苏教版小学六年级数学下册期末复习应用题大全280题附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版小学六年级数学下册期末复习应用题大全280题附答案
一、苏教小学数学解决问题六年级下册应用题
1.在比例尺是1∶100的平面图上量得一间房子长8厘米,宽6厘米,这间房子实际的占地面积是多少平方米?
2.一种压路机滚筒,直径是1.2米,长3米,每分钟转10周,每分钟压路多少平方米?3.一个圆锥形沙堆,底面积是28.26m²,高是2.5m。
用这堆沙在10m宽的公路上铺2cm 厚的路面,能铺多少米?
4.张华家有一只底面直径40厘米、深50厘米的圆柱形无盖水桶,这只水桶盛满了水,把水倒入长40厘米、宽30厘米、高50厘米的长方体玻璃鱼缸内,水会溢出吗?请用喜欢的方式解答,(水桶和鱼缸的厚度都忽略不计)
5.如图所示,有个由圆柱和圆锥组成的容器,圆柱高7cm,圆锥高3cm,容器内水深5cm,将这个容器倒过来时,从圆锥尖端到水面的高度是多少厘米?
6.甲、乙两个车间工人的工作时间和耗电量如下表。
工作时间/时123456
甲车间耗电量/千瓦∙时40 80 120 160 200 240
乙车间耗电量/千瓦∙时4085 130170 205 260
(2)根据表中的数据,在下图中描出甲车间工人的工作时间与耗电量所对应的点,再把它们按顺序连接起来。
(3)根据图像估计,甲车间工人工作2.5小时,耗电量大约是________千瓦・时。
7.
(1)请你在如图的圆中画一小圆,使得大圆和小圆的面积比是4:1.
(2)如果这个大圆的比例尺是1:200,请测量出所需数据并计算大圆的实际周长.(测量时保留整厘米数)
8.一个圆柱形的容器,底面周长是62.8厘米,容器里面水面高0.8分米,现把一个小圆柱体和一个与圆柱等底、高是圆柱一半的圆锥放入容器中,结果圆锥完全浸没在水中,圆
柱有在水面之上,容器内的水比放入前上升了3厘米,求圆柱和圆锥的体积?
9.—个棱长是6分米的正方体。
(1)它的表面积是多少?
(2)如果把它削成一个最大的圆柱体,圆柱体的体积是多少?
(3)如果把它削成一个最大的圆锥体,削去的体积是多少立方分米?
10.在比例尺是1∶3000000的地图上,量得甲、乙两地相距18厘米,客车与货车分别从甲、乙两地同时相向而行,5小时相遇。
已知客车和货车的速度比是5∶4,问客车与货车的速度差是多少?
11.圆柱形的无盖水桶,底面直径30厘米,高50厘米。
(1)做这个水桶至少需要用多少平方分米的铁皮?(得数保留两位小数)
(2)如果在这个水桶中先倒入14.13升的水,再把几条鱼放入水中,这时量的桶内的水深是21厘米,这几条鱼的体积一共是多少?
12.在“脑筋急转弯”抢答比赛中,一共有6道题,规定答对1题得5分,答错一题扣8分,不答得0分,欣欣共得了12分,她抢答了几次?答对了几题?答错了几题?
13.一堆圆锥形黄沙,底面周长是25.12m,高1.5m,每立方米的黄沙重2t,这堆沙重多少吨?
14.为了测量一个空瓶子的容积,一个学习小组进行了如下实验。
①测量出整个瓶子的高度是22厘米;
②测量出瓶子圆柱形部分的内直径是6厘米;
③给瓶子里注入一些水,把瓶子正放时,测量出水的高度是5厘米;
④把瓶盖拧紧,将瓶子倒置放平,无水部分是圆柱形,测量出无水部分圆柱的高度是12厘米。
(1)要求这个瓶子的容积,上面记录中的哪些信息是必须有的?________(填实验序号)(2)请根据选出的信息,求出这个瓶子的容积。
15.下图,是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径2米的半圆。
(1)这个大棚的种植面积是多少平方米?
(2)覆盖在这个大棚上的塑料薄膜约有多少平方米?
(3)大棚内的空间约有多大?
16.一列动车在高速铁路上行驶的时间和路程如图。
(1)看图填写下表。
时间/小时3
路程/千米800
________比例。
(3)照这样的速度,行1800千米需要________小时。
17.一节空心混凝土管道的内直径是60厘米,外直径是80厘米,长300厘米,浇制100节这种管道需要多少立方米的混凝土?
18.请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。
(1)你选择的材料是________号和________号。
(2)你选择的材料做成的水桶最多能装水多少千克?(1升水重1千克)
19.用弹簧秤称物体,称3千克的物体,弹簧长11.5厘米;称4千克的物体,弹簧长12厘米。
称6千克的物体时,弹簧长多少厘米?
20.如图,圆柱形(甲)瓶子中有2厘米深的水,长方体(乙)瓶子里水深6.28厘米,将乙瓶中的水全部倒入甲瓶,甲瓶的水深是多少厘米?
21.长沙造纸厂的生产情况如下表,根据表回答问题.
时间(天)1234567…
生产量(吨)70140210280350420490…
.
(2)根据表中的数据,写出一个比例________.
(3)表中相关联的两种量成________关系.
(4)在图中描出表示时间和相应生产量的点,并把它们按顺序连接起来.
(5)估计生产550吨纸片,大约需要________天(填整数).
22.用如图的一张长方形的铁皮做成一个圆柱形的油桶,求这个油桶的容积是多少立方分米,做这个油桶至少需要多少平方分米铁皮?(接头处和厚度不计)
23.如图是一个饮料瓶的示意图,饮料瓶的容积是625mL,里面装有一些饮料。
将这个瓶子正放时,饮料高10cm,倒放时,空余部分的高是2.5cm,求瓶内的饮料为多少mL?
24.在学校篮球比赛中,李军2分球加3分球共投进8个,共得19分,他2分球和3分球各投进多少个?
25.小明为了测量出一只乌龟的体积,按如下的步骤进行了一个实验:①小明找来一个圆柱形玻璃水杯,量得底面周长是25.12厘米;②在玻璃杯中装入一定量的水,量得水面的高度是10厘米;③将乌龟放入水中完全浸没,再次测量水面的高度是12厘米。
如果玻璃的厚度忽略不计,这只乌龟的体积大约是多少立方厘米?
26.下图的博士帽是用黑色卡纸做成的,上面是边长30厘米的正方形,下面是底面直径16厘米、高10厘米的无底无盖的圆柱。
制作一个这样的“博士帽”至少需要多少平方厘米的黑色卡纸?
27.小明的储蓄罐里有1角和5角的硬币共27枚,价值5.1元,1角和5角的硬币各多少枚?
28.根据题意列方程,不解答。
我国明代著名数学家程大位的《算法统宗》一书中,记载了一些诗歌形式的算题,其中有一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完。
试问大、小和尚各多少人?
29.下面的图象表示斑马和长颈鹿的奔跑情况。
(1)长颈鹿的奔跑路程与奔跑时间是否成正比例关系,为什么?
(2)估计一下,两种动物18分钟各跑多少千米?
(3)从图象上看,斑马跑得快还是长颈鹿跑得快,为什么?
30.一个高为10厘米的圆柱,如果它的高增加2厘米,那么它的面积就增加125.6平方厘米,求这个圆柱的体积?(π取3.14)
31.用a,h分别表示面积为96平方厘米的平行四边形的底和高。
(1)请完成下表,并回答问题。
a/cm123468122448
h/cm96
(3)h与a成什么关系?为什么?
(4)当平行四边形的底为15厘米时,高是多少厘米?
32.我们都知道:圆的周长与直径的比值就是圆周率。
它是一个无限不循环小数,用字母π表示。
但你未必知道“圆方率”,就让我们一起来探索吧!
【探索】把一个棱长a厘米的正方体削成一个最大的圆柱体。
求这个圆柱体与正方体体积和表面积比。
(计算涉及圆周率,直接用π表示)
33.某城市,医院在学校的正南方向500米处,电影院在医院的北偏东60°方向1000米处,请用1:20000的比例尺将医院和电影院的位置画在下面,并求出学校到电影院大约有多少米。
34.一个圆柱形木桶,底面直径4分米,高6分米,这个木桶破损后(如图),最多能装多少升水?
35.下图是爸爸制作一个圆柱形油桶的下料图,阴影部分是制作油桶所用的铁皮,空白部分为边角料,请你根据下图计算这个油桶的容积。
(接头处忽略不计,保留整立方分米)
36.把一块棱长10厘米的正方体铁块熔铸成一个底面直径是2分米的圆锥形铁块,这个圆锥形铁块的高约是多少厘米?(得数保留一位小数)
37.小乐家客厅是长方形的,用边长0.6m的方砖铺地,需要200块,如果改用边长0.5m 的方砖铺地,需用多少块?(用比例解)
38.下面是关于“冬奥会段材料,请你先仔细阅读,再利用你获得的数学信息解决问题。
冬季奥林匹克运动会,简称为冬季奥运会或冬奥会,第一届冬季奥林匹克运动会于1924年在法国的夏慕尼举行,冬奥会每隔4年举行一届,其中1936年第4届和1948年第5届相隔了12年,而1992年的第16届与1994年的第17届只相隔2年,第21届冬奥会于2010年2月12-28日在加拿大温哥华举行,中国代表团在本届冬奥会上夺得5枚金牌,2枚银牌,4枚铜牌,取得了历史最佳战绩,申雪/赵宏博摘得花样冰双人自由滑冠军,王濛分别摘得女子500米和1000短道速滑金牌;周洋摘得女子1500米短道速滑金牌;中国队以4分06秒的成绩夺得女子短道速滑3000米接力的金牌,并打破了世界记录,单板滑雪U型池比赛是冬奥会一个比赛项目,其场地就如一个横着的半圆柱(如图),其长35米,口宽12米。
(1)第10届冬季奥林匹克运动会于________年在法国格勒诺布尔举行。
(2)中国队以4分06秒的成绩夺得女子短道速滑3000米接力金牌,请你把这一成绩的时间改成用分作单位的数:________分。
(3)中国女子短道速滑队在3000米接力中,平均每秒滑行的距离是多少米?(结果保留一位小数)
(4)A市想在体育场建一个类似单板滑雪U型池的比賽场地,需要挖岀多少立方米的泥土?(π取3)
(5)施工人员要想在一个单板滑雪U型池的底部铺上旱冰,需要铺多少平方米的旱冰?(π取3)
39.以小强家为观测点,量一量,填一填,画一画。
(1)新城大桥在小强家________方向上________m处。
(2)火车站在小强家________偏________(________)°方向上________m处。
(3)电影院在小强家正南方向上1500m处。
请在图中标出电影院的位置。
(4)商店在小强家北偏西45°方向上2000m处。
请在图中标出商店的位置。
40.下图中A、B、C表示三个城市的车站位置。
根据图中的比例尺,求下列问题。
(1)先测量图上有关长度(精确到整厘米),再分别求出A站到B站、B站到C站的实际距离。
(2)甲、乙两车分别同时从A、C两站开出,甲车从A到B再到C要行5小时;乙车从C 到B再到A要行4小时。
照这样的速度,
①两车开出几小时后可以在途中相遇?
②在相遇前当乙车到达B站时,甲车还离B站多少千米?
③如果两车要在B站相遇,则乙车可以从C站迟开出多少小时?
【参考答案】***试卷处理标记,请不要删除
一、苏教小学数学解决问题六年级下册应用题
1.解:8÷=800(厘米)=8(米)
6÷=600(厘米)=6(米)
8×6=48(平方米)。
答:这间房子实际的占地面积是48平方米。
【解析】【分析】此题主要考查了比例尺的应用,已知图上距离和比例尺,要求实际距离,图上距离÷比例尺=实际距离,分别求出实际的长与宽,然后用长×宽=长方形的面积,据此列式解答。
2.14×1.2×3×10=113.04(平方米)
答:每分钟压路113.04平方米。
【解析】【分析】3.14×直径=滚筒的宽;滚筒的宽×长=滚动一周的面积;滚动一周的面积×10周= 每分钟压路面积。
3.解:2cm=0.02m
28.26×2.5×÷10÷0.02
=22.5÷10÷0.02
=112.5(米)
答:能铺112.5米。
【解析】【分析】沙堆的体积是不变的,因此根据圆锥的体积公式计算出圆锥形沙堆的体积,然后用沙堆的体积除以公路的宽,再除以铺的厚度即可求出铺的长度。
4.解:水的体积=3.14×(40÷2)2×50
=3.14×400×50
=62800(立方厘米)
鱼缸体积=40×30×50=60000(立方厘米)
因为62800>60000,所以水会溢出。
【解析】【分析】圆柱的体积=π×底面半径的平方×高,长方体的体积=长×宽×高,代入数值分别计算出体积,再将两个数值进行比较即可得出答案。
5.解:观察图可知,圆柱与圆锥的底面一样大,设它们的底面积都是S
水的体积是:5×S=5S,
圆锥的体积是:×3×S=S
倒过来后,除了填满圆锥后剩下体积是:5S-S=4S,
4S÷S=4(厘米)
3+4=7(厘米)
答:从圆锥尖端到水面的高度是7厘米。
【解析】【分析】此题主要考查了圆柱和圆锥体积的应用,观察图可知,圆柱与圆锥的底面是同样大的,可以设它们的底面积都是S,分别求出水的体积与圆锥的体积,然后用水的体积-圆锥的体积=倒过来后,除了填满圆锥后剩下体积,然后用剩下的体积÷底面积=圆柱部分的高度,最后用圆锥的高度+圆柱部分的高度=从圆锥尖端到水面的高度,据此列式解答。
6.(1)甲
(2)
(3)100
【解析】【解答】解:(1)甲车间工人的工作时间和耗电量的比值一定,所以他们之间成正比例。
(3)2.5×(40÷1)=100,所以耗电量大约是100千瓦·时。
【分析】(1)=k(k是常数,x,y不等于0),所以x和y成正比例;
(2)根据表中的数据作图即可;
(3)耗电量=甲车间工作的时间×(甲车间工作1小时的耗电量÷1),据此代入数据作答即可。
7.(1)解:量得大圆的半径为2厘米,则小圆的半径为2÷2=1厘米,
如此小圆和大圆的面积比就为12:22=1:4,据此画图如下:
(2)解:量得大圆的半径为2厘米,则其实际长度为:
2÷ =400(厘米)=4(米)
所以大圆的实际周长为3.14×4×2=25.12(米)
答:大圆的实际周长为25.12米。
【解析】【分析】(1)两个圆的面积之比等于半径的平方之比,据此作答即可;
(2)大圆实际的半径=大圆的图上半径÷比例尺,所以大圆的之际周长=π×r×2。
8.解:62.8÷3.14÷2=10(厘米)
3.14×102×3
=3.14×100×3
=314×3
=942(立方厘米)
1﹣=
942÷(1+6× )
=942÷5
=188.4(立方厘米)
188.4×6=1130.4(立方厘米)
答:圆柱的体积是1130.4立方厘米,圆锥的体积是188.4立方厘米。
【解析】【分析】水面升高部分水的体积就是没入水中的圆锥和圆柱(1-)的体积之和。
这样先求出水面上升3厘米的水的体积。
因为圆柱和圆锥等底,圆锥的高是圆柱高的一
半,那么圆柱的体积是圆锥体积的6倍,所以没入水中的圆柱的体积是圆锥体积的(6×)倍,也就是4倍,那么用没入水中的圆柱和圆锥的体积和除以(1+4)即可求出圆锥的体积,进而求出圆柱的体积即可。
9.(1)解:6×6×6
=36×6
=216(平方分米)
答:它的表面积是216平方分米。
(2)解:3.14×(6÷2)²×6
=3.14×9×6
=28.26×6
=169.56(立方分米)
答:圆柱体的体积是169.56立方分米。
(3)解:圆锥的体积:
×3.14×(6÷2)²×6
= ×3.14×9×6
=9.42×6
=56.52(立方分米);
正方体的体积:
6×6×6
=36×6
=216(立方分米)
削去的体积:216-56.52=159.48(立方分米)
答:削去的体积是159.48立方分米。
【解析】【分析】(1)已知正方体的棱长,要求正方体的表面积,正方体的表面积=棱长×棱长×6,据此列式解答;
(2)如果把正方体削成一个最大的圆柱体,圆柱的底面直径是正方体的棱长,圆柱的高是正方体的棱长,要求圆柱的体积,用公式:圆柱的体积=底面积×高,据此列式解答;(3)将一个正方体削成一个最大的圆锥体,圆锥的底面直径是正方体的棱长,圆锥的高
是正方体的棱长,先求出圆锥的体积,圆锥的体积公式:V=πr2h,然后求出正方体的体积,最后用正方体的体积-圆锥的体积=削去的体积,据此列式解答。
10.解:18×3000000÷100000= 540千米
540÷5×( - )
= 108×
=12(千米)
答:客车与货车的速度差是12千米。
【解析】【分析】实际距离=图上距离×比例尺的倒数÷进率,客车与货车的速度差=速度和×(客车速度占比-货车速度占比),速度和=距离÷相遇时间。
11.(1)解:30厘米=3分米,50厘米=5分米
(3÷2)2×3.14+3×3.14×5=54.165≈54.17(平方分米)
答:做这个水桶至少需要用54.17平方分米的铁皮。
(2)解:14.13÷(3÷2)2÷3.14=2(分米)
21厘米=2.1分米
2.1-2=0.1(分米)
(3÷2)2×3.14×0.1=0.7065(立方分米)
答:这几条鱼的体积一共是0.7065立方分米。
【解析】【分析】(1)先把单位进行换算,即30厘米=3分米,50厘米=5分米,那么做这个水桶至少需要铁皮的平方分米数=侧面积+底面积,其中底面积=π×(直径÷2)2,侧面积=πdh;
(2)倒入水后水的高度=水的容积÷π÷(直径÷2)2,那么这几条鱼的体积=水面身高的高度×π×(直径÷2)2。
12.解:(5×5-12)÷(8+5)
=13÷13
=1(道)
5-1=4(道)
答:她抢答了5次,答对了4题,答错了1题。
【解析】【分析】因为最后得分是12分,所以可以判断他不会6道题都答对,我们可以理解为抢答了5次;
按鸡兔同笼理解,五次全部答对,得了25分,先计算出与实际得分的差,再算出答对和答错的分差,差÷差=答错的题数,5题-答错的题数=答对的题数。
13.解:25.12÷3.14÷2=4(米)
3.14×4×4×1.5÷3=25.12(立方米)
25.12×2=50.24(吨)
答:这堆沙重50.24吨。
【解析】【分析】底面周长÷3.14÷2=底面半径;3.14×底面半径的平方×高÷3=圆锥体积;圆
锥体积×2=这堆沙的重量。
14.(1)②③④
(2)3.14×()2×(5+12)
=28.26×17
=480.42(立方厘米)
=480.42(ml)
答:这个瓶子的容积为480.42ml。
【解析】【分析】(1)因为要求的是瓶子的容积,而瓶子上面部分不是圆柱体部分,所以不需要直到整个瓶子的高度,而剩下的几个条件都需要;
(2)瓶子的容积=πr2×(正放水的高度+倒放无水部分的高度),据此代入数据作答即可。
15.(1)2×15=30(平方米)
答:这个大棚的种植面积是30平方米。
(2)3.14×2×15÷2
=3.14×15
=47.1(m2)
3.14×()2=3.14(m2)
47.1+3.14=50.24(m2)
答:覆盖在这个大棚上的塑料薄膜约有50.24平方米。
(3)解:3.14×()2×15=47.1(立方米)
47.1÷2=23.55(立方米)
答:大棚内的空间约有23.55平方米。
【解析】【分析】(1)大棚的种植面积是长方形,长是15米,宽是2米,根据长方形面积公式计算;
(2)塑料薄膜的面积是一个整圆的面积,加上圆柱侧面积的一半,根据公式计算即可;(3)大棚内的空间是圆柱体积的一半,用底面积乘高再除以2即可求出空间的大小。
16.(1)
时
间/
34
小
时
路
程/
600 800
千
米
(3)9
【解析】【解答】(2)路程÷时间=200(一定),行驶的时间和路程成正比例;
(3)1800÷200=9(小时)。
故答案为:(2)正;(3)9。
【分析】(1)图中横轴表示时间,竖轴表示路程,根据图形直接判断3小时行驶的路程,800千米需要的时间;
(2)根据时间和路程相对应的数据确定路程和时间的比值一定,二者就成正比例关系;(3)用路程除以速度即可求出行驶的时间。
17. 300厘米=3米
60÷2=30(厘米)=0.3(米)
80÷2=40(厘米)=0.4(米)
3.14×(0.4×0.4-0.3×0.3)×3×100=3.14×0.07×300=65.94(立方米)
答:浇制100节这种管道需要65.94立方米的混凝土。
【解析】【分析】空心混凝土管道的底面积×高=一节的体积;一节的体积×100节=浇制100节这种管道需要的混凝土体积。
18.(1)2;3
(2)解:我选择2号与3号,制作成水桶的底面直径是4分米,高是5分米,
3.14×(4÷2)²×5
=3.14×2²×5
=3.14×4×5
=12.56×5
=62.8(立方分米)
62.8立方分米=62.8升
62.8×1=62.8(千克)
答:我选择的材料做成的水桶最多能装水62.8千克。
【解析】【解答】解:(1)2号的周长:3.14×4=12.56(分米);4号的周长:3.14×3=9.42(分米),所以可以选择2号与3号、或者1号与4号,可以制作一个无盖圆柱形水桶。
【分析】(1)圆柱的侧面沿高展开是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,由此可以判断选择2号与3号、或者1号与4号,可以制作一个无盖圆柱形水桶;
(2)圆柱的体积=底面积×高,然后把立方分米换算成升,最后圆柱的容积×平均每升水的质量=做成的水桶最多能装水的质量。
19.解:弹簧原长x厘米。
解得x=10
6×(11.5-10)÷3=3(厘米)
3+10=13(厘米)
答:弹簧长13厘米。
【解析】【分析】设弹簧原长x厘米,根据等量关系,第一次称的物体质量:(第一次弹
簧长-弹簧原长)=第二次称的物体质量:(第二次弹簧长-弹簧原长);称6千克物体时弹簧长=物体质量×(第一次弹簧长-弹簧原长)÷第一次称的物体质量。
20.解:乙瓶中水的体积:10×10×6.28=100×6.28=628(立方厘米)
将乙瓶中的水全部倒入甲瓶,甲瓶增加的深度:628÷【3.14×(10÷2)²】
=628÷78.5
=8(厘米)
将乙瓶中的水全部倒入甲瓶,甲瓶水的总高度:2+8=10(厘米)
答:将乙瓶中的水全部倒入甲瓶,甲瓶的水深是10厘米。
【解析】【分析】此题属于典型的“等积变形”问题,用“长方体(乙)瓶中水的体积÷圆柱形(甲)瓶的底面积”求出甲瓶增加的深度,再用“原来的深度+增加的深度=总深度”,列式解答即可。
21.(1)时间;生产量
(2)1:70=2:140(答案不唯一)
(3)正
(4)
(5)8
【解析】【解答】解:(1)表中相关联的量是时间和生产量;
(2)根据表中的数据,写出一个比例是:1:70=2:140;
(3)表中相关联的两种量成正比例;
(5)估计生产550吨纸片,大约需要8天。
故答案为:(1)时间;生产量;(2)1:70=2:140(答案不唯一);(3)正;(5)8。
【分析】(1)表格中变化的两个量就是相关联的两个量;
(2)根据表格中相对应的数据写出两个比值相等的比并组成比例即可;
(3)两个相关联的量的比值一定,二者成正比例关系;
(4)根据每组对应的数据描出对应的点,然后顺次连接各点成线即可;
(5)根据每天的生产量估计出生产550吨纸片大约需要的天数。
22.解:设圆的直径为d分米,则:
3.14d+d=2
4.84
4.14d=24.84
d=6
所以r=d÷2=3;h=2d=12
容积:3.14×32×12
=3.14×9×12
=339.12(立方分米)
表面积=3.14×32×2+3.14×6×12
=56.52+226.08
=282.6(平方分米)
答:油桶的容积为339.12立方分米,做这个油桶至少需要282.6平方分米铁皮。
【解析】【分析】设圆的直径是d,大长方形的长是24.84分米,等于小长方形的长加上圆的直径d,小长方形的宽等于两个等圆直径之和,也就是2d,也就是圆柱的高,小长方形是圆柱侧面展开图,所以长应等于圆周长πd=3.14d,根据“大长方形的长等于圆的周长与直径的和”求出圆的直径,进而求出圆柱的高,由于没说铁皮厚度,所以油桶的容积就是圆柱体积,根据“圆柱的体积=πr2h”和“圆柱的表面积=2πr2+2πrh”进行解答即可。
23.解:625mL=625cm3
625÷(10+2.5)×10
=625÷12.5×10
=50×10
=500(cm3)
500cm3=500mL
答:瓶内的饮料为500mL.
【解析】【分析】饮料体积=底面积×高,底面积=瓶子的体积÷(10+2.5)。
24.解:2分球:(3×8-19)÷(3-2)=5(个)
3分球:8-5=3(个)
答:2分球投进5个,3分球投进3个。
【解析】【分析】本题先假设全是3分球,然后根据出现的分数差,可推算出2分球的个数。
2分球的个数=(共投进8个×3-实际得分)÷分数差,3分球的个数=共投进8个-2分球的个数。
25.解:圆柱形玻璃水杯的底面半径是:25.12÷3.14÷2=4(厘米)
圆柱形玻璃水杯的底面积:3.14×4×4=50.24(平方厘米)
水的体积:50.24×10=502.4(立方厘米)
水增加的体积:50.24×(12-10)=100.48(立方厘米)
答:这只乌龟的体积大约是100.48立方厘米。
【解析】【分析】底面周长÷π÷2=底面半径;底面积=π×底面半径的平方;水的体积=底面积×高;水增加的体积=底面积×水增加的高度;水增加的体积就是这只乌龟的体积。
26.解:3.14×16×10+30×30
=502.4+900
=1402.4(cm2)
答:制作一个这样的“博士帽”至少需要1402.4平方厘米的黑色卡纸。
【解析】【分析】这个“博士帽”面积是一个正方形的面积和一个圆柱的侧面积组成,正方形的面积=边长×边长,圆柱的侧面积=πdh,再把两部分的面积合起来,即可求得“博士帽”的面积。
27.解:5.1元=51角
设5角的有x枚,则1角的就是(27﹣x)枚。
5x+(27﹣x)×1=51
5x+27﹣x=51
4x=51-27
x=24÷4
x=6
27﹣6=21(枚)
答:5角的有6枚,1角的是21枚。
【解析】【分析】此题属于鸡兔同笼问题,用列方程的方法解答比较容易理解。
设5角的有x枚,则1角的就是(27﹣x)枚。
根据价值是5.1元列出方程,解方程求出5角的枚数,进而求出1角的枚数即可。
28.解:假设全是大和尚,
(100×3-100)÷(3-)
=200÷
=75(人)
100-75=25(人)
答:大和尚有25人,小和尚有75人。
【解析】【分析】小和尚3人分1个,每人分个,所以假设全是大和尚,小和尚的人数=(和尚的总人数×大和尚每人分馒头的个数-一共有馒头的个数)÷大、小和尚每人分馒头的个数之差,大和尚的人数=和尚的总人数-小和尚的人数,据此作答即可。
29.(1)解:20:25=0.8,4:5=0.8
答:长颈鹿的奔跑路程与奔跑时间成正比例关系,因为奔跑路程与奔跑时间的比值一定。
(2)解:估计长颈鹿18分钟跑14千米,斑马18分钟跑22千米。
(3)解:从图像上看,斑马跑得快,因为同样跑24千米,斑马用20分钟,长颈鹿用30分钟。
【解析】【分析】(1)写出长颈鹿奔跑的路程与时间的比,看比值是否相等,如果比值相等,二者就成正比例关系;
(2)先找出18分钟的时间,然后找出18分钟对应的路程即可确定二者各跑多少千米;(3)路程相同,谁用时少谁就跑得快。
30.解:圆柱的底面半径:
125.6÷2÷3.14÷2
=62.8÷3.14÷2
=20÷2
=10(厘米)
体积:
3.14×10²×10
=3.14×100×10
=314×10
=3140(立方厘米)
答:这个圆柱的体积是3140立方厘米。
【解析】【分析】根据题意可知圆柱的高增加2厘米,那么它的面积就增加125.6平方厘米,增加的只是侧面积,侧面积÷高=底面周长,底面周长÷3.14÷2=半径;圆柱体的体积=底面积×高即可。
31.(1)解:填表如下:
a/cm123468122548
h/cm964832241912842
(3)解:因为底×高=平行四边形的面积(一定),所以平行四边形底和高成反比例。
(4)解:15h=96
h=96÷15=6.4
答:高是6.4厘米。
【解析】【分析】(1)平行四边形的面积=底×高,据此计算填表即可;
(2)根据表中数据的走向作答即可;
(3)如果xy=k(k为常数,x,y≠0),那么x和y成反比例;平行四边形的面积=底×高,平行四边形的面积一定,那么平行四边形底和高成反比例;
(4)平行四边形的高=平行四边形的面积÷底,据此作答即可。
32.解:体积:圆柱体的体积:π∙()2·a=πa3;正方体的体积:a3;
圆柱体与正方体的体积比:πa3:a3=π:4。
表面积:圆柱体的表面积:2∙π∙ ·a+π∙()2×2=πa2,正方体的表面积:6a2
圆柱体与正方体的表面积比:πa2:6a2=π:4。
答:这个圆柱体和正方体体积和表面积的比都是π:4。
【解析】【分析】圆柱的底面直径与正方体的棱长相等。
圆柱的表面积=底面积×2+侧面积,圆柱的体积=底面积×高,正方体表面积=棱长×棱长×6,正方体体积=棱长×棱长×棱长,根据公式分别用字母表示,然后写出相应的比并化成最简整数比即可。