万安县实验中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万安县实验中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )
A .30
B .50
C .75
D .150
2. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )
A .2sin 2cos 2αα-+
B .sin 3αα+
C. 3sin 1αα+ D .2sin cos 1αα-+
3. 如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )
A .11
B .11.5
C .12
D .12.5
4. 已知全集I={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么∁I (A ∩B )等于( ) A .{3,4} B .{1,2,5,6} C .{1,2,3,4,5,6} D .∅
5. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥β
C .若m ⊥α,n ⊥α,则 m ∥n
D .若 m ∥α,m ∥β,则 α∥β
6. 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( ) A .众数 B .平均数 C .中位数 D .标准差
7. 设为虚数单位,则( ) A .
B .
C .
D .
8. 设a ,b 为实数,若复数,则a ﹣b=( )
A .﹣2
B .﹣1
C .1
D .2
9. 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )
A .24
B .80
C .64
D .240
10.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )
A .86210x y --=
B .86210x y +-=
C .68210x y +-=
D .68210x y --=
【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.
11
.如图,已知平面
=,
.是直线上的两点,是平面
内的两点,且
,,,.是平面
上的一动点,且有
,则四棱锥
体积的最大值是( )
A .
B .
C .
D .
12.已知函数,,若,则( )
A1 B2 C3 D-1
二、填空题
13.8
1()x x
-的展开式中,常数项为___________.(用数字作答)
【命题意图】本题考查用二项式定理求指定项,基础题.
14.已知一个算法,其流程图如图,则输出结果是 .
15.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 .
16.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的
,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次
服药,则第二天上午点服完药时,药在其体内的残留量是 毫克,若该患者坚持长期服用此药 明显副作用(此空填“有”或“无”)
17.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = .
18.已知i 是虚数单位,复数的模为 .
三、解答题
19.(本题满分15分)
已知抛物线C 的方程为2
2(0)y px p =>,点(1,2)R 在抛物线C 上.
(1)求抛物线C 的方程;
(2)过点(1,1)Q 作直线交抛物线C 于不同于R 的两点A ,B ,若直线AR ,BR 分别交直线:22l y x =+于
M ,N 两点,求MN 最小时直线AB 的方程.
【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.
20.(本题12分)已知数列{}n x 的首项13x =,通项2n n x p nq =+(*
n N ∈,p ,为常数),且145x x x ,,成等差数列,求:
(1)p q ,的值;
(2)数列{}n x 前项和n S 的公式.
21.若f (x )是定义在(0,+∞)上的增函数,且对一切x ,y >0,满足f ()=f (x )﹣f (y ) (1)求f (1)的值,
(2)若f(6)=1,解不等式f(x+3)﹣f()<2.
22.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获
胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于
体力原因,第7场获胜的概率为.
(Ⅰ)求甲队分别以4:2,4:3获胜的概率;
(Ⅱ)设X表示决出冠军时比赛的场数,求X的分布列及数学期望.
23.已知函数f(x)=x3+x.
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)求证:f(x)是R上的增函数;
(3)若f(m+1)+f(2m﹣3)<0,求m的取值范围.
(参考公式:a3﹣b3=(a﹣b)(a2+ab+b2))
24.设a,b互为共轭复数,且(a+b)2﹣3abi=4﹣12i.求a,b 的值.
万安县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】B
【解析】解:该几何体是四棱锥, 其底面面积S=5×6=30, 高h=5,
则其体积V=S ×h=
30×5=50.
故选B .
2. 【答案】A 【解析】
试题分析:利用余弦定理求出正方形面积()
ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112
1
42=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.
考点:余弦定理和三角形面积的求解.
【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角
形面积公式ααsin 2
1
sin 1121=⨯⨯⨯=
S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()
αcos 2-1122+,进而得到正方形的面积()
ααcos 22cos 2-112
21-=+=S ,最后得到
答案.
3. 【答案】C
【解析】解:由题意,0.06×5+x ×0.1=0.5,所以x 为2,所以由图可估计样本重量的中位数是12. 故选:C .
4. 【答案】B
【解析】解:∵A={1,2,3,4},B={3,4,5,6},
∴A ∩B={3,4},
∵全集I={1,2,3,4,5,6}, ∴∁I (A ∩B )={1,2,5,6}, 故选B . 【点评】本题考查交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价
转化.
5. 【答案】C
【解析】解:对于A ,若 m ∥α,n ∥α,则 m 与n 相交、平行或者异面;故A 错误; 对于B ,若α⊥γ,β⊥γ,则 α与β可能相交,如墙角;故B 错误; 对于C ,若m ⊥α,n ⊥α,根据线面垂直的性质定理得到 m ∥n ;故C 正确; 对于D ,若 m ∥α,m ∥β,则 α与β可能相交;故D 错误; 故选C .
【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.
6. 【答案】D
【解析】解:A 样本数据:82,84,84,86,86,86,88,88,88,88. B 样本数据84,86,86,88,88,88,90,90,90,90 众数分别为88,90,不相等,A 错. 平均数86,88不相等,B 错. 中位数分别为86,88,不相等,C 错
A 样本方差S 2= [(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,
B 样本方差S 2= [(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D 正确
故选D .
【点评】本题考查众数、平均数、中位标准差的定义,属于基础题.
7. 【答案】C
【解析】【知识点】复数乘除和乘方
【试题解析】
故答案为:C 8. 【答案】C
【解析】解:,因此.a ﹣b=1.
故选:C .
9. 【答案】B 【解析】 试题分析:805863
1
=⨯⨯⨯=
V ,故选B. 考点:1.三视图;2.几何体的体积. 10.【答案】D
【解析】由切线性质知PQ CQ ⊥,所以222
PQ PC QC =-,则由PQ PO =,得,
2222(3)(4)4x y x y -++-=+,化简得68210x y --=,即点P 的轨迹方程,故选D ,
11.【答案】A
【解析】【知识点】空间几何体的表面积与体积 【试题解析】由题知:是直角三角形,又,所以。

因为,所以PB=2PA 。


于M ,则。

令AM=t ,则
所以
即为四棱锥的高,
又底面为直角梯形,
所以
故答案为:A 12.【答案】A
【解析】g (1)=a ﹣1, 若f[g (1)]=1, 则f (a ﹣1)=1, 即5|a ﹣1|=1,则|a ﹣1|=0, 解得a=1
二、填空题
13.【答案】70
【解析】81
()x x -的展开式通项为8821881()(1)r r r r r r r T C x C x x
--+=-=-,所以当4r =时,常数项为
448(1)70C -=.
14.【答案】 5 .
【解析】解:模拟执行程序框图,可得 a=1,a=2
不满足条件a 2
>4a+1,a=3
不满足条件a 2>4a+1,a=4
不满足条件a 2
>4a+1,a=5
满足条件a 2
>4a+1,退出循环,输出a 的值为5.
故答案为:5.
【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查.
15.【答案】2:1.
【解析】解:设圆锥、圆柱的母线为l,底面半径为r,
所以圆锥的侧面积为:=πrl
圆柱的侧面积为:2πrl
所以圆柱和圆锥的侧面积的比为:2:1
故答案为:2:1
16.【答案】, 无.
【解析】【知识点】等比数列
【试题解析】设该病人第n次服药后,药在体内的残留量为毫克,
所以)=300,=350.
由,
所以是一个等比数列,
所以
所以若该患者坚持长期服用此药无明显副作用。

故答案为:, 无.
17.【答案】.
【解析】解:∵数列{S n}是首项和公比都是3的等比数列,∴S n =3n.
故a1=s1=3,n≥2时,a n=S n ﹣s n﹣1=3n﹣3n﹣1=2•3n﹣1,
故a n=.
【点评】本题主要考查等比数列的通项公式,等比数列的前n项和公式,数列的前n项的和Sn与第n项an 的关系,属于中档题.
18.【答案】.
【解析】解:∵复数==i﹣1的模为=.
故答案为:.
【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.
三、解答题
19.【答案】(1)2
4y x =;(2)20x y +-=.
【解析】(1)∵点(1,2)R 在抛物线C 上,22212p p =⨯⇒=,…………2分 即抛物线C 的方程为24y x =;…………5分
20.【答案】(1)1,1==q p ;(2)2
)
1(22
1
++
-=-n n S n n .

点:等差,等比数列通项公式,数列求和. 21.【答案】
【解析】解:(1)在f()=f(x)﹣f(y)中,
令x=y=1,则有f(1)=f(1)﹣f(1),
∴f(1)=0;
(2)∵f(6)=1,∴2=1+1=f(6)+f(6),
∴不等式f(x+3)﹣f()<2
等价为不等式f(x+3)﹣f()<f(6)+f(6),
∴f(3x+9)﹣f(6)<f(6),
即f()<f(6),
∵f(x)是(0,+∞)上的增函数,
∴,解得﹣3<x<9,
即不等式的解集为(﹣3,9).
22.【答案】
【解析】解:(Ⅰ)设甲队以4:2,4:3获胜的事件分别为A,B,
∵甲队第5,6场获胜的概率均为,第7场获胜的概率为,
∴,,
∴甲队以4:2,4:3获胜的概率分别为和.
(Ⅱ)随机变量X的可能取值为5,6,7,
∴,P(X=6)=,P(X=7)=,
∴随机变量X的分布列为
5 6 7
【点评】本题考查离散型随机变量的分布列,期望的求法,独立重复试验概率的乘法公式的应用,考查分析问题解决问题的能力.
23.【答案】
【解析】解:(1)f(x)是R上的奇函数
证明:∵f(﹣x)=﹣x3﹣x=﹣(x3+x)=﹣f(x),
∴f(x)是R上的奇函数
(2)设R上任意实数x1、x2满足x1<x2,∴x1﹣x2<0,
f(x1)﹣f(x2)=(x1﹣x2)+[(x1)3﹣(x2)3]=(x1﹣x2)[(x1)2+(x2)2+x1x2+1]=(x1﹣x2)[(x1+x2)
2+1]<0恒成立,
2+x
2
因此得到函数f(x)是R上的增函数.
(3)f(m+1)+f(2m﹣3)<0,可化为f(m+1)<﹣f(2m﹣3),
∵f(x)是R上的奇函数,∴﹣f(2m﹣3)=f(3﹣2m),
∴不等式进一步可化为f(m+1)<f(3﹣2m),
∵函数f(x)是R上的增函数,
∴m+1<3﹣2m,

24.【答案】
【解析】解:因为a,b互为共轭复数,所以设a=x+yi,则b=x﹣yi,a+b=2x,ab=x2+y2,
所以4x2﹣3(x2+y2)i=4﹣12i,
所以,解得,
所以a=1+i,b=1﹣i;
或a=1﹣i,b=1+i;
或a=﹣1+i,b=﹣1﹣i;
或a=﹣1﹣i,b=﹣1+i.
【点评】本题考查了共轭复数以及复数相等;正确设出a,b 是解答的关键.。

相关文档
最新文档