红桥区高中2018-2019学年上学期高三数学10月月考试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红桥区高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 已知集合23111
{1,(
),,}122
i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( ) A .{1}- B .{1} C .{1,}2- D .{}2
2. 圆锥的高扩大到原来的 倍,底面半径缩短到原来的
1
2
,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的16
3. 设i 是虚数单位,是复数z 的共轭复数,若z =2(+i ),则z=( )
A .﹣1﹣i
B .1+i
C .﹣1+i
D .1﹣i
4. 函数g (x )是偶函数,函数f (x )=g (x ﹣m ),若存在φ∈(,
),使f (sin φ)=f (cos φ),则实
数m 的取值范围是( )
A .(
) B .(,
]
C .(
) D .(
]
5. 已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )
A .
B .
C .1:
D .5:(1+
6. 已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则O
P Q ∆的面积等于( )
A .
B .
C .
2 D .4
7. 在△ABC 中,若A=2B ,则a 等于( ) A .2bsinA
B .2bcosA
C .2bsinB
D .2bcosB
8. 若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )
A5 B4
C3 D2
9. 已知(2,1)a =-,(,3)b k =-,(1,2)c =(,2)k =-c ,若(2)a b c -⊥,则||b =( )
A .
B .
C .
D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.
10.在ABC ∆中,2
2
tan sin tan sin A B B A =,那么ABC ∆一定是( )
A .锐角三角形
B .直角三角形
C .等腰三角形
D .等腰三角形或直角三角形
11.在ABC ∆中,若60A ∠=,45B ∠=,BC =AC =( )
A .
B . C. D
12.函数f (x )=
有且只有一个零点时,a 的取值范围是( )
A .a ≤0
B .0<a <
C .<a <1
D .a ≤0或a >1
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.如图,在棱长为的正方体1111D ABC A B C D -中,点,E F 分别是棱1,BC CC 的中点,P 是侧
面11BCC B 内一点,若1AP 平行于平面
AEF ,则线段1A P 长度的取值范围是_________.
14.如图所示,圆C 中,弦AB 的长度为4,则AB AC ×的值为_______.
15.若全集
,集合
,则
16.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 .
三、解答题(本大共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。


17.(本题12分)如图,D 是Rt BAC ∆斜边BC 上一点,AC . (1)若22BD DC ==,求AD ; (2)若AB AD =,求角B .
18.(本题满分15分)
设点P 是椭圆14
:2
21=+y x C 上任意一点,
过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.
(1)求证:PB PA =;
(2)OAB ∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.
【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.
19.(本小题满分12分)如图, 矩形ABCD 的两条对角线相交于点()2,0M ,AB 边所在直线的方 程为360x y --=点()1,1T -在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.
20.(本题10分)解关于的不等式2
(1)10ax a x -++>.
21.(1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件
(2)求z=2x+y 的最大值,使式中的x 、y 满足约束条件+
=1.
22.(本小题满分12分)
设椭圆2222:1(0)x y C a b a b
+=>>的离心率12e =,圆22
127x y +=与直线1x y a b +=相切,O 为坐标原
点.
(1)求椭圆C 的方程;
(2)过点(4,0)Q -任作一直线交椭圆C 于,M N 两点,记MQ QN λ=,若在线段MN 上取一点R ,使 得MR RN λ=-,试判断当直线运动时,点R 是否在某一定直一上运动?若是,请求出该定直线的方 程;若不是,请说明理由.
红桥区高中2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】D 【解析】
考点:1.复数的相关概念;2.集合的运算 2. 【答案】A 【解析】
试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为2
113
V r h π=,将圆锥的高扩大到原来的倍,底面半径缩短到原来的12,则体积为2
22111(2)326V r h r h ππ=⨯=,所以12
2V V =,故选A.
考点:圆锥的体积公式.1 3. 【答案】B
【解析】解:设z=a+bi (a ,b ∈R ),则=a ﹣bi ,
由z
=2(+i ),得(a+bi )(a ﹣bi )=2[a+(b ﹣1)i],
整理得a 2+b 2
=2a+2(b ﹣1)i .

,解得.
所以z=1+i . 故选B .
【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.
4. 【答案】A
【解析】解:∵函数g (x )是偶函数,函数f (x )=g (x ﹣m ), ∴函数f (x )关于x=m 对称,
若φ∈(

),
则sin φ>cos φ,
则由f(sinφ)=f(cosφ),
则=m,
即m==(sinφ×+cosαφ)=sin(φ+)
当φ∈(,),则φ+∈(,),
则<sin(φ+)<,
则<m<,
故选:A
【点评】本题主要考查函数奇偶性和对称性之间的应用以及三角函数的图象和性质,利用辅助角公式是解决本题的关键.
5.【答案】D
【解析】
考点:1、抛物线的定义;2、抛物线的简单性质.
【方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况
下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M 到焦点的距离转化为到准线的距离后进行解答的. 6. 【答案】C 【解析】
∴1122(1,)2(1,)(0,0)x y x y -+-=, ∴1220y y +=③, 联立①②③可得2
18
m =,
∴12y y -==.
∴12122
S OF y y =
-=
. (由1212420y y y y =-⎧⎨+=⎩
,得12y y ⎧=⎪⎨=⎪⎩
12y y ⎧=-⎪⎨=⎪⎩
考点:抛物线的性质. 7. 【答案】D 【解析】解:∵A=2B ,
∴sinA=sin2B ,又sin2B=2sinBcosB , ∴sinA=2sinBcosB ,
根据正弦定理
==2R 得:
sinA=

sinB=

代入sinA=2sinBcosB 得:a=2bcosB . 故选D
8. 【答案】C
【解析】由已知,得{z|z =x +y ,x ∈A ,y ∈B}={-1,1,3},所以集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为3. 9. 【答案】A 【



10.【答案】D 【解析】
试题分析:在ABC ∆中,2
2
tan sin tan sin A B B A =,化简得
22sin sin sin sin cos cos A B
B A A B
=,解得 sin sin sin cos sin cos cos cos B A
A A
B B A B =⇒=,即s
i n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或
2
A B π
+=
,所以三角形为等腰三角形或直角三角形,故选D .
考点:三角形形状的判定.
【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2
A B π
+=是试
题的一个难点,属于中档试题. 11.【答案】B 【解析】
考点:正弦定理的应用. 12.【答案】D
【解析】解:∵f (1)=lg1=0, ∴当x ≤0时,函数f (x )没有零点,
故﹣2x+a>0或﹣2x+a<0在(﹣∞,0]上恒成立,
即a>2x,或a<2x在(﹣∞,0]上恒成立,
故a>1或a≤0;
故选D.
【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】
⎣⎦
【解析】
考点:点、线、面的距离问题.
【方法点晴】本题主要考查了点、线、面的距离问题,其中解答中涉及到直线与平面平行的判定与性质,三角形的判定以及直角三角形的勾股定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,同时考查了学生空间想象能力的训练,试题有一定的难度,属于中档试题.
14.【答案】8
15.【答案】{|0<<1}
【解析】∵,∴{|0<<1}。

16.【答案】4.
【解析】解:由约束条件作出可行域如图,
化目标函数z=﹣2x+y 为y=2x+z ,由图可知,当直线y=2x+z 过点A (﹣2,0)时,
直线y=2x+z 在y 轴上的截距最大,即z 最大,此时z=﹣2×(﹣2)+0=4.
故答案为:4.
【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
三、解答题(本大共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。


17.【答案】(1)2=AD ;(2)3π
=B .
【解析

考点:正余弦定理的综合应用,二次方程,三角方程.
【方法点晴】本题主要考查三角形中的解三角形问题,解题的关键是合理选择正、余弦定理..当有三边或两边及其夹角时适合选择余弦定理,当有一角及其对边时适合选择正弦定理求解,解此类题要特别注意,在没有明确的边角等量关系时,要研究三角形的已知条件,组建等量关系,再就是根据角的正弦值确定角时要结合边长关系进行取舍,这是学生们尤其要关注的地方.
18.【答案】(1)详见解析;(2)详见解析.
∴点P 为线段AB 中点,PB PA =;…………7分 (2)若直线AB 斜率不存在,则2:±=x AB ,与椭圆2C 方程联立可得,)1,2(2--±t A ,)1,2(2-±t B ,故122-=∆t S OAB ,…………9分
若直线AB 斜率存在,由(1)可得
148221+-=+k km x x ,144422221+-=k t m x x ,1
41141222212+-+=-+=k t k x x k AB ,…………11分 点O 到直线AB 的距离2221141k k k m d ++=+=
,…………13分 ∴122
12-=⋅=∆t d AB S OAB ,综上,OAB ∆的面积为定值122-t .…………15分 19.【答案】(1)320x y ++=;(2)()2228x y -+=.
【解析】
试题分析:(1)由已知中AB 边所在直线方程为360x y --=,且AD 与AB 垂直,结合点()1,1T -在直线AD 上,可得到AD 边所在直线的点斜式方程,即可求得AD 边所在直线的方程;(2)根据矩形的性质可得
矩形ABCD 外接圆圆心纪委两条直线的交点()2,0M ,根据(1)中直线,即可得到圆的圆心和半径,即可求得矩形ABCD 外接圆的方程.
(2)由360320x y x y --=⎧⎨
++=⎩解得点A 的坐标为()0,2-, 因为矩形ABCD 两条对角线的交点为()2,0M ,
所以M 为距形ABCD 外接圆的圆心, 又AM =
=从而距形ABCD 外接圆的方程为()2228x y -+=.1
考点:直线的点斜式方程;圆的方程的求解.
【方法点晴】本题主要考查了直线的点斜式方程、圆的方程的求解,其中解答中涉及到两条直线的交点坐标,圆的标准方程,其中(1)中的关键是根据已知中AB 边所在的直线方程以及AD 与AB 垂直,求出直线AD 的斜率;(2)中的关键是求出A 点的坐标,进而求解圆的圆心坐标和半径,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力. 20.【答案】当1a >时,),1()1
,(+∞-∞∈ a
x ,当1a =时,),1()1,(+∞-∞∈ x ,当1a 0<<时,),1()1,(+∞-∞∈a x ,当0a =时,)1,(-∞∈x ,当0a <时,)1,1(a
x ∈.
考点:二次不等式的解法,分类讨论思想.
21.【答案】
【解析】解:(1)由题意作出可行域如下,

结合图象可知,当过点A(2,﹣1)时有最大值,
故Z max=2×2﹣1=3;
(2)由题意作图象如下,

根据距离公式,原点O到直线2x+y﹣z=0的距离d=,
故当d 有最大值时,|z|有最大值,即z 有最值;
结合图象可知,当直线2x+y ﹣z=0与椭圆+=1相切时最大,
联立方程
化简可得, 116x 2﹣100zx+25z 2﹣400=0,
故△=10000z 2﹣4×116×(25z 2﹣400)=0,
故z 2=116,
故z=2x+y 的最大值为.
【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用.
22.【答案】(1)22
143
x y +=;(2)点R 在定直线1x =-上. 【解析】

题解析:
(1)由12e =,∴2214e a =,∴2234a b =7=,
解得2,a b ==,所以椭圆C 的方程为22
143
x y +=.
设点R 的坐标为00(,)x y ,则由MR RN λ=-⋅,得0120()x x x x λ-=--, 解得1121221212011224424()41()814
x x x x x x x x x x x x x x x λλ++⋅-+++===+-++++ 又221212222
6412322424()24343434k k x x x x k k k ---++=⨯+⨯=+++, 212223224()883434k x x k k -++=+=++,从而121201224()1()8
x x x x x x x ++==-++, 故点R 在定直线1x =-上.
考点:1.椭圆的标准方程与几何性质;2.直线与椭圆的位置关系.。

相关文档
最新文档