昌邑区第一中学校2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昌邑区第一中学校2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 复数z=
(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( ) A .m ⊥α,m ⊥β,则α∥β B .m ∥n ,m ⊥α,则n ⊥α C .m ⊥α,n ⊥α,则m ∥n D .m ∥α,α∩β=n ,则m ∥n
3. 设全集U={1,3,5,7,9},集合A={1,|a ﹣5|,9},∁U A={5,7},则实数a 的值是( )
A .2
B .8
C .﹣2或8
D .2或8
4. 已知集合{}
2
|10A x x =-=,则下列式子表示正确的有( )
①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆.
A .1个
B .2个
C .3个
D .4个 5. 已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为( ) A .8 B .5
C .9
D .27
6. 若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =
-++-+-在02π⎡⎤
-⎢⎥⎣⎦
,上单调递增,则实数的取值范围为( ) A .117⎡⎤
⎢⎥⎣⎦
, B .117⎡
⎤-⎢⎥⎣
⎦,
C.1
(][1)7
-∞-+∞,,
D .[1)+∞,
7. 在
中,角
、、
所对应的边分别为、、,若角
、
、
依次成等差数列,且
,
,则
等于( )
A .
B .
C .
D .2
8. 函数f (x )=lnx ﹣+1的图象大致为( )
A .
B .
C .
D .
9.
=( )
A .﹣i
B .i
C .1+i
D .1﹣i
10.已知集合2
{320,}A x x x x R =-+=∈,{05,}B x x x N =<<∈,则满足条件A C B ⊆⊆的集合C 的
个数为
A 、
B 、2
C 、3
D 、4
11.在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( )
A .
B .
C .
D .
12.命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )
A .∀x ≤0,都有x 2﹣x >0
B .∀x >0,都有x 2﹣x ≤0
C .∃x >0,使得x 2﹣x <0
D .∃x ≤0,使得x 2﹣x >0
二、填空题
13.1F ,2F 分别为双曲线22
221x y a b
-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,
若12PF F ∆的内切圆半径与外接圆半径之比为1
2
,则该双曲线的离心率为______________.
【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.
14.已知f (x )=
,则f[f (0)]= .
15.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( )
A .2
B .3
C .2
D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.
16.(﹣)0+[(﹣2)3] = .
17.已知复数,则1+z 50+z 100
= .
18.在复平面内,复数
与对应的点关于虚轴对称,且
,则
____.
三、解答题
19.(本题满分14分)已知两点)1,0(-P 与)1,0(Q 是直角坐标平面内两定点,过曲线C 上一点),(y x M 作y 轴的垂线,垂足为N ,点E 满足MN ME 3
2
=,且0=⋅. (1)求曲线C 的方程;
(2)设直线l 与曲线C 交于B A ,两点,坐标原点O 到直线l 的距离为
2
3
,求AOB ∆面积的最大值. 【命题意图】本题考查向量的基本运算、轨迹的求法、直线与椭圆的位置关系,本题知识交汇性强,最值的求解有一定技巧性,同时还要注意特殊情形时三角形的面积.总之该题综合性强,难度大.
20.已知复数z=
.
(1)求z 的共轭复数;
(2)若az+b=1﹣i ,求实数a ,b 的值.
21.在平面直角坐标系xOy 中,过点(2,0)C 的直线与抛物线24y x =相交于点A 、B 两点,设
11(,)A x y ,22(,)B x y .
(1)求证:12y y 为定值;
(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程 和弦长,如果不存在,说明理由.
22.若f (x )是定义在(0,+∞)上的增函数,且对一切x ,y >0,满足f ()=f (x )﹣f (y ) (1)求f (1)的值,
(2)若f (6)=1,解不等式f (x+3)﹣f ()<2.
23.计算下列各式的值:
(1)
(2)(lg5)2+2lg2﹣(lg2)2
.
24.(本题满分15分)
如图AB 是圆O 的直径,C 是弧AB 上一点,VC 垂直圆O 所在平面,D ,E 分别为VA ,VC 的中点. (1)求证:DE ⊥平面VBC ;
(2)若6VC CA ==,圆O 的半径为5,求BE 与平面BCD 所成角的正弦值.
【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力.
昌邑区第一中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】C
【解析】解:z=
=
=
=
+
i ,
当1+m >0且1﹣m >0时,有解:﹣1<m <1; 当1+m >0且1﹣m <0时,有解:m >1; 当1+m <0且1﹣m >0时,有解:m <﹣1; 当1+m <0且1﹣m <0时,无解; 故选:C .
【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题.
2. 【答案】D 【解析】解:A 选项中命题是真命题,m ⊥α,m ⊥β,可以推出α∥β;
B 选项中命题是真命题,m ∥n ,m ⊥α可得出n ⊥α;
C 选项中命题是真命题,m ⊥α,n ⊥α,利用线面垂直的性质得到n ∥m ;
D 选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.
故选D .
【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.
3. 【答案】D
【解析】解:由题意可得3∈A ,|a ﹣5|=3, ∴a=2,或a=8, 故选 D .
4. 【答案】C 【解析】
试题分析:{}1,1A =-,所以①③④正确.故选C. 考点:元素与集合关系,集合与集合关系. 5. 【答案】C
【解析】解:令log 2(x 2
+1)=0,得x=0, 令log 2(x 2+1)=1,得x 2
+1=2,x=±1, 令log
2(x 2+1)=2,得x 2
+1=4,x=
.
则满足值域为{0,1,2}的定义域有:
{0,﹣1,﹣},{0,﹣1,},{0,1,﹣},
{0,1,},{0,﹣1,1,﹣},{0,﹣1,1,},
{0,﹣1,﹣,},{0,1,﹣,},{0,﹣1,1,﹣,}.
则满足这样条件的函数的个数为9.
故选:C.
【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题.
6.【答案】D
【解析】
考点:1、导数;2、单调性;3、函数与不等式.
7.【答案】C
【解析】
因为角、、依次成等差数列,所以
由余弦定理知,即,解得
所以,故选C
答案:C
8.【答案】A
【解析】解:∵f(x)=lnx﹣+1,
∴f′(x)=﹣=,
∴f (x )在(0,4)上单调递增,在(4,+∞)上单调递减; 且f (4)=ln4﹣2+1=ln4﹣1>0; 故选A .
【点评】本题考查了导数的综合应用及函数的图象的应用.
9. 【答案】 B
【解析】解: =
=
=i .
故选:B .
【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力.
10.【答案】D
【解析】{|(1)(2)0,}{1,2}A x x x x =--=∈=R , {}{}|05,1,2,3,4=<<∈=N B x x x . ∵⊆⊆A C B ,∴C 可以为{}1,2,{}1,2,3,{}1,2,4,{}1,2,3,4. 11.【答案】C
【解析】解:如图所示,△BCD 是圆内接等边三角形,
过直径BE 上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD 的内切圆的半径为1, 显然当弦为CD 时就是△BCD 的边长,
要使弦长大于CD 的长,就必须使圆心O 到弦的距离小于|OF|, 记事件A={弦长超过圆内接等边三角形的边长}={弦中点在内切圆内},
由几何概型概率公式得P (A )=
,
即弦长超过圆内接等边三角形边长的概率是. 故选C .
【点评】本题考查了几何概型的运用;关键是找到事件A 对应的集合,利用几何概型公式解答.
12.【答案】C
【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:
∃x>0,使得x2﹣x<0,
故选:C.
【点评】本题主要考查含有量词的命题的否定,比较基础.
二、填空题
13.1
【解析】
14.【答案】1.
【解析】解:f(0)=0﹣1=﹣1,
f[f(0)]=f(﹣1)=2﹣1=1,
故答案为:1.
【点评】本题考查了分段函数的简单应用.
15.【答案】A
【解析】
16.【答案】.
【解析】解:(﹣)0+[(﹣2)3]
=1+(﹣2)﹣2
=1+=.
故答案为:.
17.【答案】 i .
【解析】解:复数
,
所以z 2=i ,又i 2=﹣1,所以1+z 50+z 100=1+i 25+i 50
=1+i ﹣1=i ;
故答案为:i .
【点评】本题考查了虚数单位i 的性质运用;注意i 2
=﹣1.
18.【答案】-2
【解析】【知识点】复数乘除和乘方 【试题解析】由题知:
所以
故答案为:-2
三、解答题
19.【答案】
【解析】(1)依题意知),0(y N ,∵)0,32()0,(3232x x -=-==
,∴),3
1
(y x E 则)1,(-=y x QM ,)1,3
1
(+=y x PE …………2分
∵0=⋅PE QM ,∴0)1)(1(31=+-+⋅y y x x ,即
1322
=+y x ∴曲线C 的方程为13
22
=+y x …………4分
20.【答案】
【解析】解:(1).
∴=1﹣i.
(2)a (1+i )+b=1﹣i ,即a+b+ai=1﹣i ,
∴
,
解得a=﹣1,b=2.
【点评】该题考查复数代数形式的乘除运算、复数的基本概念,属基础题,熟记相关概念是解题关键.
21.【答案】(1)证明见解析;(2)弦长为定值,直线方程为1x =. 【解析】
(2 ,进而得
1a =时为定值.
试题解析:(1)设直线AB 的方程为2my x =-,由2
2,4,
my x y x =-⎧⎨=⎩
得2480y my --=,∴128y y =-, 因此有128y y =-为定值.111]
(2)设存在直线:x a =满足条件,则AC 的中点11
2(
,)22
x y E +,AC =,
因此以AC 为直径圆的半径12r AC ==
=E 点到直线x a =的距离12||2
x d a +=-,
所以所截弦长为==
=
当10a -=,即1a =时,弦长为定值2,这时直线方程为1x =.
考点:1、直线与圆、直线与抛物线的位置关系的性质;2、韦达定理、点到直线距离公式及定值问题. 22.【答案】
【解析】解:(1)在f ()=f (x )﹣f (y )中, 令x=y=1,则有f (1)=f (1)﹣f (1), ∴f (1)=0;
(2)∵f (6)=1,∴2=1+1=f (6)+f (6),
∴不等式f (x+3)﹣f ()<2
等价为不等式f (x+3)﹣f ()<f (6)+f (6), ∴f (3x+9)﹣f (6)<f (6),
即f (
)<f (6),
∵f (x )是(0,+∞)上的增函数,
∴
,解得﹣3<x <9,
即不等式的解集为(﹣3,9).
23.【答案】
【解析】解:(1)
=…
=
=5…
(2)(lg5)2+2lg2﹣(lg2)2
=(lg5+lg2)(lg5﹣lg2)+2lg2…
=.…
24.【答案】(1)详见解析;(2)
146
. 【解析】(1)∵D ,E 分别为VA ,VC 的中点,∴//DE AC ,…………2分
∵AB 为圆O 的直径,∴AC BC ⊥,…………4分 又∵VC ⊥圆O ,∴VC AC ⊥,…………6分 ∴DE BC ⊥,DE VC ⊥,又∵VC
BC C =,∴DE VBC ⊥面;…………7分
(2)设点E 平面BCD 的距离为d ,由D BCE E BCD V V --=得11
33
BCE BCD DE S d S ∆∆⨯⨯=⨯⨯,解得
2
d =,…………12分 设BE 与平面BCD 所成角为θ,∵8BC =,
BE =sin d BE θ=
=
.…………15分。