河滨初中2018-2019学年初中七年级上学期数学第一次月考试卷(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河滨初中2018-2019学年初中七年级上学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()
A. 赚16元
B. 赔16元
C. 不赚不赔
D. 无法确定
2.(2分)(2015•遵义)在0,﹣2,5,,﹣0.3中,负数的个数是()
A. 1
B. 2
C. 3
D. 4
3.(2分)(2015•苏州)2的相反数是()
A. 2
B.
C. -2
D. -
4.(2分)(2015•酒泉)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()
A. 0.675×105
B. 6.75×104
C. 67.5×103
D. 675×102
5.(2分)(2015•鄂州)某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学记数法表示(结果保留2个有效数字)应为()
A. B. C. D.
6.(2分)(2015•大连)方程3x+2(1﹣x)=4的解是()
A. x=
B. x=
C. x=2
D. x=1
7.(2分)(2015•无锡)﹣3的倒数是()
A. 3
B. ±3
C.
D. -
8.(2分)(2015•柳州)如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到()
A. 147.40元
B. 143.17元
C. 144.23元
D. 136.83元
9.(2分)(2015•安顺)|﹣2015|等于()
A. 2015
B. ﹣2015
C. ±2015
D.
10.(2分)(2015•烟台)﹣的相反数是()
A. -
B.
C. -
D.
11.(2分)(2015•贵港)3的倒数是()
A. 3
B. -3
C.
D.
12.(2分)(2015•南宁)3的绝对值是()
A. 3
B. -3
C.
D.
二、填空题
13.(1分)(2015•娄底)下列数据是按一定规律排列的,则第7行的第一个数为 ________ .
14.(1分)(2015•南宁)如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是 ________.
15.(1分)(2015•永州)设a n为正整数n4的末位数,如a1=1,a2=6,a3=1,a4=6.则
a1+a2+a3+…+a2013+a2014+a2015=________ .
16.(1分)(2015•永州)国家森林城市的创建极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量,截至2014年.全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”乘号.永州市也在积极创建“国家森林城市”.据统计近两年全市投入“创森”资金约为365000000元,365000000用科学记数法表示为________ .
17.(2分)(2015•株洲)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是________ ,并运用这个公式求得图2中多边形的面积是________ .

18.(1分)(2015•呼伦贝尔)中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为 ________。

三、解答题
单位:千克
(2)若鸡蛋每千克售价5元,则出售这20筐鸡蛋可卖多少元?
20.(11分)任何一个整数,可以用一个多项式来表示:

例如:.已知是一个三位数.
(1)为________.
(2)小明猜想:“ 与的差一定是的倍数”, 请你帮助小明说明理由.
(3)在一次游戏中,小明算出,,,与这个数和是,请你求出
这个三位数.
21.(3分)某市出租车的计价标准为:行驶路程不超过3 km收费10元,超过3 km的部分按每千米1.8元收费.
(1)某出租车行程为x km,若x>3 km,则该出租车驾驶员收到车费________元(用含有的代数式表示);(2)一出租车公司坐落于东西向的宏运大道边,某驾驶员从公司出发,在宏运大道上连续接送4批客人,行驶路程记录如下(规定向东为正,向西为负,单位:km).
第1批第2

第3

第4

52-4-12
①送完第4批客人后,该出租车驾驶员在公司的________边(填“东或西”),距离公司________km的位置;22.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a,b满
足 +(c-7)2=0.
(1)a=________,b=________,c=________.
(2)若将数轴折叠,使得A点与C点重合,则点B与数________表示的点重合.
(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=________,
AC=________,BC=________.(用含t的代数式表示)
(4)请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.23.(12分)如图,在数轴上点表示的数是点在点的右侧,且到点的距离是18;点在
点与点之间,且到点的距离是到点距离的2倍.
(1)点表示的数是________;点表示的数是________;
(2)若点P从点出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数
轴以每秒2个单位长度的速度向左匀速运动。

设运动时间为秒,在运动过程中,当为何值时,点P与点Q 之间的距离为6?
(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为在运动过程中,是否存在某一时刻使得?若存在,请求出此时点表示的数;若不存在,请说明理由.
24.(7分)从2开始,连续的偶数相加,它们的和的情况如下表:
加数的个数n连续偶数的和S
12=1×2
22+4=6=2×3
32+4+6=12=3×4
42+4+6+8=20=4×5
52+4+6+8+10=30=5×6
(1)如果n=8时,那么S的值为________;
(2)根据表中的规律猜想:用n的代数式表示S的公式为S=2+4+6+8+…+2n=________;
(3)由上题的规律计算100+102+104+…+2014+2016+2018的值(要有计算过程)
25.(20分)(阅读理解)第一届现代奥运会于1896年在希腊雅典举行,此后每4年举行一次,奥运会如因故不能举行,届数照算.则奥运会的年份可排成如下一列数:
1896,1900,1904,1908,…
观察上面一列数,我们发现这一列数从第二项起,每一项与它前一项的差都等于同一个常数4,这一列数在数学上叫做等差数列,这个常数4叫做等差数列的公差.
(1)等差数列2,5,8,…的第五项多少;
(2)若一个等差数列的第二项是28,第三项是46,则它的公差为多少,第一项为多少,第五项为多少;(3)聪明的小雪同学作了一些思考,如果一列数a1,a2,a3,…是等差数列,且公差为d,根据上述规定,应该有:
a 2-a1=d,a3-a2=d,a4-a3= d,…
所以a 2=a1+d,
a3=a2+d=(a1+d)+d=a1+2d,
a4=a3+d=(a1+2d)+d=a1+3d,

则等差数列的第n项a n多少(用含有a1、n与d的代数式表示);
(4)按照上面的推理,2008年中国北京奥运会是第几届奥运会,2050年会不会(填“会”或“不会”)举行奥运会.
26.(8分)(教材回顾)课本88页,有这样一段文字:人们通过长期观察发现如果早晨天空中棉絮的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学的学习过程中,我们经常用这样的方法探究规律.
(数学问题)三角形有3个顶点,如果在它的内部再画n个点,并以这(n+3)个点为顶点画三角形,那么最多可以剪得多少个这样的三角形?
(问题探究)为了解决这个问题,我们可以从n=1,n=2,n=3等具体的、简单的情形入手,探索最多可以剪
3
5
7
①当三角形内有4个点时,最多剪得的三角形个数为________;
②你发现的变化规律是:三角形内的点每增加1个,最多剪得的三角形增加________个;
③猜想:当三角形内点的个数为n时,最多可以剪得________个三角形;
像这样通过对简单情形的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.
(2)【问题拓展】请你尝试用归纳的方法探索1+3+5+7+…+(2n-1)+(2n+1)的和是多少?
河滨初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)一、选择题
1.【答案】B
【考点】一元一次方程的实际应用-销售问题
【解析】【解答】设赚了25%的衣服是x元,则(1+25%)x=120,
解得x=96元,
则实际赚了24元;
设赔了25%的衣服是y元,
则(1-25%)y=120,
解得y=160元,
则赔了160-120=40元;
∵40>24;
∴赔大于赚,在这次交易中,该商人赔了40-24=16元.
故选B.
2.【答案】B
【考点】正数和负数
【解析】【解答】在0,﹣2,5,,﹣0.3中,﹣2,﹣0.3是负数,共有两个负数,
故选:B.
【分析】根据小于0的是负数即可求解.
3.【答案】C
【考点】相反数
【解析】【解答】根据相反数的含义,可得
2的相反数是:﹣2.
故选:C.
【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可4.【答案】B
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】将67500用科学记数法表示为:6.75×104.
故选:B.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
5.【答案】A
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】39 400≈3.9×104.故选A.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于39400有5位,所以可以确定n=5﹣1=4,由于结果保留2个有效数字,所以a=3.9.
6.【答案】C
【考点】解一元一次方程
【解析】【解答】解:去括号得:3x+2﹣2x=4,
解得:x=2,
故选C.
【分析】方程去括号,移项合并,把x系数化为1,即可求出解.
7.【答案】D
【考点】倒数
【解析】【解答】﹣3的倒数是-,
故选D
【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
8.【答案】A
【考点】有理数大小比较,有理数的加减混合运算
【解析】【解答】解:根据存折中的数据得到:扣缴电费最多的一次是日期为121105,金额是147.40元.故选:A.
【分析】根据存折中的数据进行解答.
9.【答案】A
【考点】绝对值及有理数的绝对值
【解析】【解答】|﹣2015|=2015
【分析】一个数到原点的距离叫做该数的绝对值.一个负数的绝对值是它的相反数.
10.【答案】B
【考点】相反数及有理数的相反数
【解析】【解答】解:﹣的相反数是.
故选B.
【分析】根据只有符号不同的两个数叫做互为相反数解答.
11.【答案】C
【考点】倒数
【解析】【解答】解:有理数3的倒数是.
故选:C.
【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.
12.【答案】A
【考点】绝对值及有理数的绝对值
【解析】【解答】解:|3|=3.
故选A.
【分析】直接根据绝对值的意义求解.
二、填空题
13.【答案】22
【考点】探索数与式的规律
【解析】【解答】解:由排列的规律可得,第n﹣1行结束的时候排了1+2+3+…+n﹣1=n(n﹣1)个数.
所以第n行的第1个数n(n﹣1)+1.
所以n=7时,第7行的第1个数为22.
故答案为:22.
【分析】先找到数的排列规律,求出第n﹣1行结束的时候一共出现的数的个数,再求第n行的第1个数,即可求出第7行的第1个数.
14.【答案】13
【考点】探索数与式的规律
【解析】【解答】解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2;
第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;
第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;
第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;
第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;
…;
则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,
A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,
所以点A n与原点的距离不小于20,那么n的最小值是13.
故答案为:13.
【分析】序号为奇数的点在点A的左边,各点所表示的数依次减少3,序号为偶数的点在点A的右侧,各点所表示的数依次增加3,于是可得到A13表示的数为﹣17﹣3=﹣20,A12表示的数为16+3=19,则可判断点A n与原点的距离不小于20时,n的最小值是13.
15.【答案】6652
【考点】探索数与式的规律
【解析】【解答】解:正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环,
1+6+1+6+5+6+1+6+1+0=33,
2015÷10=201…5,
33×201+(1+6+1+6+5)
=6633+19
=6652.
故a1+a2+a3+…+a2013+a2014+a2015=6652.
故答案为:6652.
【分析】正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环,先求出2015÷10的商和余数,再根据商和余数,即可求解.
16.【答案】3.65×108
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将365000000用科学记数法表示为3.65×108.
故答案为:3.65×108.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
17.【答案】a;17.5
【考点】探索图形规律
【解析】【解答】解:如图1,
∵三角形内由1个格点,边上有8个格点,面积为4,即4=1+﹣1;
矩形内由2个格点,边上有10个格点,面积为6,即6=2+﹣1;
∴公式中表示多边形内部整点个数的字母是a;
图2中,a=15,b=7,故S=15+﹣1=17.5.
故答案为:a,17.5.
【分析】分别找到图1中图形内的格点数和图形上的格点数后与公式比较后即可发现表示图上的格点数的字母,图2中代入有关数据即可求得图形的面积.
18.【答案】9.6×106
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将9600000用科学记数法表示为9.6×106.
故答案为9.6×106.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
三、解答题
19.【答案】(1)解:-3-6-3+3+15=6 总计超过6千克
(2)解:5×(20×25+6)=2530 总计可以卖元2530
【考点】运用有理数的运算解决简单问题
【解析】【分析】(1)根据有理数的运算,结合表中的数据,可得出20框白菜总计超过或不足的数量。

(2)根据单价×数量=总价,列式计算可求解。

20.【答案】(1)
(2)解:;与
的差一定是的倍数.
(3)解:,由已知条件可得
=
=
= 即.是个三位数
至少从16开始,经尝试发现,只有满足条件,此时,
这个三位数为
【考点】整式的加减运算
【解析】【解答】解:(1)
【分析】(1)根据每个数位上的数字所表示的意义:个位上的数字是几就表示几个1,十位上的数字是几就表示表示几个10,百位上的数字是几就表示几个100…,从而得出答案;
(2)根据(1)所得的方法,将被减数与减数分别改写成一个加法算式,然后根据整式的加法法则,去括号再合并同类项互为最简形式,根据结果判断是否是9的倍数即可;
(3)根据,,,与这个数和是及(1)发现的改写规律列出方程,再根据
等式的性质在方程的两边都加上,然后化简得出,是个三位数a+b+c 至少从16开始,经尝试发现,只有满足条件,此时.
21.【答案】(1)1.8x+4.6
(2)西;9 ②在这过程中该出租车驾驶员共收到车费多少元? 解:由题意可得:在这过程中该出租车驾驶员共收到车费为:1.8×5+4.6+10+1.8×4+4.6+1.8×12+4.6=61.6(元).答:在这过程中该出租车驾驶员共收到车费61.6元
【考点】运用有理数的运算解决简单问题
【解析】【解答】解:(1)由题意可得:该出租车驾驶员收到车费为:10+(x﹣3)×1.8=1.8x+4.6.
故答案为:(1.8x+4.6);
(2 )①由题意可得:5+2+(﹣4)+(﹣12)=﹣9,∴送完第4批客人后,该出租车驾驶员在公司的西边,距离公司9km.
故答案为:西,9;
【分析】(1)由题意可得该出租车驾驶员收到车费=起步价+超过3 km的部分的收费;
(2)由题意将表格中的数据相加,和为正,在公司的东边;和为负,在公司的东边;
(3)由题意把每一批乘客的车费相加即为该驾驶员在这过程中共收到的车费。

22.【答案】(1)-2;1;7
(2)4
(3)AB=3t+3;AC=5t+9;BC=2t+6
(4)解:不变.3BC-2AB=3(2t+6)-2(3t+3)=12
【考点】数轴及有理数在数轴上的表示,探索图形规律
【解析】【解答】解:(1)∵|a+2|+(c-7)2=0,
∴a+2=0,c-7=0,
解得a=-2,c=7,
∵b是最小的正整数,
∴b=1;
(2)(7+2)÷2=4.5,
对称点为7-4.5=2.5,2.5+(2.5-1)=4;
(3 )AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;
【分析】(1)由绝对值和平方的非负性可求得a、c的值,再根据b是最小的正整数可求得b的值;(2)由折叠的性质可求得点A与点C的中点的值,根据轴对称的性质即可求得点B 的对称点;
(3)根据平移规律“左减右加”即可求解。

23.【答案】(1)15;3
(2)解:由题意可得:存在2种情况点P与点Q之间的距离为6,①点P与点Q相遇前,18-6=(4+2)t ,则t=2秒;②点P与点Q相遇后,18+6=(4+2)t ,则t=4秒.故答案为:t=2或4
(3)解:由题意可得:AC=6,PC=│6-4t│,QB=2t,若PC+QB=4,则│6-4t│+2t=4,解得t=1或故答
案为:点表示的数是1或
【考点】数轴及有理数在数轴上的表示,运用有理数的运算解决简单问题
【解析】【解答】解:(1)由题意可得:AB=18, A0=3(0为原点),
∴B0=AB-A0=15,
∵BC=2AC,
∴B0-0C=2(A0+0C),
∴0C=3.
故答案为:15,3
【分析】(1)要求点B和点C所表示的数,只需求得OB和OC的长即可。

根据数轴上两点间的距离等于这两点所对应的数的差的绝对值可求得AB和AO的值,则BO=AB-AO;再根据BC=2AC=2(AO+OC)即可求解;
(2)由题意可知分两种情况讨论求解:①点P与点Q相遇前;②点P与点Q相遇后;由点P与点Q之间的距离为6 可列方程求解;
(3)根据数轴上两点间的距离等于这两点所对应的数的差的绝对值可将AC、PC、QB表示出来,再根据PC+QB=4 可列关于t的方程求解。

24.【答案】(1)S=72
(2)
(3)解:原式=(2+4+6+……+98+100+……+2018)-(2+4+6+……+98),
=1009×1100-49×50,
=1109900-2450,
=1107450.
【考点】探索数与式的规律
【解析】【解答】解:(1)由表可知:
1个加数,S=1×2=1×(1+1),
2个加数,S=2×3=2×(2+1),
……
n个加数,S=n×(n+1),
∴当n=8时,
S=8×9=72.
故答案为:72.
(2)(1)由表可知:
1个加数,S=1×2=1×(1+1),
2个加数,S=2×3=2×(2+1),
……
n个加数,S=n×(n+1),
故答案为:n(n+1).
【分析】(1)根据表中数据可知:n个加数,S=n×(n+1),再将n=8代入即可求出S.
(2)根据表中数据可知规律:n个加数,S=n×(n+1).
(3)根据(2)中规律,将原式转化成(2+4+6+……+98+100+……+2018)-(2+4+6+……+98),再利用规律计算即可得出答案.
25.【答案】(1)解:由等差数列2,5,8,…可知,公差为3,所以第四项是8+3=11,第五项是11+3=14(2)解:由题意得:公差=46-28=18;第一项为:28-18=10,第五项为:46+18+18=82
(3)解:a2=a1+d,a3=a2+d=(a1+d)+d=a1+2d=a1+(3-1)d,a4=a3+d=(a1+2d)+d=a1+(4-1)d,…则等差数列的第n项a n= a1+(n-1)d
(4)解:设第n届奥运会时2008年,由于每4年举行一次,∴数列{a n}是以1896为首项,4为公差的等差数列,∴a n=2008=1896+4(n-1),解得n=29,故2008年中国北京奥运会是第29届奥运会,令a n=2050,得1896+4
(n-1)=2050,解得n= ,∵n是正整数,∴2050年不会举行奥运会.
【考点】探索数与式的规律
【解析】【分析】(1)根据等差数列的定义,用第二项减去第一项即可算出公差,用第三项加上公差算出第四项,用第四项加上公差算出第五项;
(2)根据等差数列的定义,用第三项减去第二项即可算出公差,用第二项减去公差即可算出第一项,第5项就在第三项上连加两个公差即可;
(3)根据发现的规律,等差数列的第n项a n= a1+(n-1)d ;
(4)设第n届奥运会时2008年,由于每4年举行一次,数列{a n}是以1896为首项,4为公差的等差数列,根据(3)得出的通用公式即可列出方程2008=1896+4(n-1),求解即可;然后将a n=2050 代入a n= a1+(n-1)
d ,求解根据结果是否是正整数即可得出结论。

26.【答案】(1)9;2;2n+1
(2)解:1+3+5+7+…+(2n-1)+(2n+1)=
= (n+1)(1+2n+1)
=(n+1)2
=n2+2n+1.
【考点】探索图形规律
【解析】【解答】解:(1)①∵当三角形内点的个数为1时,最多可以剪得3个三角形;
当三角形内点的个数为2时,最多可以剪得5个三角形;
当三角形内点的个数为3时,最多可以剪得7个三角形;
∴当三角形内点的个数为4时,最多可以剪得9个三角形;
故答案为:9;
②由①的结果可得出:三角形内的点每增加1个,最多剪得的三角形增加2个;
故答案为:2;
③∵1×2+1=3,2×2+1=5,3×2+1=7,
∴当三角形内点的个数为n时,最多可以剪得(2n+1)个三角形;
故答案为:2n+1;
【分析】(1)①探索图形规律的题,根据题意画出图形即可得出答案;②由①的结果可得出:三角形内的点每增加1个,最多剪得的三角形增加2个;③通过观察,三角形内的点每增加1个,所剪出的三角形的个数就增加两个,而所剪出的三角形的个数是从1开始的连续奇数个,根据奇数的表示方法,当三角形内点的个数为n时,最多可以剪得(2n+1)个三角形;
(2)根据补项法,1+3+5+7+…+(2n-1)+(2n+1)=
,根据连续奇数和
的计算方法,用首加尾的和为(2n+1+1)共有这样的加数和的个数为,从而利用用首加尾的和再乘以这样的和的个数即可算出答案。

相关文档
最新文档