan >>9.已知α是三角形的一个内角,且32cos sin =+αα,那么这个三角形的形状为( )A .锐角三角形B .钝角三角形C .不等腰的直角三角形D .等腰直角三角形10.若α是第一象限角,则ααααα2cos ,2tan ,2cos ,2sin ,2sin 中能确定为正值的有( )A .0个B .1个C .2个D .2个以上11.化简1csc 2csc csc 1tan 1sec 22+++++ααααα(α是第三象限角)的值等于( )A .0B .-1C .2D .-212.已知43cos sin =+αα,那么αα33cos sin -的值为( ) A .2312825 B .-2312825C .2312825或-2312825D .以上全错 13.已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos .14.函数x x y cos lg 362+-=的定义域是_________. 15.已知21tan -=x ,则1cos sin 3sin 2-+x x x =______.16.化简=⋅++αααα2266cos sin 3cos sin .17.已知.1cos sin ,1sin cos =-=+θθθθbya xb y a x 求证:22222=+b y a x .18.若xx x x x tan 2cos 1cos 1cos 1cos 1-=+---+,求角x 的取值范围.19.角α的终边上的点P 和点A (b a ,)关于x 轴对称(0≠ab )角β的终边上的点Q 与A关于直线x y =对称. 求βαβαβαcsc sec cot tan sec sin ⋅+⋅+⋅的值.20.已知c b a ++=-+θθθθ2424sin sin 7cos 5cos 2是恒等式. 求a 、b 、c 的值.21.已知αsin 、βsin 是方程012682=++-k kx x 的两根,且α、β终边互相垂直. 求k 的值.§1.2.1-2任意角的三角函数值、同角三角函数的关系经典例题:假设存在这样的实数m ,.则⎪⎪⎪⎩⎪⎪⎪⎨⎧>+=⋅-=+≥+-=∆,0812cos sin ,43cos sin ,0)12(32362m m m m αααα 又18122)43(2=+⨯--m m ,解之m=2或m=.910- 而2和910-不满足上式. 故这样的m 不存在.当堂练习:1.C;2.B;3.D;4.D;5.C;6.C;7.C;8.C;9.B; 10.C; 11.A; 12.C; 13. 23-; 14. ⎥⎦⎤ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎢⎣⎡--6,232,223,6ππππ ; 15. 52; 16. 1; 17.由已知⎪⎪⎩⎪⎪⎨⎧-=+=,cos sin ,cos sin θθθθbx ax故 2)()(22=+bxax . 18.左|sin |cos 2|sin ||cos 1||sin ||cos 1|x x x x x x =--+==右,).(222,0sin ,sin cos 2|sin |cos 2Z k k x k x xx x x ∈+<<+<-=∴ππππ19.由已知P (),(),,a b Q b a -,a ba b b b a b a b=-=+=+-=βαβαcot ,tan ,sec ,sin 2222,a b a a b a 2222csc ,sec +=+=βα , 故原式=-1-022222=++ab a a b . 20.42242422cos 5cos 724sin 2sin 55sin 72sin 9sin θθθθθθθ+-=-++--=-,故0,9,2=-==c b a . 21.设,,22Z k k ∈++=ππαβ则αβcos sin =,由⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=⋅=⋅=+=+≥+⨯--=∆,1cos sin ,812cos sin ,43cos sin ,0)12(84)6(22222121212ααααααx x k x x k x x k k 解知910-=k ,。
2019_2020学年高中数学第一章三角函数1.2.4同角三角函数的基本关系(2)练习(含解析)新人教A版必修4
![2019_2020学年高中数学第一章三角函数1.2.4同角三角函数的基本关系(2)练习(含解析)新人教A版必修4](https://img.taocdn.com/s3/m/ed29130dcf84b9d528ea7a72.png)
第6课时 同角三角函数的基本关系(2)对应学生用书P11知识点一 化简问题1.当2k π-π4≤α≤2k π+π4(k ∈Z )时,化简1-2sin αcos α+1+2sin αcos α的结果是( )A .2sin αB .-2sin αC .2cos αD .-2cos α 答案 C解析 当2k π-π4≤α≤2k π+π4(k ∈Z )时,sin α+cos α>0,cos α-sin α>0, ∴1-2sin αcos α+1+2sin αcos α=sin α-cos α2+sin α+cos α2=|sin α-cos α|+|sin α+cos α|=cos α-sin α+sin α+cos α=2cos α.2.化简:1-cos 4α-sin 4α1-cos 6α-sin 6α. 解 原式=1-cos 4α-sin 4α1-cos 6α-sin 6α =1-cos 2α1+cos 2α-sin 4α1-cos 2α1+cos 2α+cos 4α-sin 6α=sin 2α1+cos 2α-sin 4αsin 2α1+cos 2α+cos 4α-sin 6α =1+cos 2α-sin 2α1+cos 2α+cos 4α-sin 4α =2cos 2α1+cos 2α+cos 2α+sin 2αcos 2α-sin 2α=2cos 2α1+cos 2α+cos 2α-sin 2α=2cos 2α3cos 2α=23.3.已知-2<x <0,sin x +cos x =5,求下列各式的值.(1)sin x -cos x ; (2)1cos 2x -sin 2x . 解 (1)∵sin x +cos x =15,∴(sin x +cos x )2=⎝ ⎛⎭⎪⎫152,即1+2sin x cos x =125,∴2sin x cos x =-2425.∵(sin x -cos x )2=sin 2x -2sin x cos x +cos 2x =1-2sin x cos x =1+2425=4925,又-π2<x <0,∴sin x <0,cos x >0,∴sin x -cos x <0, ∴sin x -cos x =-75.(2)解法一:由已知条件及(1),可知⎩⎪⎨⎪⎧sin x +cos x =15,sin x -cos x =-75,解得⎩⎪⎨⎪⎧sin x =-35,cos x =45,∴1cos 2x -sin 2x =11625-925=257.解法二:由已知条件及(1),可知⎩⎪⎨⎪⎧sin x +cos x =15,sin x -cos x =-75,∴1cos 2x -sin 2x =1cos x +sin x cos x -sin x=115×75=257. 4.已知tan α=3,求下列各式的值: (1)sin 2α-2sin αcos α-cos 2α4cos 2α-3sin 2α; (2)34sin 2α+12cos 2α. 解 (1)原式的分子、分母同除以cos 2α,得 原式=tan 2α-2tan α-14-3tan 2α=9-2×3-14-3×32=-223. (2)原式=34sin 2α+12cos 2αsin 2α+cos 2α=34tan 2α+12tan 2α+1 =34×9+129+1=2940.知识点三 证明问题5.求证:sin α(1+tan α)+cos α⎝⎛⎭⎪⎫1+tan α=sin α+cos α. 证明 1sin α+1cos α=sin 2α+cos 2αsin α+sin 2α+cos 2αcos α=sin α+cos α·cos αsin α+sin α·sin αcos α+cos α=sin α+cos α·1tan α+sin αtan α+cos α=sin α(1+tan α)+cos α⎝ ⎛⎭⎪⎫1+1tan α. 6.求证:1-2sin2x cos2x cos 22x -sin 22x =1-tan2x1+tan2x . 证明 左边=cos 22x +sin 22x -2sin2x cos2xcos 22x -sin 22x =cos2x -sin2x2cos2x -sin2x cos2x +sin2x=cos2x -sin2x cos2x +sin2x =1-tan2x1+tan2x=右边. ∴原等式成立.对应学生用书P12一、选择题1.已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,则sin θ-cos θ的值为( )A .23 B .-23 C .13 D .-13答案 B解析 由sin θ+cos θ=43,得1+2sin θcos θ=169,∴2sin θcos θ=79,又θ∈⎝⎛⎭⎪⎫0,π4,∴sin θ-cos θ=-1-2sin θcos θ=-23. 2.已知sin α-cos α=2,则tan α=( ) A .-1 B .-22 C .22D .1 答案 A解析 将等式sin α-cos α=2的两边平方,整理得1+2sin αcos α=0,即sin 2α+cos 2α+2sin αcos α=0,∴(sin α+cos α)2=0,∴sin α+cos α=0,∴sin α=-cos α.由已知得cos α≠0,∴tan α=sin αcos α=-1.故选A .3.下列结论能成立的是( ) A .sin α=12且cos α=12B .tan α=2且cos αsin α=13C .tan α=1且cos α=22D .sin α=1且tan α·cos α=12答案 C解析 同角三角函数的基本关系式是指同一个角的不同三角函数值之间的关系,这个角可以是任意角,利用同角三角函数的基本关系即得C 成立.4.若π<α<3π2,1-cos α1+cos α+1+cos α1-cos α的化简结果为( )A .2tan αB .-2tan αC .2sin αD .-2sin α 答案 D解析 ∵π<α<3π2,∴sin α<0.原式=1-cos α21-cos 2α+1+cos α21-cos 2α=1-cos α|sin α|+1+cos α|sin α|=-2sin α,故选D .5.化简1-sin 2160°的结果是( ) A .cos160° B.-cos160° C .±cos160° D.±|cos160°| 答案 B解析 ∵cos160°<0,∴原式=|cos160°|=-cos160°. 二、填空题6.若2cos α+sin α=5,则1tan α=________. 答案 2解析 将已知等式两边平方,得4cos 2α+sin 2α+4sin αcos α=5(cos 2α+sin 2α),化简得4sin 2α-4sin αcos α+cos 2α=0,即(2sin α-cos α)2=0,则2sin α=cos α,故1tan α=2. 7.若cos 2x +cos x =1,则sin 4x +sin 2x 的值等于________. 答案 1解析 ∵cos 2x +cos x =1,∴cos x =1-cos 2x =sin 2x , ∴sin 4x +sin 2x =cos 2x +cos x =1.8.若tan α=2,则sin α+cos αsin α-cos α+cos 2α=________.答案165解析 原式=sin α+cos αsin α-cos α+cos 2αsin 2α+cos 2α=tan α+1tan α-1+1tan 2α+1=2+12-1+14+1=165. 三、解答题9.已知0<α<π2,若cos α-sin α=-55,求2sin αcos α-cos α+11-tan α的值.解 由cos α-sin α=-55,得1-2sin αcos α=15, ∴2sin αcos α=45,∴(cos α+sin α)2=1+2sin αcosα=1+45=95.又0<α<π2,∴sin α+cos α=355,与cos α-sin α=-55联立, 解得sin α=255,cos α=55,∴2sin αcos α-cos α+11-tan α=2sin αcos α-cos α+11-sin αcos α=cos α2sin αcos α-cos α+1cos α-sin α=55×45-55+1-55=5-95. 10.已知关于x 的方程4x 2-2(m +1)x +m =0的两个根恰好是一个直角三角形的一个锐角的正、余弦,求实数m 的值.解 设直角三角形的一个锐角为β,因为方程4x 2-2(m +1)x +m =0中,Δ=4(m +1)2-4×4m =4(m -1)2≥0,所以当m ∈R 时,方程恒有两实根. 又因为sin β+cos β=m +12,sin βcos β=m4, 所以由以上两式及sin 2β+cos 2β=1,得1+2×m 4=m +122,解得m =±3.当m =3时,sin β+cos β=3+12>0, sin β·cos β=34>0,满足题意, 当m =-3时,sin β+cos β=1-32<0,这与β是锐角矛盾,舍去.综上,m =3.周周回馈练对应学生用书P13一、选择题 1.给出下列说法:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,角的大小与角所在扇形的半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确说法的个数是( ) A .1 B .2 C .3 D .4 答案 A解析 对于①,150°是第二象限角,390°是第一象限角,但150°<390°,错误;对于②,三角形的内角还可能为90°,是y 轴非负半轴上的角,错误;显然③正确;对于④,α与β的终边还可以关于y 轴对称,错误;对于⑤,θ还可以是x 轴非正半轴上的角,错误.2.下列各式正确的是( )A .π2=90B .π18=10° C.3°=60π D .38°=38π答案 B解析 A 中,π2=90°,故错误;B 中,π18=10°,故正确;C 中,3°=3×π180=π60,故错误;D 中,38°=38×π180=19π90,故错误.3.若角α的终边经过点P (sin780°,cos(-330°)),则sin α=( ) A .32 B .12 C .22D .1 答案 C解析 因为sin780°=sin(2×360°+60°)=sin60°=32,cos(-330°)=cos(-360°+30°)=cos30°=32,所以P ⎝ ⎛⎭⎪⎫32,32,sin α=22. 4.扇形的圆心角为150°,半径为3,则此扇形的面积为( ) A .5π4 B .π C.3π3 D .23π29答案 A解析 ∵150°=5π6,∴S =12×5π6×(3)2=5π4,故选A .5.若角α与β的终边互相垂直,则α与β的关系是( ) A .β=α+90° B .β=α±90°C .β=α+k ·360°+90°(k ∈Z )D .β=k ·360°+α±90°(k ∈Z ) 答案 D解析 如图1,角α与β终边互相垂直,β=α+90°. 如图2,角α与β终边互相垂直,α=β+90°.由终边相同角的表示方法知:角α与β终边互相垂直,则有β=k ·360°+α±90°(k ∈Z ).6.已知α是锐角,且tan α是方程4x 2+x -3=0的根,则sin α=( ) A .45 B .35 C .25 D .15 答案 B解析 因为方程4x 2+x -3=0的根为x =34或x =-1.又因为tan α是方程4x 2+x -3=0的根且α为锐角,所以tan α=34,所以sin α=34cos α,即cos α=43sin α.又sin 2α+cos 2α=1, 所以sin 2α+169sin 2α=1,所以sin 2α=925(α为锐角),所以sin α=35.二、填空题7.将90°角的终边按顺时针方向旋转30°所得的角等于________. 答案 60°解析 按顺时针方向旋转,角度减少,即90°-30°=60°.8.已知|cos θ|=-cos θ且tan θ<0,则代数式lg (sin θ-cos θ)________0.(填“>”“<”)答案 >解析 由|cos θ|=-cos θ,得cos θ≤0.又∵tan θ<0,∴角θ的终边在第二象限.∴sin θ>0,cos θ<0.由三角函数线可知sin θ-cos θ>1.∴lg (sin θ-cos θ)>0.9.已知tan α,1tan α是关于x 的方程x 2-kx +k 2-3=0的两个实根,且3π<α<7π2,则cos α+sin α=________.答案 - 2解析 ∵tan α·1tan α=k 2-3=1,∴k =±2,而3π<α<7π2,则tan α+1tan α=k =2,得tan α=1,则sin α=cos α=-22,∴cos α+sin α=-2. 三、解答题10.如图所示,用弧度制表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分的角的集合.解 (1)将阴影部分看成是由OA 逆时针转到OB 所形成.故满足条件的角的集合为α3π4+2k π<α<4π3+2k π,k ∈Z . (2)若将终边为OA 的一个角改写为-π6,此时阴影部分可以看成是OA 逆时针旋转到OB 所形成,故满足条件的角的集合为α-π6+2k π<α≤5π12+2k π,k ∈Z . (3)将图中x 轴下方的阴影部分看成是由x 轴上方的阴影部分旋转π rad 而得到,所以满足条件的角的集合为αk π≤α≤π2+k π,k ∈Z .(4)与第(3)小题的解法类似,将第二象限阴影部分旋转π rad 后可得到第四象限的阴影部分.所以满足条件的角的集合为α2π3+k π<α<5π6+k π,k ∈Z . 11.若0<α<β<π2,试比较β-sin β与α-sin α的大小. 解 如图,在单位圆中,sin α=MP ,sin β=NQ ,弧AP 的长为α,弧AQ 的长为β,则弧PQ 的长为β-α.过P 作PR ⊥QN 于R ,连接PQ ,则MP =NR .所以RQ =sin β-sin α<PQ <PQ =β-α.所以β-sin β>α-sin α.12.(1)已知sin α是方程5x 2-7x -6=0的根,求 cos α+2πcos 4π+αtan 22π+αtan 6π+αsin 2π+αsin 8π+α的值;(2)已知sin(4π+α)=2sin β,3cos(6π+α)=2cos(2π+β),且0<α<π,0<β<π,求α和β的值.解 (1)由于方程5x 2-7x -6=0的两根为2和-35,所以sin α=-35. 由sin 2α+cos 2α=1,得cos α=±1-sin 2α=±45. 当cos α=45时,tan α=-34; 当cos α=-45时,tan α=34. 所以原式=cos α·cos α·tan 2α·tan αsin α·sin α=tan α=±34. (2)因为sin(4π+α)=2sin β,所以sin α=2sin β.①因为3cos(6π+α)=2cos(2π+β), 所以3cos α=2cos β.②①2+②2,得sin 2α+3cos 2α=2(sin 2β+cos 2β)=2, 所以cos 2α=12,即cos α=±22.又0<α<π,所以α=π4或α=3π4.又0<β<π,当α=π4时,由②得β=π6;当α=3π4时,由②得β=5π6.所以α=π4,β=π6或α=3π4,β=5π6.。
高中数学 第一章 三角函数 1.2.2 同角三角函数的基本关系课后习题 新人教A版必修4-新人教A版
![高中数学 第一章 三角函数 1.2.2 同角三角函数的基本关系课后习题 新人教A版必修4-新人教A版](https://img.taocdn.com/s3/m/8d7c91214a73f242336c1eb91a37f111f1850d5a.png)
1.2.2 同角三角函数的基本关系一、A组1.化简sin2β+cos4β+sin2βcos2β的结果是()A. B. C.1 D.解析:原式=sin2β+cos2β(sin2β+cos2β)=sin2β+cos2β=1.答案:C2.(2016·某某某某实验中学检测)已知tan α=2,则sin2α-sin αcos α的值是()A. B.- C.-2 D.2解析:sin2α-sin αcos α==.答案:A3.(2016·某某某某十一中高一期中)(1+tan215°)cos215°的值等于()A. B.1 C.- D.解析:(1+tan215°)cos215°=cos215°=cos215°+sin215°=1.答案:B4.已知α是第四象限角,tan α=-,则sin α=()A. B.- C. D.-解析:∵α是第四象限角,∴sin α<0.由tan α=-,得=-,∴cos α=-sin α.由sin2α+cos2α=1,得sin2α+=1,∴sin2α=1,sin α=±.∵sin α<0,∴sin α=-.答案:D5.若角α的终边落在直线x+y=0上,则的值为()A.2B.-2C.0D.2或-2解析:由题知,α为第二或第四象限角,原式=.当α为第二象限角时,原式=-=0.当α为第四象限角时,原式==0.综上,原式=0.答案:C6.在△ABC中,cos A=,则tan A=.解析:在△ABC中,可得0<A<π.∵cos A=,∴sin A=.∴tan A==2.答案:27.已知sin α=2m,cos α=m+1,则m=.解析:∵sin2α+cos2α=1,∴(2m)2+(m+1)2=4m2+m2+2m+1=1,∴m=0或m=-.答案:0或-8.(2016·某某某某溧水中学月考)若tan2x-sin2x=,则tan2x sin2x=.解析:tan2x sin2x=tan2x(1-cos2x)=tan2x-tan2x cos2x=tan2x-sin2x=.答案:9.若<α<2π,化简:.解:∵<α<2π,∴sin α<0.∴原式====-=-.10.求证:(1)sin4α-cos4α=2sin2α-1;(2)sin θ(1+tan θ)+cos θ.证明:(1)左边=(sin2α+cos2α)(sin2α-cos2α)=sin2α-(1-sin2α)=2sin2α-1=右边,∴原式成立.(2)左边=sin θ+cos θ=sin θ++cos θ+===右边.∴原式成立.二、B组1.锐角α满足sin αcos α=,则tan α的值为()A.2-B.C.2±D.2+解析:将sin αcos α看作分母是1的分式,则sin αcos α=,分子、分母同时除以cos2α(cos α≠0),得,化成整式方程为tan2α-4tan α+1=0,解得tan α=2±,符合要求,故选C.答案:C2.化简的结果为()A.-cos 160°B.cos 160°C. D.解析:原式===|cos 160°|=-cos 160°,故选A.答案:A3.已知sin θ=,cos θ=,其中θ∈,则tan θ的值为()A.-B.C.-或-D.与m的值有关解析:∵sin2θ+cos2θ=1,∴=1,解得m=0或m=8.∵θ∈,∴sin θ≥0,cos θ≤0.当m=0时,sin θ=-,cos θ=,不符合题意;当m=8时,sin θ=,cos θ=-,tan θ=-,故选A.答案:A4.已知cos,0<α<,则sin=.解析:∵sin2+cos2=1,∴sin2=1-.∵0<α<,∴<α+.∴sin.答案:5.导学号08720014若0<α<,则的化简结果是. 解析:由0<α<,得0<,所以0<sin<cos.故原式==cos-sin+sin+cos=2cos.答案:2cos6.(2016·某某某某溧水中学月考)若α∈(π,2π),且sin α+cos α=.(1)求cos2α-cos4α的值;(2)求sin α-cos α的值.解:(1)因为sin α+cos α=,所以(sin α+cos α)2=,即1+2sin αcos α=,所以sin αcos α=-.所以cos2α-cos4α=cos2α(1-cos2α)=cos2αsin2α=(sin αcos α)2=.(2)(sin α-cos α)2=1-2sin αcos α=1-2×,由(1)知sin αcos α=-<0,又α∈(π,2π),所以α∈.所以sin α<0,cos α>0,所以sin α-cos α<0,所以sin α-cos α=-.7.导学号08720015已知关于x的方程2x2-(+1)x+m=0的两根为sin θ和cos θ.求:(1)的值;(2)m的值.解:因为已知方程有两根,所以(1)==sin θ+cos θ=.(2)对①式两边平方,得1+2sin θcos θ=, 所以sin θcos θ=.由②,得,即m=.由③,得m≤,所以m=.。
高中数学 第1章 三角函数 1.2 任意角的三角函数 1.2.2 同角三角函数关系学案 苏教版必修4
![高中数学 第1章 三角函数 1.2 任意角的三角函数 1.2.2 同角三角函数关系学案 苏教版必修4](https://img.taocdn.com/s3/m/a04c27fdbb68a98270fefaad.png)
1.2.2 同角三角函数关系1.理解同角三角函数的两种基本关系.2.了解同角三角函数的基本关系的常见变形形式.3.学会应用同角三角函数的基本关系化简、求值与证明.同角三角函数的基本关系式1.判断(正确的打“√”,错误的打“×”)(1)对任意角α,sin 24α+cos 24α=1都成立.( ) (2)对任意角α,sinα2cosα2=tan α2都成立.( )(3)对任意的角α,β有sin 2α+cos 2β=1.( ) (4)sin 2α与sin α2所表达的意义相同.( )解析:(1)正确.当角α∈R 时,sin 24α+cos 24α=1都成立,所以正确.(2)错误.当α2=k π+π2,k ∈Z ,即α=2k π+π,k ∈Z 时,tan α2没意义,故sinα2cosα2=tanα2不成立,所以错误.(3)错误.当α=π2,β=0时,sin 2α+cos 2β≠1,故此说法是错误的.(4)错误.sin 2α是(sin α)2的缩写,表示角α的正弦的平方,sin α2表示角α2的正弦,故两者意义不同,此说法是错误的.答案:(1)√ (2)× (3)× (4)×2.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=35,则cos α等于( )A .45B .-45C .-17D .35答案:B3.化简:(1+tan 2 α)·cos 2α等于( ) A .-1 B .0 C .1 D .2答案:C4.已知tan α=1,则2sin α-cos αsin α+cos α=________.解析:原式=2tan α-1tan α+1=2-11+1=12.答案:12已知一个三角函数值求其他三角函数值已知cos α=-35,求sin α,tan α的值.【解】 因为cos α<0且cos α≠-1, 所以α是第二或第三象限角. 所以当α为第二象限角时, sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-352=45, tan α=sin αcos α=-43.当α为第三象限角时, sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫-352= -45,tan α=sin αcos α=43.已知角α的某一三角函数值,求角α的其余三角函数值时,要注意公式的合理选择;若角所在的象限已经确定,求另两种三角函数值时,只有一组结果;若角所在的象限不确定,应分类讨论.1.(1)已知α是第二象限角,且tan α=-724,则cos α=________.(2)已知sin θ=a (a ≠0),且tan θ>0,求cos θ、tan θ. 解:(1)因为α是第二象限角, 故sin α>0,cos α<0, 又tan α=-724,所以sin αcos α=-724,又sin 2α+cos 2α=1,解得cos α=-2425.故填-2425.(2)因为tan θ>0,则θ在第一、三象限,所以a ≠±1. ①若θ在第一象限,sin θ=a >0,且a ≠1时, cos θ=1-sin 2θ=1-a 2. 所以tan θ=sin θcos θ=a1-a2. ②若θ在第三象限,sin θ=a <0,且a ≠-1时, cos θ=-1-sin 2θ=-1-a 2. 所以tan θ=sin θcos θ=-a1-a2. 利用同角三角函数关系化简化简下列各式: (1)1-2sin 10°cos 10°sin 10°-1-sin 210°; (2)1-sin α1+sin α+1+sin α1-sin α,其中sin αtan α<0.【解】 (1)1-2sin 10°cos 10°sin 10°-1-sin 210° =(cos 10°-sin 10°)2sin 10°-cos 210°=|cos 10°-sin 10°|sin 10°-cos 10°=cos 10°-sin 10°sin 10°-cos 10°=-1. (2)由于sin αtan α<0,则sin α,tan α异号, 所以α是第二、三象限角,所以cos α<0.所以1-sin α1+sin α+1+sin α1-sin α=(1-sin α)21-sin 2α+ (1+sin α)21-sin 2α=|1-sin α||cos α|+|1+sin α||cos α|=1-sin α+1+sin α-cos α=-2cos α.(1)三角函数式的化简过程中常用的方法①化切为弦,即把非正弦、非余弦的函数都化成正弦、余弦函数,从而减少函数名称,达到化简的目的.②对于含有根号的,常把根号下式子化成完全平方式,然后去根号,达到化简的目的. ③对于化简含高次的三角函数式,往往借助于因式分解,或构造sin 2α+cos 2α=1,以降低函数次数,达到化简的目的.(2)对三角函数式化简的原则 ①使三角函数式的次数尽量低. ②使式中的项数尽量少. ③使三角函数的种类尽量少. ④使式中的分母尽量不含有三角函数. ⑤使式中尽量不含有根号和绝对值符号.⑥能求值的要求出具体的值,否则就用三角函数式来表示.2.化简:1-sin 4x -cos 4x1-sin 6x -cos 6x.解:原式=1-[(sin 2x +cos 2x )2-2sin 2x cos 2x ]1-(sin 2x +cos 2x )(sin 4x +cos 4x -sin 2x cos 2x ) =1-1+2sin 2x cos 2x1-[(sin 2x +cos 2x )2-3sin 2x cos 2x ] =2sin 2x cos 2x 3sin 2x cos 2x =23. 利用同角三角函数关系式证明求证:(1)1+tan 2α=1cos 2α;(2)sin α1-cos α=1+cos αsin α. 【证明】 证明:(1)因为1+tan 2α=1+sin 2αcos 2α= cos 2α+sin 2αcos 2α=1cos 2α, 所以原式成立.(2)法一:由sin α≠0知,cos α≠-1, 所以1+cos α≠0.于是左边=sin α(1+cos α)(1-cos α)(1+cos α)=sin α(1+cos α)1-cos 2α=sin α(1+cos α)sin 2α=1+cos αsin α=右边. 所以原式成立.法二:因为sin 2α+cos 2α=1,所以sin 2α=1-cos 2α, 即sin 2α=(1-cos α)(1+cos α). 因为1-cos α≠0,sin α≠0, 所以sin α1-cos α=1+cos αsin α.证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边,遵循由繁到简的原则. (2)证明左右两边等于同一个式子.(3)证明左边减去右边等于零或左、右两边之比等于1.(4)证明与原式等价的另一个式子成立,从而推出原式成立.3.(1)求证:1-2sin x cos x cos 2x -sin 2x =1-tan x1+tan x. (2)求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α.证明:(1)左边=sin 2x -2sin x cos x +cos 2xcos 2x -sin 2x=tan 2x -2tan x +11-tan 2x=(tan x -1)2(1-tan x )(1+tan x )=1-tan x1+tan x =右边. 所以原式成立.(2)因为右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α =tan 2α(1-cos 2α)(tan α-sin α)tan αsin α =tan 2αsin 2α(tan α-sin α)tan αsin α =tan αsin αtan α-sin α =左边, 所以原等式成立.1.同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,这里,“同角”有两层含义:一是“角相同”,二是对“任意”一个角(在使函数有意义的前提下).关系式成立与角的表达形式无关,如sin 23α+cos 23α=1.2.在使用同角三角函数关系式时要注意使式子有意义,如式子tan 90°=sin 90°cos 90°不成立.3.注意公式的变形,如sin 2α=1-cos 2α,cos 2α=1-sin 2α,sin α=cos αtan α,cosα=sin αtan α等. 4.在应用平方关系式求sin α或cos α时,其正负号是由角α所在的象限决定的,不可凭空想象.已知sin α+cos α=13,其中0<α<π,求sin α-cos α的值.【解】 因为sin α+cos α=13,所以(sin α+cos α)2=19,可得:sin α·cos α=-49.因为0<α<π,且sin α·cos α<0,所以sin α>0,cos α<0.所以sin α-cos α>0, 又(sin α-cos α)2=1-2sin αcos α=179,所以sin α-cos α=173.(1)在处得到sin α·cos α<0,为判断sin α,cos α的具体符号提供了条件,是解答本题的关键;若没有判断出处的关系式,则下一步利用平方关系求解sin α-cos α的值时,可能会出现两个,是解答本题的易失分点;若前边的符号问题都正确,但在处书写不正确,没有考虑前面的符号而出现sin α-cos α=±173,则是解答本题的又一易失分点. (2)在解题过程中要充分利用题中的条件,判断出所求的三角函数式的符号.1.已知sin α=23,tan α=255,则cos α=( )A .13 B .53 C .73D .55解析:选B .因为tan α=sin αcos α,所以cos α=sin αtan α=23255=53.2.化简:⎝⎛⎭⎪⎫1sin α+1tan α(1-cos α)=( )A .sin αB .cos αC .1+sin αD .1+cos α解析:选A .⎝⎛⎭⎪⎫1sin α+1tan α(1-cos α)=⎝ ⎛⎭⎪⎫1sin α+cos αsin α(1-cos α)=1-cos 2αsin α=sin α. 3.已知cos θ=35,且3π2<θ<2π,那么tan θ的值为________.解析:因为θ为第四象限角, 所以tan θ<0,sin θ<0,sin θ=-1-cos 2θ=-45,所以tan θ=sin θcos θ=-43.答案:-434.已知tan α=43,且α是第三象限角,求sin α,cos α的值.解:由tan α=sin αcos α=43,得sin α=43cos α,①又sin 2α+cos 2α=1,② 由①②得169cos 2α+cos 2α=1,即cos 2α=925.又α是第三象限角,所以cos α=-35,sin α=-45.[学生用书P83(单独成册)])[A 基础达标]1.若cos α=13,则(1+sin α)(1-sin α)等于( )A .13B .19C .223D .89解析:选B .原式=1-sin 2α=cos 2α=19,故选B .2.若α是第四象限角,tan α=-512,则sin α=( )A .15B .-14C .513D .-513解析:选D .因为tan α=sin αcos α=-512,sin 2α+cos 2α=1,所以sin α=±513.因为α是第四象限角,所以sin α=-513.3.已知θ是第三象限角,且sin 4θ+cos 4θ=59,则sin θcos θ的值为( )A .23B .-23C .13D .-13解析:选A .由sin 4θ+cos 4θ=59,得(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59,所以sin 2θcos 2θ=29.因为θ是第三象限角,所以sin θ<0,cos θ<0,所以sin θcos θ=23. 4.如果tan θ=2,那么1+sin θcos θ=( ) A .73 B .75 C .54D .53解析:选B .法一:1+sin θcos θ=1+sin θcos θ1=sin 2θ+cos 2θ+sin θcos θsin 2θ+cos 2θ =tan 2θ+tan θ+1tan 2θ+1, 又tan θ=2,所以1+sin θcos θ=22+2+122+1=75.法二:tan θ=2,即sin θ=2cos θ, 又sin 2θ+cos 2θ=1, 所以(2cos θ)2+cos 2θ=1, 所以cos 2θ=15.又tan θ=2>0,所以θ为第一或第三象限角. 当θ为第一象限角时,cos θ=55,此时sin θ=1-cos 2θ=255,则1+sin θcos θ=1+255×55=75;当θ为第三象限角时,cos θ=-55, 此时sin θ=-1-cos 2θ=-255,则1+sin θcos θ=1+(-255)×(-55)=75.5.若cos α+2sin α=-5,则tan α=( ) A .12 B .2C .-12D .-2解析:选B .由⎩⎨⎧cos α+2sin α=-5,sin 2α+cos 2α=1得(5sin α+2)2=0. 所以sin α=-255,cos α=-55.所以tan α=2.6.已知tan α=m ⎝⎛⎭⎪⎫π<α<3π2,则sin α=________.解析:因为tan α=m ,所以sin 2αcos 2α=m 2,又sin 2α+cos 2α=1,所以cos 2α=1m 2+1,sin 2α=m 2m 2+1.又因为π<α<3π2,所以tan α>0,即m >0.因而sin α=-mm 2+1. 答案:-m1+m27.已知sin α-cos αsin α+cos α=2,则sin αcos α的值为________.解析:由sin α-cos αsin α+cos α=2,等式左边的分子分母同除以cos α,得tan α-1tan α+1=2,所以tanα=-3,所以sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=-310. 答案:-310 8.已知α是第二象限角,则sin α1-cos 2 α+21-sin 2 αcos α=________. 解析:因为α是第二象限角,所以sin α>0,cos α<0,所以sin α1-cos 2α+21-sin 2αcos α=sin αsin α+-2cos αcos α=-1. 答案:-19.化简:sin 2x sin x -cos x -sin x +cos x tan 2x -1. 解:原式=sin 2x sin x -cos x -sin x +cos x sin 2xcos 2x-1 =sin 2x sin x -cos x -cos 2x (sin x +cos x )sin 2x -cos 2x=sin 2x -cos 2x sin x -cos x=sin x +cos x . 10.已知tan α=2,求下列各式的值:(1)2sin 2α-3cos 2α4sin 2α-9cos 2α; (2)sin 2α-3sin αcos α+1.解:(1)因为tan α=2,所以cos α≠0.所以2sin 2α-3cos 2α4sin 2α-9cos 2α=2tan 2α-34tan 2α-9 =2×22-34×22-9=57. (2)因为tan α=2,所以cos α≠0.所以sin 2α-3sin αcos α+1=sin 2α-3sin αcos α+(sin 2α+cos 2α)=2sin 2α-3sin αcos α+cos 2α=2sin 2α-3sin αcos α+cos 2αsin 2α+cos 2α=2tan 2α-3tan α+1tan 2α+1=2×22-3×2+122+1=35. [B 能力提升]1.若△ABC 的内角A 满足sin A cos A =13,则sin A +cos A 的值为( ) A .153 B .-153 C .53 D .-53解析:选A .因为A 为△ABC 的内角,且sin A cos A =13>0,所以A 为锐角,所以sin A +cos A >0.又1+2sin A cos A =1+23,即(sin A +cos A )2=53,所以sin A +cos A =153. 2.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=________.解析:因为tan θ=2,所以cos θ≠0,则原式可化为sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=sin 2θcos 2θ+sin θcos θcos 2θ-2cos 2θcos 2θsin 2θcos 2θ+cos 2θcos 2θ=tan 2θ+tan θ-2tan 2θ+1=22+2-222+1=45. 答案:453.已知2sin θ-cos θ=1,3cos θ-2sin θ=a ,记数a 形成的集合为A ,若x ∈A ,y ∈A ,则以点P (x ,y )为顶点的平面图形是什么图形?解:联立⎩⎪⎨⎪⎧2sin θ-cos θ=1,sin 2θ+cos 2θ=1,解得⎩⎪⎨⎪⎧sin θ=0,cos θ=-1,或⎩⎪⎨⎪⎧sin θ=45,cos θ=35.所以a =3cos θ-2sin θ=-3或15,即A =⎩⎨⎧⎭⎬⎫-3,15.因此,点P (x ,y )可以是P 1(-3,-3),P 2⎝ ⎛⎭⎪⎫-3,15,P 3⎝ ⎛⎭⎪⎫15,15,P 4⎝ ⎛⎭⎪⎫15,-3.经分析知,这四个点构成一个正方形.4.(选做题)已知关于x 的方程2x 2-(3+1)x +m =0的两根分别为sin θ和cos θ,θ∈(0,2π),求:(1)sin θ1-1tan θ+cosθ1-tan θ的值;(2)m 的值;(3)方程的两根及此时θ的值.解:由根与系数的关系,可得⎩⎪⎨⎪⎧sin θ+cos θ=3+12,①sin θ·cos θ=m2,②Δ=4+23-8m ≥0.③(1)sin θ1-1tan θ+cos θ1-tan θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ=3+12.(2)由①平方,得1+2sin θcos θ=2+32,所以sin θcos θ=34.又由②,得m 2=34,所以m =32,由③,得m ≤2+34, 所以m =32符合题意; (3)当m =32时,原方程变为2x 2-(3+1)x +32=0,解得x 1=32,x 2=12. 所以⎩⎪⎨⎪⎧sin θ=32,cos θ=12或⎩⎪⎨⎪⎧cos θ=32,sin θ=12. 又因为θ∈(0,2π),所以θ=π3或π6.。
2020_2021高中数学第一章三角函数1.2.2同角三角函数的基本关系
![2020_2021高中数学第一章三角函数1.2.2同角三角函数的基本关系](https://img.taocdn.com/s3/m/fb28c9df0740be1e640e9a02.png)
1.2.2 同角三角函数的基本关系考试标准课标要点学考要求高考要求同角三角函数的基本关系 b b 同角三角函数关系的应用bb知识导图学法指导1.充分理解同角三角函数的基本关系式,掌握公式成立的条件、形式及公式的变形,在尝试证明的基础上去理解记忆.2.理解并记忆相应的求值、化简以及证明的模型,领会解题常用的方法技巧,熟练掌握公式及其变形的应用.同角三角函数的基本关系式状元随笔(1)“同角”有两层含义:一是“角相同”,二是对“任意”一个角(在使函数有意义的前提下),关系式都成立,与角的表达形式无关,如:sin 23α+cos 23α=1等.(2)注意公式成立的条件.(3)注意公式的变形,特别是公式的逆用.(4)在应用平方关系式求sin α或cos α时,其正负号是由角α所在的象限决定,不可凭空想象. [小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”)(1)sin 2π3+cos 2π4=1.( )(2)sin α2+cos α2=1.( )(3)对于任意角α都有sin 2α+cos 2α=1,tan α=sin αcos α.( )答案:(1)× (2)× (3)×2.若α为第二象限角,且sin α=23,则cos α=( )A .-53 B.13C.53 D .-13解析:∵α是第二象限角, ∴cos α=-1-sin 2α=-53. 答案:A3.已知tan α=12,且α∈⎝⎛⎭⎫π,3π2,则sin α的值是( ) A .-55 B.55C.255 D .-255解析:∵α∈(π,3π2),∴sin α<0.由tan α=sin αcos α=12,sin 2α+cos 2α=1,得sin α=-55.答案:A4.化简:(1+tan 2α)·cos 2α等于( ) A .-1 B .0 C .1 D .2解析:原式=⎝⎛⎭⎫1+sin 2αcos 2α·cos 2α=cos 2α+sin 2α=1.答案:C类型一 利用同角基本关系式求值例1 (1)已知sin α=15,求cos α,tan α;(2)已知tan α=3,求3sin 2α-cos 2α2sin 2α-6cos 2α.【解析】 (1)因为sin α=15>0,且sin α≠1,所以α是第一或第二象限角.①当α为第一象限角时,cos α=1-sin 2α=1-125=2 65,tan α=sin αcos α=612;②当α为第二象限角时,cos α=-1-sin 2α=-2 65,tan α=-612.(2)分子、分母同除以cos 2α,得3sin 2α-cos 2α2sin 2α-6cos 2α=3tan 2α-12tan 2α-6.又tan α=3,所以3sin 2α-cos 2α2sin 2α-6cos 2α=3×32-12×32-6=136.(1)已知角的正弦值或余弦值,求其他三角函数值,应先判断三角函数值的符号,然后根据平方关系求出该角的正弦值或余弦值,再利用商数关系求解该角的正切值即可.(2)利用同角基本关系式,分子、分母同除以cos 2α,把正弦、余弦化成正切. 方法归纳求同角三角函数值的一般步骤(1)根据已知三角函数值的符号,确定角所在的象限.sin θ+cos θ=15,两边平方→求出2sin θcos θ的值→求sin θ-cos θ的值方法归纳已知sin α±cos α的求值问题的方法对于已知sin α±cos α的求值问题,一般利用整体代入的方法来解决,其具体的解法为:(1)用sin α表示cos α(或用cos α表示sin α),代入sin 2α+cos 2α=1,根据角α的终边所在的象限解二次方程得sin α的值(或cos α的值),再求其他,如tan α(体现方程思想).(2)利用sin α±cos α的平方及sin 2α+cos 2α=1,先求出sin αcos α的值,然后求出sin α∓cos α的值(要注意结合角的范围确定符号)从而求解sin α,cos α的值,再求其他.跟踪训练4 已知x 是第三象限角,且cos x -sin x =55.(1)求cos x +sin x 的值;(2)求2sin 2x -sin x cos x +cos 2x 的值.解析:(1)(cos x -sin x )2=1-2sin x cos x =15,所以2sin x cos x =45,所以(cos x +sin x )2=1+2sin x cos x =95,因为x 是第三象限角,所以cos x +sin x <0, 所以cos x +sin x =-355.(2)由⎩⎨⎧cos x +sin x =-355,cos x -sin x =55,解得cos x =-55,sin x =-255, 所以2sin 2x -sin x cos x +cos 2x =2×45-25+15=75.(1)把cos x -sin x =55平方(2)注意x 的范围(3)分别求出sin x 、cos x 1.2.2[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.下列四个命题中可能成立的一个是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.2 同角三角函数的基本关系1.平方关系(1)公式:sin2α+cos2α=1.(2)语言叙述:同一个角α的正弦、余弦的平方和等于1.思考:对任意的角α,sin22α+cos22α=1是否成立?[提示]成立.平方关系中强调的同一个角且是任意的,与角的表达形式无关.2.商数关系(1)公式:sin αcos α=tan α⎝ ⎛⎭⎪⎫α≠k π+π2,k ∈Z . (2)语言叙述:同一个角α的正弦、余弦的商等于角α的正切. 平方关系公式的推导 如图,设P (x ,y )根据单位圆中三角函数定义知,sin α=y ,cos α=x ,在Rt △OPM 中,OM 2+MP 2=1,因此x 2+y 2=1, 即sin 2α+cos 2α=1.1.化简1-sin2π5的结果是( )A .cos π5B .-cos π5C .sin π5D .-sin π5A [1-sin2π5=cos2π5=⎪⎪⎪⎪⎪⎪cos π5=cos π5.]2.若sin α=45,且α是第二象限角,则tan α的值等于( )A .-43B .34C .±34D .±43A [∵sin α=45且α是第二象限角,∴cos α=-1-⎝ ⎛⎭⎪⎫452=-35,∴tan α=sin αcos α=-43.]3.已知tan α=12,且α∈⎝ ⎛⎭⎪⎫π,3π2,则sin α的值是 . -55 [由tan α=12得sin αcos α=12, 即cos α=2sin α.又sin 2α+cos 2α=1,∴5sin 2α=1, ∴sin α=±55,又∵α∈⎝⎛⎭⎪⎫π,3π2,∴sin α=-55.]4.已知sin α+cos αsin α-cos α=2,则sin αcos α的值为 .310 [由已知得tan α+1tan α-1=2,解得tan α=3, ∴sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=332+1=310.]直接应用同角三角函数关系求值【例1】 (1)已知α∈⎝ ⎛⎭⎪⎫π,3π2,tan α=2,则cos α= . (2)已知cos α=-817,求sin α,tan α的值.思路点拨:(1)根据tan α=2和sin 2α+cos 2α=1列方程组求cos α. (2)先由已知条件判断角α是第几象限角,再分类讨论求sin α,tan α. (1)-55[由已知得⎩⎪⎨⎪⎧sin αcos α=2,①sin 2α+cos 2α=1,②由①得sin α=2cos α代入②得4cos 2α+cos 2α=1,所以cos 2α=15,又α∈⎝ ⎛⎭⎪⎫π,3π2,所以cos α<0, 所以cos α=-55.] (2)[解] ∵cos α=-817<0,∴α是第二或第三象限的角. 如果α是第二象限角,那么 sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-8172=1517, tan α=sin αcos α=1517-817=-158.如果α是第三象限角,同理可得sin α=-1-cos 2α=-1517,tan α=158.利用同角三角函数的基本关系解决给值求值问题的方法:(1)已知角α的某一种三角函数值,求角α的其余三角函数值,要注意公式的合理选择,一般是先选用平方关系,再用商数关系.(2)若角α所在的象限已经确定,求另两种三角函数值时,只有一组结果;若角α所在的象限不确定,应分类讨论,一般有两组结果.提醒:应用平方关系求三角函数值时,要注意有关角终边位置的判断,确定所求值的符号.1.已知sin α+3cos α=0,求sin α,cos α的值.[解]∵sin α+3cos α=0,∴sin α=-3cos α.又sin2α+cos2α=1,∴(-3cos α)2+cos2α=1,即10cos2α=1,∴cos α=±10 10.又由sin α=-3cos α,可知sin α与cos α异号,∴角α的终边在第二或第四象限.当角α的终边在第二象限时,cos α=-1010,sin α=31010;当角α的终边在第四象限时,cos α=1010,sin α=-31010.1.齐次式包含齐次分式和齐次关系式,如何由某角的正切值求该角的齐次分式或齐次关系的值?提示:在已知某角的正切值的情况下,把齐次式转化为含正切的关系式代入求值. 2.sin α±cos α与sin αcos α有怎样的关系,在求值中能否相互转化?提示:(sin α±cos α)2=1±2sin αcos α,若含sin α+cos α=t ,则sin αcosα=t 2-12.这三者在求值中是可以转化的.【例2】 (1)已知sin α+cos α=713,α∈(0,π),则tan α= .(2)已知sin α+cos αsin α-cos α=2,计算下列各式的值:①3sin α-cos α2sin α+3cos α;②sin 2α-2sin αcos α+1.思路点拨:(1)法一:求sin αcos α→求sin α-cos α →求sin α和cos α→求tan α法二:求sin αcos α→弦化切构建关于tan α的方程→求tan α (2)求tan α→换元或弦化切求值 (1)-125 [法一:(构建方程组)因为sin α+cos α=713,①所以sin 2α+cos 2α+2sin αcos α=49169,即2sin αcos α=-120169.因为α∈(0,π),所以sin α>0,cos α<0.所以sin α-cos α=(sin α-cos α)2=1-2sin αcos α=1713.②由①②解得sin α=1213,cos α=-513,所以tan α=sin αcos α=-125.法二:(弦化切)同法一求出sin αcos α=-60169,sin αcos αsin 2α+cos 2α=-60169,tan αtan 2α+1=-60169, 整理得60tan 2α+169tan α+60=0,解得tan α=-512或tan α=-125.由sin α+cos α=713>0知|sin α|>|cos α|,故tan α=-125.](2)[解] 由sin α+cos αsin α-cos α=2,化简得sin α=3cos α, 所以tan α=3.①法一(换元)原式=3×3cos α-cos α2×3cos α+3cos α=8cos α9cos α=89.法二(弦化切)原式=3tan α-12tan α+3=3×3-12×3+3=89.②原式=sin 2α-2sin αcos αsin 2α+cos 2α+1 =tan 2α-2tan αtan 2α+1+1=32-2×332+1+1=1310.1.将本例(1)条件“α∈(0,π)”改为“α∈⎝ ⎛⎭⎪⎫-π2,0,”其他条件不变,结果又如何?[解] 由例(1)求出2sin αcos α=-120169,因为α∈⎝ ⎛⎭⎪⎫-π2,0,所以sin α<0,cos α>0, 所以sin α-cos α=-(sin α-cos α)2=-1-2sin αcos α=-1713.与sin α+cos α=713联立解得sin α=-513,cos α=1213,所以tan α=sin αcos α=-512.2.将本例(1)的条件“sin α+cos α=713”改为“sin αcos α=-18”,其他条件不变,求cos α-sin α.[解] 因为sin αcos α=-18<0,所以α∈⎝ ⎛⎭⎪⎫π2,π,所以cos α-sin α<0,cos α-sin α=-1-2sin αcos α=-1-2×⎝ ⎛⎭⎪⎫-18=-52.1.sin α+cos α,sin α-cos α,sin αcos α三个式子中,已知其中一个,可以求其他两个,即“知一求二”,它们之间的关系是:(sin α±cos α)2=1±2sin αcos α.2.已知tan α=m ,求关于sin α,cos α的齐次式的值:解决这类问题需注意以下两点:(1)一定是关于sin α,cos α的齐次式(或能化为齐次式)的三角函数式;(2)因为cos α≠0,所以可除以cos α,这样可将被求式化为关于tan α的表达式,然后代入tan α=m 的值,从而完成被求式的求值.提醒:求sin α+cos α或sin α-cos α的值,要注意根据角的终边位置,利用三角函数线判断它们的符号.应用同角三角函数关系式化简【例3】 (1)化简2sin 2α-11-2cos 2α= .(2)化简sin α1-cos α·tan α-sin αtan α+sin α.(其中α是第三象限角)思路点拨:(1)将cos 2α=1-sin 2α代入即可化简. (2)首先将tan α化为sin αcos α,然后化简根式,最后约分.(1)1 [原式=2sin 2α-11-2(1-sin 2α)=2sin 2α-12sin 2α-1=1.] (2)原式=sin α1-cos α·sin αcos α-sin αsin αcos α+sin α=sin α1-cos α·1-cos α1+cos α=sin α1-cos α·(1-cos α)21-cos 2α=sin α1-cos α·1-cos α|sin α|.又因为α是第三象限角,所以sin α<0. 所以原式=sin α1-cos α·1-cos α-sin α=-1.三角函数式化简的常用方法(1)化切为弦,即把正切函数都化为正、余弦函数,从而减少函数名称,达到化简的目的. (2)对于含有根号的,常把根号里面的部分化成完全平方式,然后去根号达到化简的目的. (3)对于化简含高次的三角函数式,往往借助于因式分解,或构造sin 2α+cos 2α=1,以降低函数次数,达到化简的目的.提醒:在应用平方关系式求sin α或cos α时,其正负号是由角α所在的象限决定,不可凭空想象.2.化简下列各式: (1)tan α·1sin 2α-1(α是第二象限角); (2)2sin 4x +2cos 4x 2sin 2x cos 2x -1. [解] (1)tan α·1sin 2α-1=tan α·1-sin 2αsin 2α=tan α·cos 2αsin 2α=sin αcos α·⎪⎪⎪⎪⎪⎪cos αsin α. 因为α为第二象限角, 所以sin α>0,cos α<0, 所以原式=sin αcos α·-cos αsin α=-1.(2)2sin 4x +2cos 4x 2sin 2x cos 2x -1=2(sin 2x +cos 2x )2-4sin 2x cos 2x 2sin 2x cos 2x -1 =2-4sin 2x cos 2x 2sin 2x cos 2x -1=-2.1.证明三角恒等式常用哪些方法? 提示:(1)从右证到左. (2)从左证到右. (3)证明左右归一.(4)变更命题法.如:欲证明M N =P Q ,则可证MQ =N P 或证Q N =PM等.2.在证明1+sin α+cos α+2sin αcos α1+sin α+cos α=sin α+cos α时如何巧用“1”的代换.提示:在求证1+sin α+cos α+2sin αcos α1+sin α+cos α=sin α+cos α时,观察等式左边有2sin αcos α,它和1相加应该想到“1”的代换,即1=sin 2α+cos 2α,所以等式左边=(sin 2α+cos 2α+2sin αcos α)+sin α+cos α1+sin α+cos α=(sin α+cos α)2+sin α+cos α1+sin α+cos α=(sin α+cos α)(sin α+cos α+1)sin α+cos α+1=sin α+cos α=右边.【例4】 求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α.思路点拨:解答本题可由关系式tan α=sin αcos α将两边“切”化“弦”来证明,也可由右至左或由左至右直接证明.[证明] 法一:(切化弦)左边=sin 2αsin α-sin αcos α=sin α1-cos α,右边=sin α+sin αcos αsin 2α=1+cos αsin α. 因为sin 2α=1-cos 2α=(1+cos α)(1-cos α), 所以sin α1-cos α=1+cos αsin α,所以左边=右边.所以原等式成立. 法二:(由右至左)因为右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α =tan 2α(1-cos 2α)(tan α-sin α)tan αsin α=tan 2αsin 2α(tan α-sin α)tan αsin α=tan αsin αtan α-sin α =左边, 所以原等式成立.1.证明恒等式常用的思路是:(1)从一边证到另一边,一般由繁到简;(2)左右开弓,即证左边、右边都等于第三者;(3)比较法(作差,作比法).2.技巧感悟:朝目标奔.常用的技巧有:(1)巧用“1”的代换;(2)化切为弦;(3)多项式运算技巧的应用(分解因式).提醒:解决此类问题要有整体代换思想.3.求证:(1)1+tan 2α=1cos 2α; (2)1+2sin αcos αsin 2α-cos 2α=1+tan αtan α-1. [证明] (1)左边=1+sin 2αcos 2α=cos 2α+sin 2αcos 2α=1cos 2α=右边. ∴1+tan 2α=1cos 2α.(2)左边=sin 2α+cos 2α+2sin αcos αsin 2α-cos 2α =sin 2α+cos 2α+2sin αcos αcos 2αsin 2α-cos 2αcos 2α=tan 2α+2tan α+1tan 2α-1=(tan α+1)2(tan α+1)(tan α-1) =tan α+1tan α-1=右边.故等式成立.1.同角三角函数基本关系式的实质同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,这里,“同角”有两层含义:一是“角相同”,二是对“任意”一个角(在使函数有意义的前提下),关系式成立与角的表达形式无关,如sin 23α+cos 23α=1.2.同角基本关系式的主要变形形式有sin 2α+cos 2α=1 ⎩⎨⎧1=sin 2α+cos 2α,1-sin 2α=cos 2α→cos α=±1-sin 2α,1-cos 2α=sin 2α→sin α=±1-cos 2α.tan α=sin αcos α ⎩⎪⎨⎪⎧sin α=tan αcos α,cos α=sin αtan α. 3.在三角函数的变换求值中,已知sin α+cos α,sin αcos α,sin α-cos α中的一个,可以利用方程思想,求出另外两个的值.1.下列各式中成立的是( ) A .sin 2α+cos 2β=1 B .tan α=sin αcos α(α任意)C .cos2α2=1-sin2α2D .sin α=1-cos 2αC [A 中不是同角;B 中α≠k π+π2(k ∈Z );D 中符号不能确定;只有C 正确.]2.已知α∈⎣⎢⎡⎦⎥⎤π2,5π2,cos α=45,则tan α=( )A .±34B .34C .-34D .43A [因为cos α=45,且α∈⎣⎢⎡⎦⎥⎤π2,5π2,所以sinα=±35,所以tan α=sin αcos α=±34.]3.已知tan α=-12,则2sin αcos αsin 2α-cos 2α的值是 . 43 [因为tan α=-12,所以2sin αcos αsin 2α-cos 2α=2tan αtan 2α-1=2×⎝ ⎛⎭⎪⎫-12⎝ ⎛⎭⎪⎫-122-1=43.] 4.(1)化简sin 2α-sin 4α,其中α是第二象限角; (2)求证:1+tan 2α=1cos 2α.[解] (1)因为α是第二象限角,所以sin α>0,cos α<0, 所以sin αcos α<0,所以sin 2α-sin 4α=sin 2α(1-sin 2α) =sin 2αcos 2α=-sin αcos α.(2)证明:1+tan 2α=1+sin 2αcos 2α=cos 2α+sin 2αcos 2α=1cos 2α.。