沙县外国语学校2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沙县外国语学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.执行如图所以的程序框图,如果输入a=5,那么输出n=()
A.2 B.3 C.4 D.5
2.函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()
A.p是q的充分必要条件
B.p是q的充分条件,但不是q的必要条件
C.p是q的必要条件,但不是q的充分条件
D.p既不是q的充分条件,也不是q的必要条件
3.若复数z=2﹣i (i为虚数单位),则=()
A.4+2i B.20+10i C.4﹣2i D.
4.已知定义在实数集R上的函数f(x)满足f(1)=3,且f(x)的导数f′(x)在R上恒有f′(x)<2(x∈R),则不等式f(x)<2x+1的解集为()
A.(1,+∞)B.(﹣∞,﹣1)C.(﹣1,1)D.(﹣∞,﹣1)∪(1,+∞)
5.如果a>b,那么下列不等式中正确的是()
A.B.|a|>|b| C.a2>b2D.a3>b3
6. 已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <1
2x ,x ≥1
若f (-6)+f (log 26)=9,则a 的值为( )
A .4
B .3
C .2
D .1
7. 下列正方体或四面体中,P 、Q 、R 、S 分别是所在棱的中点,这四个点不共面的一个图形是
( )
8. 若定义在R 上的函数f (x )满足f (0)=﹣1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )
A .
B .
C .
D .
9. 某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是( )
A .抽签法
B .随机数表法
C .系统抽样法
D .分层抽样法
10.若,
,且
,则λ与μ的值分别为( )
A .
B .5,2
C .
D .﹣5,﹣2
11.如图,四面体D ﹣ABC 的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长
棱的长度为( )
A .
B .2
C .
D .3
12.设命题p :函数y=sin (
2x+
)的图象向左平移
个单位长度得到的曲线关于y 轴对称;命题q :函数
y=|2x ﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是( ) A .p 为假
B .¬q 为真
C .p ∨q 为真
D .p ∧q 为假
二、填空题
13.函数f (x )=x 2e x 在区间(a ,a+1)上存在极值点,则实数a 的取值范围为 .
14.已知1sin cos 3αα+=
,(0,)απ∈,则sin cos 7sin 12
ααπ-的值为 .
15.下列关于圆锥曲线的命题:其中真命题的序号 .(写出所有真命题的序号). ①设A ,B 为两个定点,若|PA|﹣|PB|=2,则动点P 的轨迹为双曲线;
②设A ,B 为两个定点,若动点P 满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8; ③方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率; ④双曲线

=1与椭圆
有相同的焦点.
16.已知函数f (x )=(2x+1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为 .
17.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x ﹣1)<f (2﹣x )的解集是 .
18.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()
210{ 21(0)
x
x
x e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____.
三、解答题
19.(1)已知f (x )的定义域为[﹣2,1],求函数f (3x ﹣1)的定义域; (2)已知f (2x+5)的定义域为[﹣1,4],求函数f (x )的定义域.
20.如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F﹣BE﹣D的余弦值;
(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.
21.已知双曲线C:与点P(1,2).
(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;
(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由.
22.如图,已知AB为⊙O的直径,CE⊥AB于点H,与⊙O交于点C、D,且AB=10,CD=8,DE=4,EF与⊙O切于点F,BF与HD交于点G.
(Ⅰ)证明:EF=EG;
(Ⅱ)求GH的长.
23.已知a>0,b>0,a+b=1,求证:
(Ⅰ)++≥8;
(Ⅱ)(1+)(1+)≥9.
24.已知二次函数f(x)=x2+bx+c,其中常数b,c∈R.
(Ⅰ)若任意的x∈[﹣1,1],f(x)≥0,f(2+x)≤0,试求实数c的取值范围;(Ⅱ)若对任意的x1,x2∈[﹣1,1],有|f(x1)﹣f(x2)|≤4,试求实数b的取值范围.
沙县外国语学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】B
【解析】解:a=5,进入循环后各参数对应值变化如下表:
p 15 20 结束
q 5 25
n 2 3
∴结束运行的时候n=3.
故选:B.
【点评】本题考查了程序框图的应用,考查了条件结构和循环结构的知识点.解题的关键是理解题设中语句的意义,从中得出算法,由算法求出输出的结果.属于基础题.
2.【答案】C
【解析】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.
根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,
故p是q的必要条件,但不是q的充分条件,
故选:C
【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.
3.【答案】A
【解析】解:∵z=2﹣i,
∴====,
∴=10•=4+2i,
故选:A.
【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.
4.【答案】A
【解析】解:令F(x)=f(x)﹣2x﹣1,
则F′(x)=f′(x)﹣2,
又∵f(x)的导数f′(x)在R上恒有f′(x)<2,
∴F′(x)=f′(x)﹣2<0恒成立,
∴F(x)=f(x)﹣2x﹣1是R上的减函数,
又∵F(1)=f(1)﹣2﹣1=0,
∴当x>1时,F(x)<F(1)=0,即f(x)﹣2x﹣1<0,
即不等式f(x)<2x+1的解集为(1,+∞);
故选A.
【点评】本题考查了导数的综合应用及利用函数求解不等式的方法应用,属于中档题.
5.【答案】D
【解析】解:若a>0>b,则,故A错误;
若a>0>b且a,b互为相反数,则|a|=|b|,故B错误;
若a>0>b且a,b互为相反数,则a2>b2,故C错误;
函数y=x3在R上为增函数,若a>b,则a3>b3,故D正确;
故选:D
【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.
6.【答案】
【解析】选C.由题意得log2(a+6)+2log26=9.
即log2(a+6)=3,
∴a+6=23=8,∴a=2,故选C.
7.【答案】D
【解析】
考点:平面的基本公理与推论.
8.【答案】C
【解析】解;∵f′(x)=
f′(x)>k>1,
∴>k>1,
即>k>1,
当x=时,f()+1>×k=,
即f()﹣1=
故f()>,
所以f()<,一定出错,
故选:C.
9.【答案】C
【解析】解:由题意知,这个抽样是在传送带上每隔10分钟抽取一产品,是一个具有相同间隔的抽样,并且总体的个数比较多,
∴是系统抽样法,
故选:C.
【点评】本题考查了系统抽样.抽样方法有简单随机抽样、系统抽样、分层抽样,抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样.属于基础题.
10.【答案】A
【解析】解:由,得.
又,,
∴,解得.
故选:A.
【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题.
11.【答案】B
【解析】解:因为AD•(BC•AC•sin60°)≥V D﹣ABC=,BC=1,
即AD•≥1,
因为2=AD+≥2=2,
当且仅当AD==1时,等号成立,
这时AC=,AD=1,且AD⊥面ABC,所以CD=2,AB=,
得BD=,故最长棱的长为2.
故选B.
【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题.
12.【答案】C
【解析】解:函数y=sin(2x+)的图象向左平移个单位长度得到y=sin(2x+)的图象,
当x=0时,y=sin=,不是最值,故函数图象不关于y轴对称,
故命题p为假命题;
函数y=|2x﹣1|在[﹣1,0]上是减函数,在[0,+∞)上是增函数.
故命题q为假命题;
则¬q为真命题;
p∨q为假命题;
p∧q为假命题,
故只有C判断错误,
故选:C
二、填空题
13.【答案】(﹣3,﹣2)∪(﹣1,0).
【解析】解:函数f(x)=x2e x的导数为y′=2xe x+x2e x =xe x(x+2),
令y ′=0,则x=0或﹣2,
﹣2<x <0上单调递减,(﹣∞,﹣2),(0,+∞)上单调递增, ∴0或﹣2是函数的极值点,
∵函数f (x )=x 2e x
在区间(a ,a+1)上存在极值点,
∴a <﹣2<a+1或a <0<a+1, ∴﹣3<a <﹣2或﹣1<a <0.
故答案为:(﹣3,﹣2)∪(﹣1,0).
14.【答案】17(62)
3
-
【解析】
7sin
sin sin cos cos sin 12434343πππππππ⎛⎫
=+=+ ⎪⎝⎭
264+=,
(
)1762sin cos 17733
26sin 12
ααπ--∴=⨯=
+, 故答案为
17(62)
-.
考点:1、同角三角函数之间的关系;2、两角和的正弦公式.
15.【答案】 ②③ .
【解析】解:①根据双曲线的定义可知,满足|PA|﹣|PB|=2的动点P 不一定是双曲线,这与AB 的距离有关系,所以①错误.
②由|PA|=10﹣|PB|,得|PA|+|PB|=10>|AB|,所以动点P 的轨迹为以A ,B 为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以②正确.
③方程2x 2﹣5x+2=0的两个根为x=2或x=,所以方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率,所以③正确.
④由双曲线的方程可知,双曲线的焦点在x轴上,而椭圆的焦点在y轴上,所以它们的焦点不可能相同,所以④错误.
故正确的命题为②③.
故答案为:②③.
【点评】本题主要考查圆锥曲线的定义和性质,要求熟练掌握圆锥曲线的定义,方程和性质.
16.【答案】3.
【解析】解:∵f(x)=(2x+1)e x,
∴f′(x)=2e x+(2x+1)e x,
∴f′(0)=2e0+(2×0+1)e0=2+1=3.
故答案为:3.
17.【答案】(1,2).
【解析】解:∵f(x)=log a x(其中a为常数且a>0,a≠1)满足f(2)>f(3),
∴0<a<1,x>0,
若f(2x﹣1)<f(2﹣x),
则,
解得:1<x<2,
故答案为:(1,2).
【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题.
18.【答案】
11 [133
e e
⎧⎫+⋃+
⎨⎬
⎩⎭
,)
【解析】当x<0时,由f(x)﹣1=0得x2+2x+1=1,得x=﹣2或x=0,
当x ≥0时,由f (x )﹣1=0得
110x x
e
+-=,得x=0, 由,y=f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2, 即f (x )=a ,f (x )=a ﹣2, 作出函数f (x )的图象如图:
y=
1x x
e +≥1(x ≥0), y ′=1x
x e
-,当x ∈(0,1)时,y ′>0,函数是增函数,x ∈(1,+∞)时,y ′<0,函数是减函数,
x=1时,函数取得最大值:1
1e
+,
当1<a ﹣211e <+时,即a ∈(3,3+1
e )时,y=
f (f (x )﹣a )﹣1有4个零点,
当a ﹣2=1+1e 时,即a=3+1
e 时则y=
f (f (x )﹣a )﹣1有三个零点,
当a >3+1
e 时,y=
f (f (x )﹣a )﹣1有1个零点
当a=1+1
e 时,则y=
f (f (x )﹣a )﹣1有三个零点,
当11{ 21
a e a >+-≤时,即a ∈(1+1e
,3)时,y=f (f (x )﹣a )﹣1有三个零点.
综上a ∈11[133e
e ⎧⎫+⋃+⎨⎬⎩⎭

),函数有3个零点. 故答案为:11[133e
e ⎧⎫+⋃+⎨⎬⎩⎭

). 点睛:已知函数有零点求参数取值范围常用的方法和思路
(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;
(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.三、解答题
19.【答案】
【解析】解:(1)∵函数y=f(x)的定义域为[﹣2,1],
由﹣2≤3x﹣1≤1得:x∈[﹣,],
故函数y=f(3x﹣1)的定义域为[﹣,];’
(2)∵函数f(2x+5)的定义域为[﹣1,4],
∴x∈[﹣1,4],
∴2x+5∈[3,13],
故函数f(x)的定义域为:[3,13].
20.【答案】
【解析】
【分析】(I)由已知中DE⊥平面ABCD,ABCD是边长为3的正方形,我们可得DE⊥AC,AC⊥BD,结合线面垂直的判定定理可得AC⊥平面BDE;
(Ⅱ)以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF 和平面BDE的法向量,代入向量夹角公式,即可求出二面角F﹣BE﹣D的余弦值;
(Ⅲ)由已知中M是线段BD上一个动点,设M(t,t,0).根据AM∥平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置.
【解答】证明:(Ⅰ)因为DE⊥平面ABCD,所以DE⊥AC.
因为ABCD是正方形,所以AC⊥BD,
从而AC⊥平面BDE.…(4分)
解:(Ⅱ)因为DA,DC,DE两两垂直,所以建立空间直角坐标系D﹣xyz如图所示.
因为BE与平面ABCD所成角为600,即∠DBE=60°,
所以.
由AD=3,可知,.
则A(3,0,0),,,B(3,3,0),C(0,3,0),
所以,.
设平面BEF的法向量为=(x,y,z),则,即.
令,则=.
因为AC⊥平面BDE,所以为平面BDE的法向量,.
所以cos.
因为二面角为锐角,所以二面角F﹣BE﹣D的余弦值为.…(8分)
(Ⅲ)点M是线段BD上一个动点,设M(t,t,0).
则.
因为AM∥平面BEF,
所以=0,即4(t﹣3)+2t=0,解得t=2.
此时,点M坐标为(2,2,0),
即当时,AM∥平面BEF.…(12分)
21.【答案】
【解析】解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点.…当直线l的斜率存在时,设直线l的方程为y﹣2=k(x﹣1),代入C的方程,
并整理得(2﹣k2)x2+2(k2﹣2k)x﹣k2+4k﹣6=0 (*)
(ⅰ)当2﹣k2=0,即k=±时,方程(*)有一个根,l与C有一个交点
所以l的方程为…
(ⅱ)当2﹣k2
≠0,即k≠±时
△=[2(k2﹣2k)]2﹣4(2﹣k2)(﹣k2+4k﹣6)=16(3﹣2k),
①当△=0,即3﹣2k=0,k=时,方程(*)有一个实根,l与C有一个交点.
所以l的方程为3x﹣2y+1=0…
综上知:l的方程为x=1或或3x﹣2y+1=0…
(2)假设以P为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),
则2x12﹣y12=2,2x22﹣y22=2,
两式相减得2(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2)…
又∵x1+x2=2,y1+y2=4,
∴2(x1﹣x2)=4(y1﹣y2)
即k AB==,…
∴直线AB的方程为y﹣2=(x﹣1),…
代入双曲线方程2x2﹣y2=2,可得,15y2﹣48y+34=0,
由于判别式为482﹣4×15×34>0,则该直线AB存在.…
【点评】本题考查了直线和曲线的交点问题,考查直线方程问题,考查分类讨论思想,是一道中档题.22.【答案】
【解析】(Ⅰ)证明:连接AF、OE、OF,则A,F,G,H四点共圆
由EF是切线知OF⊥EF,∠BAF=∠EFG
∵CE⊥AB于点H,AF⊥BF,
∴∠FGE=∠BAF
∴∠FGE=∠EFG,
∴EF=EG…
(Ⅱ)解:∵OE2=OH2+HE2=OF2+EF2,
∴EF2=OH2+HE2﹣OF2=48,
∴EF=EG=4,
∴GH=EH﹣EG=8﹣4…
【点评】本题考查圆的内接四边形的性质,考查学生分析解决问题的能力,比较基础.23.【答案】
【解析】证明:(Ⅰ)∵a+b=1,a>0,b>0,
∴++==2()=2()
=2()+4≥4+4=8,(当且仅当a=b时,取等号),
∴++≥8;
(Ⅱ)∵(1+)(1+)=1+++,
由(Ⅰ)知,++≥8,
∴1+++≥9,
∴(1+)(1+)≥9.
24.【答案】
【解析】解:(Ⅰ)因为x∈[﹣1,1],则2+x∈[1,3],
由已知,有对任意的x∈[﹣1,1],f(x)≥0恒成立,
任意的x∈[1,3],f(x)≤0恒成立,
故f(1)=0,即1为函数函数f(x)的一个零点.
由韦达定理,可得函数f(x)的另一个零点,
又由任意的x∈[1,3],f(x)≤0恒成立,
∴[1,3]⊆[1,c],
即c≥3
(Ⅱ)函数f(x)=x2+bx+c对任意的x1,x2∈[﹣1,1],有|f(x1)﹣f(x2)|≤4恒成立,即f(x)max﹣f(x)min≤4,
记f(x)max﹣f(x)min=M,则M≤4.
当||>1,即|b|>2时,M=|f(1)﹣f(﹣1)|=|2b|>4,与M≤4矛盾;
当||≤1,即|b|≤2时,M=max{f(1),f(﹣1)}﹣f()=
﹣f()=(1+)2≤4,
解得:|b|≤2,
即﹣2≤b≤2,
综上,b的取值范围为﹣2≤b≤2.
【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.。

相关文档
最新文档