上蔡县第二中学校2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上蔡县第二中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )
A 1
C
A B A.直线 B.圆
C.双曲线
D.抛物线
【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.
2. 在ABC ∆中,若60A ∠=,45B ∠=,BC =AC =( )
A .
B . C.
D .
2
3. 过抛物线y 2=﹣4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2),若x 1+x 2=﹣6,则|AB|为( ) A .8
B .10
C .6
D .4
4. 若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且
=0,
tan ∠PF 1F 2=,则此椭圆的离心率为( )
A .
B .
C .
D .
5. 已知角α的终边上有一点P (1,3),则
的值为( )
A .﹣
B .﹣
C .﹣
D .﹣4
6. 已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )
A .(0,1)
B .(0,]
C .(0,

D .[
,1)
7. 一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )
A.4π
B.
C. 5π
D. 2π+
【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.
8.在极坐标系中,圆的圆心的极坐标系是( )。

A
B
C
D
9.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;
③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是()
A.①②B.①C.③④D.①②③④10.如图所示的程序框图,若输入的x值为0,则输出的y值为()
A.B.0 C.1 D.或0
11.函数y=f(x)在[1,3]上单调递减,且函数f(x+3)是偶函数,则下列结论成立的是()
A.f(2)<f(π)<f(5)B.f(π)<f(2)<f(5)C.f(2)<f(5)<f(π)D.f(5)<f(π)<f(2)
12.已知直线x+y+a=0与圆x2+y2=1交于不同的两点A、B,O是坐标原点,且,那么实数a的取值范围是()
A.B.C.
D.
二、填空题
13.过抛物线y2=4x的焦点作一条直线交抛物线于A,B两点,若线段AB的中点M的横坐标为2,则|AB|等于.
14.阅读如图所示的程序框图,则输出结果S的值为.
【命题意图】本题考查程序框图功能的识别,并且与数列的前n项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.
15.已知命题p:∃x∈R,x2+2x+a≤0,若命题p是假命题,则实数a的取值范围是.(用区间表示)
16.在数列中,则实数a=,b=.
17.已知集合M={x||x|≤2,x∈R},N={x∈R|(x﹣3)lnx2=0},那么M∩N=.
18.设有一组圆C k:(x﹣k+1)2+(y﹣3k)2=2k4(k∈N*).下列四个命题:
①存在一条定直线与所有的圆均相切;
②存在一条定直线与所有的圆均相交;
③存在一条定直线与所有的圆均不相交;
④所有的圆均不经过原点.
其中真命题的代号是(写出所有真命题的代号).
三、解答题
19.甲、乙两人参加普法知识竞赛,共有5道不同的题目,其中选择题3道,判断题2道,甲、乙两人各抽一道(不重复).
(1)甲抽到选择题,乙抽到判断题的概率是多少?
(2)甲、乙二人中至少有一人抽到选择题的概率是多少?
20.中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p(0<p <1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率
(Ⅰ)设通讯器械上正常工作的元件个数为X,求X的数学期望,并求该通讯器械正常工作的概率P′(列代数式表示)
(Ⅱ)现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率.
21.求点A (3,﹣2)关于直线l :2x ﹣y ﹣1=0的对称点A ′的坐标.
22.解关于x 的不等式12x 2﹣ax >a 2(a ∈R ).
23.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()()3
23
1312
f x x k x kx =-
+++,其中.k R ∈
(1)当3k =时,求函数()f x 在[]
0,5上的值域;
(2)若函数()f x 在[]
1,2上的最小值为3,求实数k 的取值范围.
24.已知椭圆C 1:
+x 2=1(a >1)与抛物线C
:x 2
=4y 有相同焦点F 1.
(Ⅰ)求椭圆C 1的标准方程;
(Ⅱ)已知直线l 1过椭圆C 1的另一焦点F 2,且与抛物线C 2相切于第一象限的点A ,设平行l 1的直线l 交椭圆C 1于B ,C 两点,当△OBC 面积最大时,求直线l 的方程.
上蔡县第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】D.
第Ⅱ卷(共110分)
2.【答案】B
【解析】
考点:正弦定理的应用.
3.【答案】A
【解析】解:由题意,p=2,故抛物线的准线方程是x=1,
∵抛物线y2=﹣4x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点
∴|AB|=2﹣(x1+x2),
又x1+x2=﹣6
∴∴|AB|=2﹣(x1+x2)=8
故选A
4.【答案】A
【解析】解:∵
∴,即△PF1F2是P为直角顶点的直角三角形.
∵Rt△PF1F2中,,
∴=,设PF2=t,则PF1=2t
∴=2c,
又∵根据椭圆的定义,得2a=PF1+PF2=3t
∴此椭圆的离心率为e====
故选A
【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.
5.【答案】A
【解析】解:∵点P(1,3)在α终边上,
∴tanα=3,
∴====﹣.
故选:A.
6.【答案】C
【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,
∵=0,
∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.
又M点总在椭圆内部,
∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.
∴e2=<,∴0<e<.
故选:C.
【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.
7.【答案】B
8.【答案】B
【解析】,圆心直角坐标为(0,-1),极坐标为,选B。

9.【答案】A
【解析】
考点:斜二测画法.
10.【答案】B
【解析】解:根据题意,模拟程序框图的运行过程,如下;
输入x=0,
x>1?,否;
x<1?,是;
y=x=0,
输出y=0,结束.
故选:B.
【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论.
11.【答案】B
【解析】解:∵函数y=f(x)在[1,3]上单调递减,且函数f(x+3)是偶函数,
∴f(π)=f(6﹣π),f(5)=f(1),
∵f(6﹣π)<f(2)<f(1),
∴f(π)<f(2)<f(5)
故选:B
【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档.
12.【答案】A
【解析】解:设AB的中点为C,则
因为

所以|OC|≥|AC|,
因为|OC|=,|AC|2=1﹣|OC|2

所以2(
)2
≥1,
所以a ≤﹣1或a ≥1,
因为
<1,所以﹣
<a <

所以实数a 的取值范围是,
故选:A .
【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.
二、填空题
13.【答案】 6 .
【解析】解:由抛物线y 2
=4x 可得p=2. 设A (x 1,y 1),B (x 2,y 2).
∵线段AB 的中点M 的横坐标为2,∴x 1+x 2=2×2=4. ∵直线AB 过焦点F , ∴|AB|=x 1+x 2+p=4+2=6. 故答案为:6.
【点评】本题考查了抛物线的过焦点的弦长公式、中点坐标公式,属于基础题.
14.【答案】
2017
2016
【解析】根据程序框图可知,其功能是求数列})
12)(12(2
{
+-n n 的前1008项的和,即 +⨯+⨯=
532312S =-++-+-=⨯+)2017120151()5131()311(201720152 2017
2016
. 15.【答案】 (1,+∞)
【解析】解:∵命题p :∃x ∈R ,x 2
+2x+a ≤0,
当命题p 是假命题时,
命题¬p :∀x ∈R ,x 2
+2x+a >0是真命题;
即△=4﹣4a <0, ∴a >1;
∴实数a的取值范围是(1,+∞).
故答案为:(1,+∞).
【点评】本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目.
16.【答案】a=,b=.
【解析】解:由5,10,17,a﹣b,37知,
a﹣b=26,
由3,8,a+b,24,35知,
a+b=15,
解得,a=,b=;
故答案为:,.
【点评】本题考查了数列的性质的判断与归纳法的应用.
17.【答案】{1,﹣1}.
【解析】解:合M={x||x|≤2,x∈R}={x|﹣2≤x≤2},
N={x∈R|(x﹣3)lnx2=0}={3,﹣1,1},
则M∩N={1,﹣1},
故答案为:{1,﹣1},
【点评】本题主要考查集合的基本运算,比较基础.
18.【答案】②④
【解析】解:根据题意得:圆心(k﹣1,3k),
圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确;
考虑两圆的位置关系,
圆k:圆心(k﹣1,3k),半径为k2,
圆k+1:圆心(k﹣1+1,3(k+1)),即(k,3k+3),半径为(k+1)2,
两圆的圆心距d==,
两圆的半径之差R﹣r=(k+1)2﹣k2
=2k+,
任取k=1或2时,(R﹣r>d),C k含于C k+1之中,选项①错误;
若k取无穷大,则可以认为所有直线都与圆相交,选项③错误;
将(0,0)带入圆的方程,则有(﹣k+1)2+9k2=2k4,即10k2﹣2k+1=2k4(k∈N*),
因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项④正确.
则真命题的代号是②④.
故答案为:②④
【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题.
三、解答题
19.【答案】
【解析】(本小题满分12分)
解:(1)甲、乙两人从5道题中不重复各抽一道,共有5×4=20种抽法
记“甲抽到选择题,乙抽到判断题”为事件A,
则事件A含有的基本事件数为3×2=6…(4分)
∴,
∴甲抽到选择题,乙抽到判断题的概率是…(6分)
(2)记“甲、乙二人中至少有一人抽到选择题”为事件B,
其对立事件为“甲、乙二人都抽到判断题”,记为事件C,
则事件C含有的基本事件数为2×1=2…(8分)
∴,
∴,…(11分)
∴甲、乙二人中至少有一人抽到选择题的概率是.…(12分)
【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件、对立事件概率计算公式的合理运用.
20.【答案】
【解析】解:(Ⅰ)由题意可知:X~B(9,p),故EX=9p.
在通讯器械配置的9个元件中,恰有5个元件正常工作的概率为:.
在通讯器械配置的9个元件中,恰有6个元件正常工作的概率为:.
在通讯器械配置的9个元件中,恰有7个元件正常工作的概率为:.
在通讯器械配置的9个元件中,恰有8个元件正常工作的概率为:.
在通讯器械配置的9个元件中,恰有9个元件正常工作的概率为:.
通讯器械正常工作的概率P′=;
(Ⅱ)当电路板上有11个元件时,考虑前9个元件,
为使通讯器械正常工作,前9个元件中至少有4个元件正常工作.
①若前9个元素有4个正常工作,则它的概率为:.
此时后两个元件都必须正常工作,它的概率为:p2;
②若前9个元素有5个正常工作,则它的概率为:.
此时后两个元件至少有一个正常工作,它的概率为:;
③若前9个元素至少有6个正常工作,则它的概率为:;
此时通讯器械正常工作,故它的概率为:
P″=p2++,
可得P″﹣P′=p2+﹣

==.
故当p=时,P″=P′,即增加2个元件,不改变通讯器械的有效率;
当0<p时,P″<P′,即增加2个元件,通讯器械的有效率降低;
当p时,P″>P′,即增加2个元件,通讯器械的有效率提高.
【点评】本题考查二项分布,考查了相互独立事件及其概率,关键是对题意的理解,属概率统计部分难度较大的题目.
21.【答案】
【解析】解:设点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标为(m,n),
则线段A′A的中点B(,),
由题意得B在直线l:2x﹣y﹣1=0上,故2×﹣﹣1=0 ①.
再由线段A′A和直线l垂直,斜率之积等于﹣1得×=﹣1 ②,
解①②做成的方程组可得:
m=﹣,n=,
故点A ′的坐标为(﹣,).
【点评】本题考查求一个点关于直线的对称点的坐标的方法,注意利用垂直及中点在轴上两个条件.
22.【答案】
【解析】解:由12x 2﹣ax ﹣a 2
>0⇔(4x+a )(3x ﹣a )>0⇔(x+)(x ﹣)>0,
①a >0时,﹣<,解集为{x|x <﹣或x >}; ②a=0时,x 2>0,解集为{x|x ∈R 且x ≠0};
③a <0时,﹣>,解集为{x|x <或x >﹣}.
综上,当a >0时,﹣<,解集为{x|x <﹣或x >};
当a=0时,x 2
>0,解集为{x|x ∈R 且x ≠0};
当a <0时,﹣>,解集为{x|x <或x >﹣}.
23.【答案】(1)[]
1,21;(2)2k ≥.
【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得()'f x =()()31x x k --,再分1k ≤和1k >两种情况进行讨论;
试题解析:(1)解:3k = 时,()32
691f x x x x =-++
则()()()2
3129313f x x x x x =-+=--' 令()0f x '=得121,3x x ==列表
由上表知函数()f x 的值域为[]
1,21
(2)方法一:()()()()2
331331f x x k x k x x k =-++=--'
①当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]
1,2单调递增 所以()()()min 3
1113132
f x f k k ==-+++= 即5
3
k =
(舍)
②当2k ≥时,[]
()1,2,'0x f x ∀∈≤,函数()f x 在区间[]
1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+=
符合题意
③当12k <<时,
当[)1,x k ∈时,()'0f x <()f x 区间在[
)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增
所以()()()322min 3
13132
f x f k k k k k ==-+++= 化简得:32340k k -+= 即()()2
120k k +-=
所以1k =-或2k =(舍)
注:也可令()3
2
34g k k k =-+
则()()2
3632g k k k k k =='--
对()()1,2,0k g k ∀∈'≤
()3234g k k k =-+在()1,2k ∈单调递减
所以()02g k <<不符合题意
综上所述:实数k 取值范围为2k ≥
方法二:()()()()2
331331f x x k x k x x k =-++=--'
①当2k ≥时,[]
()1,2,'0x f x ∀∈≤,函数()f x 在区间[]
1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+=
符合题意 …………8分
②当1k ≤时,[]
()1,2,'0x f x ∀∈≥,函数()f x 在区间[]
1,2单调递增 所以()()min 23f x f <=不符合题意
③当12k <<时,
当[)1,x k ∈时,()'0f x <()f x 区间在[
)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增 所以()()()min 23f x f k f =<=不符合题意
综上所述:实数k 取值范围为2k ≥ 24.【答案】
【解析】解:(Ⅰ)∵抛物线x 2
=4y 的焦点为F 1(0,1),
∴c=1,又b 2
=1,∴
∴椭圆方程为:+x2=1.…
(Ⅱ)F2(0,﹣1),由已知可知直线l1的斜率必存在,
设直线l1:y=kx﹣1
由消去y并化简得x2﹣4kx+4=0
∵直线l1与抛物线C2相切于点A.
∴△=(﹣4k)2﹣4×4=0,得k=±1.…
∵切点A在第一象限.
∴k=1…
∵l∥l1
∴设直线l的方程为y=x+m
由,消去y整理得3x2+2mx+m2﹣2=0,…
△=(2m)2﹣12(m2﹣2)>0,
解得.
设B(x1,y1),C(x2,y2),则,
.…又直线l交y轴于D(0,m)
∴…
=
当,即时,.…
所以,所求直线l的方程为.…
【点评】本题主要考查椭圆、抛物线的有关计算、性质,考查直线与圆锥曲线的位置关系,考查运算求解能力及数形结合和化归与转化思想.。

相关文档
最新文档