(完整word版)高中数学必修2知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

h高中数学必修2
第一章立体几何初步
1、柱、锥、台、球的结构特征
(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱'''''E
AD
ABCDE-或用对角线的端点字母,如五棱柱'
A
D
C
B
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥'''''E
A
P-
C
B
D
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台'''''E
A
P-
B
C
D
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图
定义三视图:
正视图(光线从几何体的前面向后面正投影); 侧视图(从左向右)、 俯视图(从上向下)
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

3、空间几何体的直观图—-斜二测画法
斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变;
②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积
(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)
ch S =直棱柱侧面积 rh S π2=圆柱侧 '2
1ch S =正棱锥侧面积 rl S π=圆锥侧面积
')(2
1
21h c c S +=
正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表
(3)柱体、锥体、台体的体积公式
V Sh =柱 2V Sh r h π==圆柱 13
V Sh =锥 h r V 23
1π=圆锥
''1()3
V S S S S h =台 ''22
11()()33V S S S S h r rR R h π==++圆台
(4)球体的表面积和体积公式:V 球=343
R π ; S 球面=24R π
特殊几何体表面积公式(c 为底面周长,h 为高,'
h 为斜高,l 为母线)
ch S =直棱柱侧面积
'2
1
ch S =
正棱锥侧面积
')(2
1
21h c c S +=正棱台侧面积
rh
S π2=圆柱侧
()l r r S +=π2圆柱表
rl S π=圆锥侧面积
()l r r S +=π圆锥表
l R r S π)(+=圆台侧面积
()
22R Rl rl r S +++=π圆台表
柱体、锥体、台体的体积公式
V Sh =柱
13V Sh
=锥
'1
()3V S S h =台
2V Sh r h π==圆柱
h r V 23
1
π=圆锥
'2211
()()33
V S S h r rR R h π==++圆台
(4)球体的表面积和体积公式:V 球=343
R π ; S 球面=24R π
第二章直线与平面的位置关系
2.1空间点、直线、平面之间的位置关系
1 平面含义:平面是无限延展的
2 三个公理:
(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.符号表示为
A∈L
B∈L =〉L α
A∈α
B∈α
公理1作用:判断直线是否在平面内。

(2)公理2:过不在一条直线上的三点,有且只有一个平面.L
A
·α
C ·
B ·
A
·α
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据.
(3
公理
2。

1。

2 空间中直线与直线之间的位置关系
1 空间的两条直线有如下三种关系:
相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;
异面直线: 不同在任何一个平面内,没有公共点。

符号表示为:设a 、b 、c 是三条直线
a ∥
b
c ∥b
强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

4 注意点:
① a ’与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直
线中的一条上;
② 两条异面直线所成的角θ∈(0, );
共面直线
=>a ∥c
2
③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;
④两条直线互相垂直,有共面垂直与异面垂直两种情形;
⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

2。

1。

3 —2。

1.4 空间中直线与平面、平面与平面之间的位置关系
1、直线与平面有三种位置关系:
(1)直线在平面内-—有无数个公共点
(2)直线与平面相交—- 有且只有一个公共点
(3)直线在平面平行-—没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示
a αa∩α=A a∥α
2。

2。

直线、平面平行的判定及其性质
2.2.1 直线与平面平行的判定
1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:
a α
b β=> a∥α
a∥b
2。

2.2 平面与平面平行的判定
1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行.
符号表示:
a β
b β
a∩b = P β∥α
a∥α
b∥α
2、判断两平面平行的方法有三种:
(1)用定义;
(2)判定定理;
(3)垂直于同一条直线的两个平面平行。

2。

2.3 —2。

2.4直线与平面、平面与平面平行的性质
1、直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.
简记为:线面平行则线线平行。

符号表示:
a ∥α
a βa∥b
α∩β= b
作用:利用该定理可解决直线间的平行问题。

2、两个平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行.
符号表示:
α∥β
α∩γ= a a∥b
β∩γ= b
作用:可以由平面与平面平行得出直线与直线平行
2。

3直线、平面垂直的判定及其性质
2。

3。

1直线与平面垂直的判定
1、定义:如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。

如图,直线与平面垂直时,它们唯一公共点P叫做垂足。

P
a
L
2、直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.
注意点:a)定理中的“两条相交直线"这一条件不可忽视;
b)定理体现了“直线与平面垂直”与“直线与直线垂直"互相转化的数学思想。

2.3。

2平面与平面垂直的判定
1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形
A
梭l β
B
α
2、二面角的记法:二面角α-l—β或α-AB-β
3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。

2。

3。

3 - 2.3.4直线与平面、平面与平面垂直的性质
1
2
第三章 直线与方程
(1)直线的倾斜角
定义:x 轴正向与直线向上方向特别地,当直线与x 轴平行或重合时,我们规定
它的倾斜角为0度。

因此,倾斜角的取值范围是(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用.
当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; 当直线l 与x 轴垂直时, α= 90°, k 不存在。

当[)
90,0∈α时,0≥k ; 当()
180,90∈α时,0<k ; 当 90=α时,k 不存在。

②过两点的直线的斜率公式:)(211
21
2x x x x y y k ≠--=
( P1(x1,y1),P2(x2,y2),x1≠x2)
注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k 与P 1、P 2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.
(3)直线方程
注意:当直线的斜率为0°时,k=0,直线的方程是=1.
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1
,所以它的方程是x =x 1.
注意:错误!
各式的适用范围 错误!特殊的方程如:
要注意斜率的存在与否.
(7)两条直线的交点
0:1111=++C y B x A l 0:2222=++C y B x A l 相交
交点坐标即方程组⎩⎨
⎧=++=++0
222111C y B x A C y B x A 的一组解。

方程组无解
//l l ⇔ ; 方程组有无数解⇔1l 与2l 重合
(822,x y )是平面直角坐标系中的两个点,
(9
一点()00,y x P 到直线
0:1=++C By Ax l
(已知两条平行线直线1l 和2l 的一般式方程为1l :01=++C
By Ax ,
2l :02=++C By Ax ,则1l 与2l
第四章 圆与方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程
(1 点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:
当2200()()x a y b -+-〉2r ,点在圆外
当2200()()x a y b -+-=2r ,点在圆上
当2200()()x a y b -+-〈2r ,点在圆内
(2当22>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+=
当0422=-+F E D 时,表示一个点;
当0422<-+F E D 时,方程不表示任何图形。

(3)求圆方程的方法:
一般都采用待定系数法:先设后求。

确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a ,b ,r;若利用一般方程,需要求出D ,E ,F ;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.
3、直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 则有
(2)过圆外一点的切线:①k 不存在,验证是否成立②k 存在,求解k ,得到方程【一定两解】
)2+(y —b )2=r 2,圆上一点为(x 0,y 0)
4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。

设圆()()221211:r b y a x C =-+-,()()222222:R b y a x C =-+-
两圆的位置关系常通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。

当r R d +>时两圆外离,此时有公切线四条;
当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当r R d r R +<<-时两圆相交,连心线垂直平分公共弦,有两条外公切线; 当R d -=
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线 圆的辅助线一般为连圆心与切线或者连圆心与弦中点。

相关文档
最新文档