八年级上册三角形填空选择达标检测(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册三角形填空选择达标检测(Word版含解析)
一、八年级数学三角形填空题(难)
1.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画_____个三角形.
【答案】10
【解析】
【分析】
以平面内的五个点为顶点画三角形,根据三角形的定义,我们在平面中依次选取三个点画出图形即可解答.
【详解】
解:如图所示,以其中任意三个点为顶点画三角形,最多可以画10个三角形,
故答案为:10.
【点睛】
本题考查的是几何图形的个数,我们根据三角形的定义,在画图的时候要注意按照一定的顺序,保证不重复不遗漏.
2.如图,BE平分∠ABC,CE平分外角∠ACD,若∠A=42°,则∠E=_____°.
【答案】21°
【解析】
根据三角形的外角性质以及角平分线的定义可得.
解:由题意得:∠E=∠ECD−∠EBC=1
2
∠ACD−
1
2
∠ABC=
1
2
∠A=21°.
故答案为21°.
3.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=40°,∠2=50°,那么∠ 3的度数等于______________.
【答案】12°
【解析】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是108°,则∠3=360°-60°-90°-108°-∠1-∠2=12°.
点睛:本题考查的是多边形的内角,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.
4.一个多边形的内角和是外角和的7
2
倍,那么这个多边形的边数为_______.
【答案】9
【解析】
【分析】
根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】
解:设这个多边形是n边形,
根据题意得,(n-2)•180°=7
2
×360°,
解得:n=9.
故答案为:9.
【点睛】
本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.
5.如图,AD是△ABC的中线,CE是△ACD的中线,S△ACE=3cm2,则S△ABC=_____cm2.
【答案】12cm2.
【解析】
【分析】
根据三角形的面积公式,得△ACE的面积是△ACD的面积的一半,△ACD的面积是△ABC 的面积的一半.
【详解】
解:∵CE是△ACD的中线,
∴S△ACD=2S△ACE=6cm2.
∵AD是△ABC的中线,
∴S△ABC=2S△ACD=12cm2.
故答案为12cm2.
【点睛】
此题主要是根据三角形的面积公式,得三角形的中线把三角形的面积分成了相等的两部分.
6.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.
【答案】12
【解析】
试题解析:根据题意,得
(n-2)•180-360=1260,
解得:n=11.
那么这个多边形是十一边形.
考点:多边形内角与外角.
7.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于 ______ 度.
【答案】108°
【解析】
【分析】
如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角
∠COD,再用360°减去∠AOC、∠BOD、∠COD即可
【详解】
∵五边形是正五边形,
∴每一个内角都是108°,
∴∠OCD=∠ODC=180°-108°=72°,
∴∠COD=36°,
∴∠AOB=360°-108°-108°-36°=108°.
故答案为108°
【点睛】
本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键.
8.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB= .
【答案】85°.
【解析】
试题分析:令A→南的方向为线段AE,B→北的方向为线段BD,根据题意可知,AE,DB 是正南,正北的方向
BD//AE
=45°+15°=60°又
=180°-60°-35°=85°.
考点:1、方向角. 2、三角形内角和.
9.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.
【答案】360°.
【解析】
【分析】
根据多边形的外角和等于360°解答即可.
【详解】
由多边形的外角和等于360°可知,
∠1+∠2+∠3+∠4+∠5=360°,
故答案为360°.
【点睛】
本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.
10.如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=_____度.
【答案】35
【解析】
【分析】
根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAC+∠ABC=∠ACE,
∠BOC+∠OBC=∠OCE,再根据角平分线的定义可得∠OBC=1
2
∠ABC,∠OCE=
1 2∠ACE,然后整理可得∠BOC=
1
2
∠BAC.
【详解】
解:由三角形的外角性质,∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,∵∠ABC的平分线与∠ACB的外角平分线交于点O,
∴∠OBC=1
2
∠ABC,∠OCE=
1
2
∠ACE,
∴1
2
(∠BAC+∠ABC)=∠BOC+
1
2
∠ABC,
∴∠BOC=1
2
∠BAC,
∵∠BAC=70°,∴∠BOC=35°,故答案为:35°.
【点睛】
本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.
二、八年级数学三角形选择题(难)
11.如图,CD 是ABC 的一条中线,E 为BC 边上一点且2,BE CE AE CD 、相交于,F 四边形BDFE 的面积为6,则ABC 的面积是( )
A .14
B .14.4
C .13.6
D .13.2
【答案】B
【解析】
【分析】 连结BF ,设S △BDF =x ,则S △BEF =6-x ,由CD 是中线可以得到S △ADF =S △BDF ,S △BDC =S △ADC ,由BE =2CE 可以得到S △CEF =12S △BEF ,S △ABE =23
S △ABC ,进而可用两种方法表示△ABC 的面积,由此可得方程,进而得解.
【详解】
解:如图,连接BF ,
设S△BDF=x,则S△BEF=6-x,∵CD是中线,
∴S△ADF=S△BDF=x,S△BDC= S△ADC=1
2△ABC
,
∵BE=2CE,
∴S△CEF=1
2
S△BEF=
1
2
(6-x),S△ABE=
2
3
S△ABC,
∵S△BDC= S△ADC=1
2△ABC
,
∴S△ABC=2S△BDC
=2[x+3
2
(6-x)]
=18-x,
∵S△ABE=2
3
S△ABC,
∴S△ABC=3
2
S△ABE
=3
2
[2x+ (6-x)]
=1.5x+9,
∴18-x =1.5x+9,
解得:x=3.6,
∴S△ABC=18-x,
=18-3.6
=14.4,
故选:B.
【点睛】
本题考查了三角形的中线能把三角形的面积平分,等高三角形的面积比等于底的比,熟练掌握这个结论记以及方程思想是解题的关键.
12.如图,小明从A点出发,沿直线前进10米后向左转10°再沿直线前进10米后向左转
20°再沿直线前进10米后向左转30°……照这样下去,他第一次回到出发地A 点时,一共走了( )
A .80米
B .160米
C .300米
D .640米
【答案】A
【解析】
【分析】 利用多边形的外角和得出小明回到出发地A 点时左转的次数,即可求出多边形的边数,即可解决问题.
【详解】
解:由题意可知,小明第一次回到出发地A 点时,他一共转了360︒,由题意得10°+20° +30°+40°+50°+60°+70°+80°=360°,所以共转了8次,每次沿直线前进10米,所以一共走了80米.
故选:A .
【点睛】
本题考查根据多边形的外角和解决实际问题,注意多边形的外角和是360︒,要注意第一次转了10°,第二次转了20°,第三次转了30°……,利用好规律解题.
13.在多边形内角和公式的探究过程中,主要运用的数学思想是( )
A .化归思想
B .分类讨论
C .方程思想
D .数形结合思想 【答案】A
【解析】
【分析】
根据多边形内角和定理:(n-2)·
180(n≥3)且n 为整数)的推导过程即可解答. 【详解】
解:多边形内角和定理:(n-2)·
180(n≥3)且n 为整数),该公式推导的基本方法是从n 边形的一个顶点出发引出(n-3)条对角线,将n 边形分割为(n-2)个三角形,这(n-2)个三角形的所有内角之和正好是n 边形的内角和,体现了化归思想.
故答案为A .
【点睛】
本题主要考查了在数学的学习过程应用的数学思想,弄清推导过程是解答此题的关键.
14.如图,在ABC ∆中,点D 在BC 上,点O 在AD 上,如果3AOB S ∆=,2BOD S ∆=,
1ACO S ∆=,那么COD S ∆=( )
A .13
B .12
C .32
D .23
【答案】D
【解析】
【分析】
根据三角形的面积公式结合3AOB S ∆=,2BOD S ∆=求出AO 与DO 的比,再根据
1ACO S ∆=,即可求得COD S ∆的值.
【详解】
∵3AOB S ∆=,2BOD S ∆=,且AD 边上的高相同,
∴AO :DO=3:2.
∵△ACO 和△COD 中,AD 边上的高相同,
∴S △AOC :S △COD = AO :DO=3:2,
∵1ACO S ∆=,
∴COD S ∆=
23. 故选D .
【点睛】
本题考查了三角形的面积及等积变换,利用同底等高的三角形面积相等是解题的关键.
15.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为( )
A .56
B .64
C .72
D .90
【答案】D
【解析】
【分析】
根据题意找出规律得到第n 个图形中花盆的个数为:(n+1)(n+2),然后将n=7代入求解即可.
【详解】
第1个图形的花盆个数为:(1+1)(1+2);
第2个图形的花盆个数为:(2+1)(2+2)=12;
第3个图形的花盆个数为:(3+1)(3+2)=20;
,
第n个图形的花盆个数为:(n+1)(n+2);
则第7个图形中花盆的个数为:(7+1)(7+2)=72.
故选:C.
【点睛】
本题考查图形规律题,解此题的关键在于根据题中图形找到规律.
16.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()
A.85°B.75°C.60°D.30°
【答案】B
【解析】
分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.
详解:∵AB∥CD,
∴∠C=∠ABC=30°,
又∵CD=CE,
∴∠D=∠CED,
∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,
∴∠D=75°.
故选B.
点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.
17.一个多边形的内角和是900°,则这个多边形的边数为()
A.6 B.7 C.8 D.9
【答案】B
【解析】
【分析】
本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.
【详解】
解:设这个多边形的边数为n,
则有(n-2)180°=900°,
解得:n=7,
∴这个多边形的边数为7.
故选B.
【点睛】
本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.
18.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )
A.11 B.12 C.13 D.14
【答案】C
【解析】
【分析】
根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.
【详解】
解:设第三边为a,
根据三角形的三边关系,得:4-3<a<4+3,
即1<a<7,
∵a为整数,
∴a的最大值为6,
则三角形的最大周长为3+4+6=13.
故选:C.
【点睛】
本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.
19.如果一个多边形的内角和是1800°,这个多边形是()
A.八边形B.十四边形C.十边形D.十二边形
【答案】D
【解析】
【分析】
n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.
【详解】
这个正多边形的边数是n,根据题意得:
(n﹣2)•180°=1800°
解得:n=12.
故选D.
【点睛】
本题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.
20.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()
A.15°
B.20°
C.25°
D.30°
【答案】C
【解析】
根据角平分线的定义和三角形的外角的性质即可得到∠D=1
2
∠A.
解:∵∠ABC的平分线与∠ACB的外角平分线相交于D点,
∴∠1=1
2
∠ACE,∠2=
1
2
∠ABC,
又∠D=∠1﹣∠2,∠A=∠ACE﹣∠ABC,
∴∠D=1
2
∠A=25°.
故选C.。