曲阳县第一中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲阳县第一中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知正项等差数列中,,若成等比数列,则( )
{}n a 12315a a a ++=1232,5,13a a a +++10a = A .
B .
C .
D .19202122
2. 若复数在复平面内对应的点关于轴对称,且,则复数
在复平面内对应的点在12,z z y 12i z =-1
2
z z (

A .第一象限
B .第二象限
C .第三象限
D .第四象限
【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力.
3. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是(

A .60°
B .45°
C .90°
D .120°
4. 定义在R 上的奇函数f (x ),满足,且在(0,+∞)上单调递减,则xf (x )>0的解集为(
)A .B .
C .
D .
5. 已知在R 上可导的函数f (x )的图象如图所示,则不等式
f (x )•f ′(x )<0的解集为(

A .(﹣2,0)
B .(﹣∞,﹣2)∪(﹣1,0)
C .(﹣∞,﹣2)∪(0,+∞)
D .(﹣2,﹣1)∪(0,+∞)
6. 如图,正方体ABCD ﹣A 1B 1C 1D 1中,点E ,
F 分别是AA 1,AD 的中点,则CD 1与EF 所成角为(

A .0°
B .45°
C .60°
D .90°
7. 幂函数y=f (x )的图象经过点(﹣2,﹣),则满足f (x )=27的x 的值是( )
A .
B .﹣
C .3
D .﹣3
8. 已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为(

班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .(0,4)
B .[0,4)
C .(0,5]
D .[0,5]
9. 已知点是双曲线C :左支上一点,,是双曲线的左、右两个焦点,且
P 22
221(0,0)x y a b a b
-=>>1F 2F ,与两条渐近线相交于,两点(如图),点恰好平分线段,则双曲线的离心率
12PF PF ⊥2PF M N N 2PF 是( )
A.
B.2
D.5
2
【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.10.双曲线﹣=1(a >0,b >0)的一条渐近线被圆M :(x ﹣8)2+y 2=25截得的弦长为6,则双曲线的离
心率为( )
A .2
B .
C .4
D .
11.由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于﹣1,则样本1,x 1,﹣x 2,x 3,﹣x 4,x 5的中位数为( )
A .
B .
C .
D .
12.已知向量,(),且,点在圆上,则(,2)a m =r (1,)b n =-r 0n >0a b ⋅=r r (,)P m n 22
5x y +=( )
|2|a b +=r r
A B .
C .
D .二、填空题
13.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定
(),A B
k k A B AB
ϕ-=
(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给出以下命题:
①函数3
2
1y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ>
②存在这样的函数,图象上任意两点之间的“弯曲度”为常数;③设点A,B 是抛物线2
1y x =+上不同的两点,则(),2A B ϕ≤;
④设曲线x
y e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1
t A B ϕ⋅<恒成立,则实数t 的取值范围是(),1-∞.
其中真命题的序号为________.(将所有真命题的序号都填上)
14.记等比数列{a n }的前n 项积为Πn ,若a 4•a 5=2,则Π8= .
15.如图所示,圆中,弦的长度为,则的值为_______.
C AB 4AB AC ×u u u r u u u r
【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.16.若数列满足,则数列的通项公式为
.
{}n a 2
12332n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅{}n a 17.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n=8时S n 取得最大值,则d 的取值范围为 .
18.已知数列中,,函数在处取得极值,则{}n a 11a =32
12()3432
n n a f x x x a x -=-
+-+1x =_________.n a =三、解答题
19.如图所示,一动圆与圆x 2+y 2+6x+5=0外切,同时与圆x 2+y 2﹣6x ﹣91=0内切,求动圆圆心M 的轨迹方程,并说明它是什么样的曲线.
20.若函数f (x )=sin ωxcos ωx+sin 2ωx ﹣(ω>0)的图象与直线y=m (m 为常数)相切,并且切点的横
坐标依次构成公差为π的等差数列.(Ⅰ)求ω及m 的值;
(Ⅱ)求函数y=f (x )在x ∈[0,2π]上所有零点的和.
21.如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.
22.在直角坐标系xOy中,过点P(2,﹣1)的直线l的倾斜角为45°.以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ,直线l和曲线C的交点为A,B.
(1)求曲线C的直角坐标方程;
(2)求|PA|•|PB|.
23.平面直角坐标系xOy中,圆C1的参数方程为(φ为参数),以坐标原点为极点,x轴正半
轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=4sinθ.
(1)写出圆C1的普通方程及圆C2的直角坐标方程;
(2)圆C1与圆C2是否相交,若相交,请求出公共弦的长;若不相交请说明理由.
24.在平面直角坐标系XOY中,圆C:(x﹣a)2+y2=a2,圆心为C,圆C与直线l1:y=﹣x的一个交点的横坐标为2.
(1)求圆C的标准方程;
(2)直线l2与l1垂直,且与圆C交于不同两点A、B,若S△ABC=2,求直线l2的方程.
曲阳县第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1. 【答案】C
【解析】设等差数列的公差为,且.d 0d >∵,∴.12315a a a ++=25a =∵成等比数列,1232,5,13a a a +++∴,2
213(5)(2)(13)a a a +=++∴,2
222(5)(2)(13)a a d a d +=-+++∴,解得.2
10(7)(18)d d =-+2d =∴.102858221a a d =+=+⨯=2. 【答案】B 【



3. 【答案】A
【解析】解:如图所示,设AB=2,
则A (2,0,0),B (2,2,0),B 1(2,2,2),C 1(0,2,2),E (2,1,0),F (2,2,1).∴=(﹣2,0,2),
=(0,1,1),
∴==
=,

=60°.
∴异面直线EF 和BC 1所成的角是60°.故选:A .
【点评】本题考查了利用向量的夹角公式求异面直线所成的夹角,考查了推理能力与计算能力,属于中档题.
4.【答案】B
【解析】解:∵函数f(x)是奇函数,在(0,+∞)上单调递减,且f ()=0,
∴f (﹣)=0,且在区间(﹣∞,0)上单调递减,
∵当x<0,当﹣<x<0时,f(x)<0,此时xf(x)>0
当x>0,当0<x<时,f(x)>0,此时xf(x)>0
综上xf(x)>0的解集为
故选B
5.【答案】B
【解析】解:由f(x)图象单调性可得f′(x)在(﹣∞,﹣1)∪(0,+∞)大于0,
在(﹣1,0)上小于0,
∴f(x)f′(x)<0的解集为(﹣∞,﹣2)∪(﹣1,0).
故选B.
6.【答案】C
【解析】解:连结A1D、BD、A1B,
∵正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,∴EF∥A1D,
∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,
∵A1D=A1B=BD,
∴∠DA1B=60°.
∴CD1与EF所成角为60°.
故选:C.
【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养. 
7.【答案】A
【解析】解:设幂函数为y=xα,因为图象过点(﹣2,﹣),所以有=(﹣2)α,解得:α=﹣3
所以幂函数解析式为y=x﹣3,由f(x)=27,得:x﹣3=27,所以x=.
故选A.
8.【答案】B
【解析】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},
∴f(x1)=f(f(x1))=0,
∴f(0)=0,
即f(0)=m=0,
故m=0;
故f(x)=x2+nx,
f(f(x))=(x2+nx)(x2+nx+n)=0,
当n=0时,成立;
当n≠0时,0,﹣n不是x2+nx+n=0的根,
故△=n2﹣4n<0,
故0<n<4;
综上所述,0≤n+m<4;
故选B.
【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.
9.【答案】A.
【解析】
10.【答案】D
【解析】解:双曲线﹣=1(a>0,b>0)的一条渐近线方程为bx+ay=0,
∵渐近线被圆M:(x﹣8)2+y2=25截得的弦长为6,
∴=4,
∴a2=3b2,
∴c2=4b2,
∴e==.
故选:D.
【点评】本题考查双曲线的性质和应用,解题时要注意公式的合理运用. 
11.【答案】C
【解析】解:因为x 1<x 2<x 3<x 4<x 5<﹣1,题目中数据共有六个,排序后为x 1<x 3<x 5<1<﹣x 4<﹣x 2,故中位数是按从小到大排列后第三,第四两个数的平均数作为中位数,故这组数据的中位数是(x 5+1).故选:C .
【点评】注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数. 
12.【答案】A
【解析】
考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.
二、填空题
13.【答案】②③【解析】
试题分析:①错:(1,1),(2,5),|||7,A B A B AB k k =-
=(,)A B ϕ∴=<②对:如1y =
;③对;(,)2A B ϕ==
≤;
④错;(,)A B ϕ=
=
11,(,)A B ϕ==>因为1(,)t A B ϕ<恒成立,故1t ≤.故答案为②③.111]
考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.
【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题.14.【答案】 16 .
【解析】解:∵等比数列{a n }的前n 项积为Πn ,∴Π8=a 1•a 2a 3•a 4•a 5a 6•a 7•a 8=(a 4•a 5)4=24=16.故答案为:16.
【点评】本题主要考查等比数列的计算,利用等比数列的性质是解决本题的关键. 
15.【答案】
8
16.【答案】
6,12,2,n n a n n n n *
=⎧⎪
=+⎨≥∈⎪⎩N 【解析】【解析】()()
12312n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅;
11:6n a ==()()()
123112312:12 1n n n n a a a a a n n a a a a n n --≥⋅=++=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅故2
2:n n n a n
+≥=
17.【答案】 (﹣1,﹣) .
【解析】解:∵S n =7n+,当且仅当n=8时S n 取得最大值,∴
,即
,解得:

综上:d 的取值范围为(﹣1,﹣).
【点评】本题主要考查等差数列的前n 项和公式,解不等式方程组,属于中档题.
18.【答案】1231n --g 【解析】

点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.
【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如的递推数列求通项往往用1(0,1)n n a qa p p q -=+≠≠构造法,利用待定系数法构造成的形式,再根据等比数例求出的通项,进而得1()n n a m q a m -+=+{}n a m +出的通项公式.
{}n a 三、解答题
19.【答案】
【解析】解:(方法一)设动圆圆心为M (x ,y ),半径为R ,设已知圆的圆心分别为O 1、O 2,
将圆的方程分别配方得:(x+3)2+y 2=4,(x ﹣3)2+y 2=100,
当动圆与圆O 1相外切时,有|O 1M|=R+2…①
当动圆与圆O 2相内切时,有|O 2M|=10﹣R …②
将①②两式相加,得|O 1M|+|O 2M|=12>|O 1O 2|,
∴动圆圆心M (x ,y )到点O 1(﹣3,0)和O 2(3,0)的距离和是常数12,
所以点M 的轨迹是焦点为点O 1(﹣3,0)、O 2(3,0),长轴长等于12的椭圆.
∴2c=6,2a=12,
∴c=3,a=6
∴b 2=36﹣9=27
∴圆心轨迹方程为,轨迹为椭圆.
(方法二):由方法一可得方程
,移项再两边分别平方得:2
两边再平方得:3x 2+4y 2﹣108=0,整理得所以圆心轨迹方程为,轨迹为椭圆.
【点评】本题以两圆的位置关系为载体,考查椭圆的定义,考查轨迹方程,确定轨迹是椭圆是关键. 
20.【答案】
【解析】解:(Ⅰ)∵f (x )=sin ωxcos ωx+sin 2ωx ﹣
=ωx+(1﹣cos2ωx)﹣=2ωx﹣2ωx=sin(2ωx﹣),
依题意得函数f(x)的周期为π且ω>0,
∴2ω=,
∴ω=1,则m=±1;
(Ⅱ)由(Ⅰ)知f(x)=sin(2ωx﹣),∴,
∴.
又∵x∈[0,2π],
∴.
∴y=f(x)在x∈[0,2π]上所有零点的和为.
【点评】本题主要考查三角函数两倍角公式、辅助角公式、等差数列公差、等差数列求和方法、函数零点基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归转化思想,是中档题. 
21.【答案】
【解析】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.
又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,
∴AA1⊥平面ABC.
(II)解:由AC=4,BC=5,AB=3.
∴AC2+AB2=BC2,∴AB⊥AC.
建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),
∴,,.
设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).
则,令y1=4,解得x1=0,z1=3,∴.
,令x2=3,解得y2=4,z2=0,∴.
===.
∴二面角A1﹣BC1﹣B1的余弦值为.
(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D

∴=,=(0,3,﹣4),
∵,∴,
∴,解得t=.
∴.
【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.
22.【答案】
【解析】(1)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,…
∵ρcosθ=x,ρsinθ=y,
∴曲线C的直角坐标方程为y2=4x …
(2)∵直线l过点P(2,﹣1),且倾斜角为45°.∴l的参数方程为(t为参数).…
代入y2=4x 得t2﹣6t﹣14=0…
设点A,B对应的参数分别t1,t2
∴t1t2=﹣14…
∴|PA|•|PB|=14.…
23.【答案】
【解析】解:(1)由圆C1的参数方程为(φ为参数),可得普通方程:(x﹣2)2+y2=4,即x2﹣4x+y2=0

由圆C2的极坐标方程为ρ=4sinθ,化为ρ2=4ρsinθ,∴直角坐标方程为x2+y2=4y.
(2)联立,解得,或.
∴圆C1与圆C2相交,交点(0,0),(2,2).
公共弦长=.
【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角方程、两圆的位置关系、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.
24.【答案】
【解析】解:(1)由圆C与直线l1:y=﹣x的一个交点的横坐标为2,
可知交点坐标为(2,﹣2),
∴(2﹣a)2+(﹣2)2=a2,解得:a=2,
所以圆的标准方程为:(x﹣2)2+y2=4,
(2)由(1)可知圆C的圆心C的坐标为(2,0)
由直线l2与直线l1垂直,直线l1:y=﹣x可设直线l2:y=x+m,
则圆心C到AB的距离d=,
|AB|=2=2
所以S△ABC=|AB|•d=•2•=2
令t=(m+2)2,化简可得﹣2t2+16t﹣32=﹣2(t﹣4)2=0,
解得t=(m+2)2=4,
所以m=0,或m=﹣4
∴直线l2的方程为y=x或y=x﹣4.。

相关文档
最新文档