江苏省海安县城东镇韩洋初级中学中考数学专题复习9 一元二次方程

合集下载

苏教版九年级上册数学[《一元二次方程》全章复习与巩固—知识点整理及重点题型梳理](提高版)

苏教版九年级上册数学[《一元二次方程》全章复习与巩固—知识点整理及重点题型梳理](提高版)

苏教版九年级上册数学重难点突破知识点梳理及重点题型巩固练习《一元二次方程》全章复习与巩固—知识讲解(提高)【学习目标】1.了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识网络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.要点诠释:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. 要点二、一元二次方程的解法1.基本思想一元二次方程−−−→降次一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法.要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆.(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.【388528 :根系关系】2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.要点诠释:1.一元二次方程 的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.要点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等);设 (设未知数,有时会用未知数表示相关的量);列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】类型一、一元二次方程的有关概念1.已知(m -1)x |m|+1+3x -2=0是关于x 的一元二次方程,求m 的值.【答案与解析】依题意得|m|+1=2,即|m|=1,解得m =±1,又∵m -1≠0,∴m ≠1,故m =-1.【总结升华】依题意可知m -1≠0与|m|+1=2必须同时成立,因此求出满足上述两个条件的m 的值即可.特别是二次项系数应为非零数这一隐含条件要注意.举一反三:【变式】若方程2(2)310m m x mx ---=是关于x 的一元二次方程,求m 的值.【答案】 根据题意得22,20,m m ⎧=⎪⎨-≠⎪⎩ 解得所以当方程2(2)310m m x mx ---=是关于x 的一元二次方程时,2m =-.类型二、一元二次方程的解法2.解下列一元二次方程.(1)224(3)25(2)0x x ---=; (2)225(3)9x x -=-; (3)2(21)4(21)40x x ++++=.【答案与解析】(1)原方程可化为:22[2(3)][5(2)]0x x ---=,即(2x-6)2-(5x-10)2=0,∴ (2x-6+5x-10)(2x-6-5x+10)=0,即(7x-16)(-3x+4)=0,∴ 7x-16=0或-3x+4=0,∴ 1167x =,243x =. (2)25(3)(3)(3)x x x -=+-,25(3)(3)(3)0x x x --+-=,∴ (x-3)[5(x-3)-(x+3)]=0,即(x-3)(4x-18)=0,∴ x-3=0或4x-18=0,∴ 13x =,292x =. (3)2(21)4(21)40x x ++++=,∴ 2(212)0x ++=.即2(23)0x +=,∴ 1232x x ==-. 【总结升华】 (1)方程左边可变形为22[2(3)][5(2)]x x ---,因此可用平方差公式分解因式;(2)中方程右边分解后为(x-3)(x+3),与左边中的(x-3)2有公共的因式,可移项后提取公因式(x-3)后解题;(3)的左边具有完全平方公式的特点,可用公式变为(2x+1+2)2=0再求解.举一反三:【变式】解方程: (1)3x+15=-2x 2-10x ; (2)x 2-3x =(2-x)(x-3).【答案】(1)移项,得3x+15+(2x 2+10x)=0,∴ 3(x+5)+2x(x+5)=0,即(x+5)(3+2x)=0,∴ x+5=0或3+2x =0,∴ 15x =-,232x =-. (2)原方程可化为x(x-3)=(2-x)(x-3),移项,x(x-3)-(2-x)(x-3)=0,∴ (x-3)(2x-2)=0,∴ x-3=0或2x-2=0,∴ 13x =,21x =.类型三、一元二次方程根的判别式的应用3.关于x 的方程2(5)410a x x ---=有实数根.则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠5【答案】A ;【解析】①当50a -=,即5a =时,有410x --=,14x =-,有实数根; ②当50a -≠时,由△≥0得2(4)4(5)(1)0a --⨯-⨯-≥,解得1a ≥且5a ≠.综上所述,使关于x 的方程2(5)410a x x ---=有实数根的a 的取值范围是1a ≥.答案:A【总结升华】注意“关于x 的方程”与“关于x 的一元二次方程”的区别,前者既可以是一元一次方程,也可以是一元二次方程,所以必须分类讨论,而后者隐含着二次项系数不能为0.【388528 :一元二次方程的根的判别式】4. k 为何值时,关于x 的二次方程2690kx x -+=(1)k 满足 时,方程有两个不等的实数根;(2)k 满足 时,方程有两个相等的实数根;(3)k 满足 时,方程无实数根.【答案】(1)10k k ≠<,且;(2)1k =;(3)1k >. 【解析】求判别式,注意二次项系数的取值范围.【总结升华】根据判别式ac b 42-=∆及k ≠0求解.类型四、一元二次方程的根与系数的关系5.(2016•凉山州)已知x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,则x 1﹣x 1x 2+x 2的值是( )A .B .C .D .【思路点拨】由x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,结合根与系数的关系可得出x 1+x 2=﹣,x 1•x 2=﹣2,将其代入x 1﹣x 1x 2+x 2中即可算出结果.【答案】D .【解析】解:∵x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,∴x 1+x 2=﹣=﹣,x 1•x 2==﹣2,∴x 1﹣x 1x 2+x 2=﹣﹣(﹣2)=.故选D .【总结升华】本题考查了根与系数的关系,解题的关键是得出x 1+x 2=﹣,x 1•x 2=﹣2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键.举一反三:【变式】已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根1x 、2x .(1)求k 的取值范围;(2)是否存在实数k ,使方程的两实数根互为相反数?如果存在,求出k 的值;如果不存在, 请说明理由.【答案】(1)根据题意,得△=(2k-3)2-4(k-1)(k+1)=224129412130k k k k -+-=-+>, 所以1312k <.由k-1≠0,得k ≠1. 当1312k <且k ≠1时,方程有两个不相等的实数根; (2) 不存在.如果方程的两个实数根互为相反数,则122301k x x k -+=-=-,解得32k =. 当32k =时,判别式△=-5<0,方程没有实数根. 所以不存在实数k ,使方程的两个实数根互为相反数.类型五、一元二次方程的应用6.(2015•青岛模拟)随着青奥会的临近,青奥特许商品销售逐渐火爆.甲、乙两家青奥商品专卖店一月份销售额分别为10万元和15万元,三月份销售额甲店比乙店多10万元.已知甲店二、三月份销售额的月平均增长率是乙店二、三月份月平均增长率的2倍,求甲店、乙店这两个月的月平均增长率各是多少?【答案与解析】解:设乙店销售额月平均增长率为x ,由题意得:10(1+2x )2﹣15(1+x )2=10,解得 x 1=60%,x 2=﹣1(舍去).2x=120%.答:甲、乙两店这两个月的月平均增长率分别是120%、60%.【总结升华】此题考查了一元二次方程的应用,为运用方程解决实际问题的应用题型. 举一反三:【变式】某工程队在我市实施棚户区改造过程中承包了一项拆迁工程。

江苏地区初三苏科版数学上学期期末复习专项:一元二次方程

江苏地区初三苏科版数学上学期期末复习专项:一元二次方程

初三数学期末复习专项:一元二次方程班级_________组别 姓名____________ 使用时间【知识点】:一.一元二次方程的定义:1. 下列关于x 的方程中,一定是一元二次方程的是( ) A .x -1=0 B .x 3+x =3C .x 2+3x -5=0D .ax 2+bx +c =0 2.关于x 的方程221(1)50a a a x x --++-=是一元二次方程,则a =__________.3. 如果1x 是方程210x mx 的一个根,那么m 的值为______________。

B4. 若关于x 的一元二次方程ax 2+bx +5=0的一个解是x=1,则2017+a +b = .【知识点】:二. 解一元二次方程方法有:1. 填上适当的数,使等式成立:+-x x 52 =x (- 2). 2.用恰当的方法解方程:(1)23(21)12x(2)223(2)4x x (3)(21)(3)6x x(4)x 2-2x -4=0. (5)()()3332-=-x x x (6)01532=+-y yB3. 先用配方法说明:不论x 取何值,代数式257x x -+的值总大于0;再求出当x 取何值时,代数式257x x -+的值最小?最小是多少?再求出当x 取何值时,代数式-2257x x -+的最值?最值是多少?【知识点】:三.一元二次方程的根的判别式是什么? ;当 时,方程有两个不相等的实数根;当 时,方程有两个相等的实数根;当 时,方程没有实数根。

1.当m 为 时,一元二次方程()()033222=-+-+m x m x 没有实数根? 有实数根? 当m 为 时,一元二次方程()()033222=-+-+m x m x 两个不等实数根? 有实数根? 当m 为 时,一元二次方程()()033222=-+-+m x m x有实数根? 2. 如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k的取值范围是 。

一元二次方程知识点复习及典型题讲解

一元二次方程知识点复习及典型题讲解

一元二次方程复习课1)一元二次方程的概念:中考常见题型:例1、下列方程中哪些是一元二次方程?试说明理由。

x?22x??122x?4?(x?2)2x?43x?2?5x?3x?1(1)(2)(3)(4)2bx+a=0, x —2、方程(2a 2在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一—4)例次方程?2。

,求m的一元二次方程(m-1)x+3x-5m+4=0有一根为2例3 、已知关于x 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项练习一、????????222y?3y2y?1??y1??2x?2?3x2 2x(x-1)=3(x-5)-42(m?3)x?nx?m?0x练习二、关于,在什么条件下是一元二次方程?在什么条件下是一元一的方程次方程?2)一元二次方程的解法:1)直接开平方法(换元思想):2)配方法:3)求根公式(符号问题):4)因式分解法(十字交叉法):中考常见题型:例1:考查直接开平方法和换元思想。

1)(x+2)=3(x+2) (2)2y(y-3)=9-3y (3)( x-2) — x+2 =0 22(249??1x?2x24)(2x+1)=(x-1) (5)2(2:用配方法解方程x+px+q=0(p2-4q≥0).2例例3:用配方法解方程:22xx(1)-6x-7=0;(2)+3x+1=0.2205x??2x?2x?7x?20?42(3)(50. 2x4 ())3x+-3=2?4bacb2(x?)?2ax?bx?c?0(a?0)2aa4呢?例4:能否用配方法把一般形式的一元二次方程转化为22-1=0-(4k+1)x+2k取什么值时,关于x的方程2x例5、当k 方程没有实数根.有两个不相等的实数根; (2)有两个相等实数根; (3) (1)-c)x+b=0ABC的三边的长,求证方程ax-(a+ba例6、已知,b,c是△222222没有实数根.练习:222 +n=0无实数根.,求证关于x的方程2x+2(m+n)x+m.若 1m≠n+m=0.求证:关于x的方程x+(2m+1)x-m222有两个不相等的实数根.7例:2220??x3)?65?(2x3)?(20?x?7x10?0??3992x?x)(2 1()()33)一元二次方程的应用(常见四类题型):1;分析题意2;设未知数3;列方程4;解方程5;检验、答。

第1章 一元二次方程 苏科版九年级数学上册单元复习(解析版)

第1章 一元二次方程  苏科版九年级数学上册单元复习(解析版)

【单元复习】第1章一元二次方程知识精讲第1章一元二次方程一、一元二次方程的概念1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

注意:一元二次方程必须同时满足以下三点:①方程是整式方程。

②它只含有一个未知数。

③未知数的最高次数是2.同时还要注意在判断时,需将方程化成一般形式。

2、一元二次方程的一般形式,它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。

二、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如的一元二次方程。

根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根。

2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。

3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程的求根公式:4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

三、一元二次方程根的判别式根的判别式:一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即四、一元二次方程根与系数的关系如果方程的两个实数根是,那么,。

也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

根与系数的关系的应用:①验根:不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两根;②求根及未知数系数:已知方程的一个根,可利用根与系数的关系求出另一个数及未知数系数.③求代数式的值:在不解方程的情况下,可利用根与系数的关系求关于和的代数式的值,如④求作新方程:已知方程的两个根,可利用根与系数的关系求出一元二次方程的一般式. 一元二次方程的应用:方程是解决实际问题的有效模型和工具.利用方程解决。

九年级一元二次方程知识点总结

九年级一元二次方程知识点总结

九年级一元二次方程知识点总结一元二次方程是九年级数学中的重要内容,它是由一个未知数的二次方程式所表示的方程。

在学习一元二次方程时,我们需要了解一些基本概念和解题方法。

下面将对一元二次方程的知识点进行总结。

一、基本概念1. 一元二次方程:一元二次方程式是形如ax^2+bx+c=0的方程,其中a、b、c是已知数,且a≠0。

2. 二次项、一次项和常数项:在一元二次方程中,ax^2、bx和c 分别被称为二次项、一次项和常数项。

3. 标准形式:对于一元二次方程,我们通常将其化为标准形式,即将方程中的一次项系数化为正数,例如x^2-3x+2=0。

4. 解:解是使方程成立的未知数的值。

一元二次方程一般有两个解,可以是实数解或复数解。

二、解题方法1. 因式分解法:当一元二次方程可以被因式分解时,我们可以通过因式分解法求解。

首先将方程化为(ax+b)(cx+d)=0的形式,然后令括号内的两个因式分别为零,解得方程的解。

2. 公式法:当一元二次方程无法进行因式分解时,我们可以使用求根公式来求解。

求根公式是x=-b±√(b^2-4ac)/2a,其中a、b、c 是方程的系数。

3. 完全平方式:当一元二次方程可以表示为完全平方式时,我们可以通过完全平方式求解。

首先将方程写成(a±√b)^2=c的形式,然后开方并解得方程的解。

三、注意事项1. 判别式:判别式是求解一元二次方程时的重要指标,它是b^2-4ac。

当判别式大于0时,方程有两个不相等的实数解;当判别式等于0时,方程有两个相等的实数解;当判别式小于0时,方程有两个共轭复数解。

2. 因式分解时要注意提取公因式和使用二次三项分解公式。

3. 在使用求根公式时,要注意判别式的符号和平方根的正负号。

4. 在使用完全平方式时,要注意将方程化为完全平方式的形式,并注意正负号。

通过对一元二次方程的学习,我们可以解决一些实际问题,例如求解抛物线的顶点、焦点、方程的图像等。

苏教版九年级数学上册一元二次方程知识点整理.doc

苏教版九年级数学上册一元二次方程知识点整理.doc

苏教版九年级数学上册一元二次方程知识点整理.doc
苏教版九年级数学上册一元二次方程知识点整理
初中数学学习对我们来说很关键,因此必须掌握好课堂上学习的数学知识,学习完数学知识点要进行课下复习,下面为大家带来苏教版九年级数学上册一元二次方程知识点整理,希望对大家掌握初中数学知识有帮助。

一、定义和特点
1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式:ax的平方+bx+c=0(a0),它的特征是:等式左边加一个关于未知数x的二次多项式,等式右边是零,其中ax的平方+叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。

二、方程起源
古巴比伦留下的陶片显示,在大约公元前2000年(2000 BC)古巴比伦的数学家就能解一元二次方程了。

在大约西元前480年,中国人已经使用配方法求得了二次方程的正根,但是并没有提出通用的求解方法。

西元前300年左右,欧几里得提出了一种更抽象的几何方法求解二次方程。

7世纪印度的婆罗摩笈多(Brahmagupta)是第一位懂得用使用代数方程,它同时容许有正负数的根。

11世纪阿拉伯的花拉子密独立地发展了一套公式以求方程的正数解。

亚伯拉罕巴希亚(亦以拉丁文名字萨瓦索达著称)在他的著作Liber。

苏教版九年级一元二次方程复习专题

苏教版九年级一元二次方程复习专题

苏教版九年级一元二次方程复习专题一元二次方程一、本章知识结构框图二、具体内容(一)、一元二次方程的概念1.理解并掌握一元二次方程的意义未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式;aac b b x 242-±-=2.正确识别一元二次方程中的各项及各项的系数(1)让学生明确只有当二次项系数0≠a时,整式方程02=ax才是一元二次方程。

bx++c(2)各项的确定(包括各项的系数及各项的未知数).(3)熟练整理方程的过程3.一元二次方程的解的定义与检验一元二次方程的解4.列出实际问题的一元二次方程(二)、一元二次方程的解法1.明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解;2.根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程;3.体会不同解法的相互的联系;4.值得注意的几个问题:(1)开平方法:对于形如n x =2或)0()(2≠=+a n b ax 的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用开平方法求解.形如n x =2的方程的解法:当0>n 时,n x ±=;当0=n 时,021==x x ;当0<n 时,方程无实数根。

(2)配方法:通过配方的方法把一元二次方程转化为n m x =+2)(的方程,再运用开平方法求解。

配方法的一般步骤:①移项:把一元二次方程中含有未知数的项移到方程的左边,常数项移到方程的右边;②“系数化1”:根据等式的性质把二次项的系数化为1;③配方:将方程两边分别加上一次项系数一半的平方,把方程变形为n m x =+2)(的形式;④求解:若0≥n 时,方程的解为n m x ±-=,若0<n 时,方程无实数解。

(3)公式法:一元二次方程)0(02≠=++a c bx ax 的根a ac b b x 242-±-=当042>-ac b 时,方程有两个实数根,且这两个实数根不相等;当042=-ac b 时,方程有两个实数根,且这两个实数根相等,写为a b x x221-==; 当042<-ac b 时,方程无实数根.公式法的一般步骤:①把一元二次方程化为一般式;②确定c b a ,,的值;③代入ac b 42-中计算其值,判断方程是否有实数根;④若042≥-ac b 代入求根公式求值,否则,原方程无实数根。

一元二次方程-2023年新九年级数学 (苏科版)(解析版)

一元二次方程-2023年新九年级数学 (苏科版)(解析版)

一元二次方程理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.要点诠释:识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常数项.要点诠释:(1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0.(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.类型一、关于一元二次方程的判定例1.判定下列方程是不是一元二次方程:(1);(2).【答案】(1)是;(2)不是.【解析】(1)整理原方程,得,所以.其中,二次项的系数,所以原方程是一元二次方程.(2)整理原方程,得,所以.其中,二次项的系数为,所以原方程不是一元二次方程.【总结升华】识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可. 例2.判定下列方程是否关于x 的一元二次方程:(1)a 2(x 2-1)+x(2x+a)=3x+a ; (2)m 2(x 2+m)+2x=x(x+2m)-1. 【答案与解析】(1)经整理,得它的一般形式(a2+2)x2+(a-3)x-a(a+1)=0,其中,由于对任何实数a 都有a2≥0,于是都有a2+2>0,由此可知a2+2≠0,所以可以判定: 对任何实数a ,它都是一个一元二次方程. (2)经整理,得它的一般形式 (m2-1)x2+(2-2m)x+(m3+1)=0,其中,当m ≠1且m ≠-1时,有m2-1≠0,它是一个一元二次方程;当m=1时方程不存在, 当m=-1时,方程化为4x=0,它们都不是一元二次方程.【总结升华】对于含有参数的一元二次方程,要十分注意二次项系数的取值范围,在作为一元二次方程进行研究讨论时,必须确定对参数的限制条件.如在第(2)题,对参数的限定条件是m ≠±1.例如,一个关于x 的方程,若整理为(m-4)x2+mx-3=0的形式,仅当m-4≠0,即m ≠4时,才是一元二次方程(显然,当m=4时,它只是一个一元一次方程4x-3=0).又如,当我们说:“关于x 的一元二次方程(a-1)x2+(2a+1)x+a2-1=0……”时,实际上就给出了条件“a-1≠0”,也就是存在一个条件“a ≠1”.由于这个条件没有直接注明,而是隐含在其他的条件之中,所以称它为“隐含条件”. 【变式】判断下列各式哪些是一元二次方程. ①21x x ++;②2960x x −=;③2102y =;④215402x x −+=;⑤ 2230x xy y +−=;⑥ 232y =;⑦ 2(1)(1)x x x +−=. 【答案】②③⑥.【解析】①21x x ++不是方程;④215402x x −+=不是整式方程;⑤2230x xy y +−=含有2个未知数,不是一元方程;⑦ 2(1)(1)x x x +−=化简后没有二次项,不是2次方程. ②③⑥符合一元二次方程的定义.类型二、一元二次方程的一般形式、各项系数的确定例3.把下列方程中的各项系数化为整数,二次项系数化为正数,并求出各项的系数:(1)-3x 2-4x+2=0; (2).【答案与解析】(1)两边都乘-1,就得到方程 3x2+4x-2=0.各项的系数分别是: a=3,b=4,c=-2. (2)两边同乘-12,得到整数系数方程 6x2-20x+9=0.各项的系数分别是:.【总结升华】一般地,常根据等式的性质把二次项的系数是负数的一元二次方程调整为二次项系数是正数的一元二次方程;把分数系数的一元二次方程调整为整数系数的一元二次方程.值得注意的是,确定各项的系数时,不应忘记系数的符号,如(1)题中c=-2不能写为c=2,(2)题中不能写为.例4. 已知关于y 的一元二次方程m 2(y 2+m)-3my=y(8y-1)+1,求出它各项的系数,并指出参数m 的取值范围. 【答案与解析】将原方程整理为一般形式,得(m2-8)y2-(3m-1)y+m3-1=0,由于已知条件已指出它是一个一元二次方程,所以存在一个隐含条件 m2-8≠0,即 m ≠±.可知它的各项系数分别是 a=m2-8(m ≠±),b=-(3m-1),c=m3-1.参数m 的取值范围是不等于±的一切实数.【总结升华】在含参数的方程中,要认定哪个字母表示未知数,哪个字母是参数,才能正确处理有关的问题.【变式1】将下列方程化为一元二次方程一般形式,并指出二次项系数、一次项系数和常数项: (1)2352x x =−; (2)(1)(1)2a x x x +−=−.【答案】(1)235+2=0x x −,二次项系数是3、一次项系数是-5、常数项是2.(2)(1)(1)2a x x x +−=−化为220,ax x a +−−=二次项系数是a 、一次项系数是1、常数项是-a-2.【变式2】关于x 的方程的一次项系数是-1,则a .【答案】原方程化简为x2-ax+1=0,则-a=-1,a=1.类型三、一元二次方程的解(根)例5.若0是关于x 的方程()2223280m x x m m −+++−=的解,求实数m 的值,并讨论此方程解的情况.【思路点拨】根据一元二次方程解的性质,直接求出m 的值,根据若是一元二次方程时,注意二次项系数不为0,再利用根的判别式求出即可. 【答案与解析】解:∵0是关于x 的方程()2223280m x x m m −+++−=的解,∴2280m m +−=∴24m m ==−或 ①当20m −≠ ∴4m =−∴原方程为:2630x x −+=2490b ac =−=>∴此方程有两个不相等的根.2630x x −+=()3210x x −−=解得:00.5x =或 ②当2m = ∴30x = ∴0x =【总结升华】此题主要考查了一元二次方程的解以及根的判别式,熟练记忆根的判别式公式是解决问题的关键.例6.已知关于x 的方程(m ﹣1)x 2+5x+m 2﹣3m+2=0的常数项为0,(1)求m 的值; (2)求方程的解. 【答案与解析】解:(1)∵关于x 的方程(m ﹣1)x2+5x+m2﹣3m+2=0的常数项为0, ∴m2﹣3m+2=0, 解得:m1=1,m2=2, ∴m 的值为1或2;(2)当m=2时,代入(m ﹣1)x2+5x+m2﹣3m+2=0得出: x2+5x=0 x (x+5)=0,解得:x1=0,x2=﹣5. 当m=1时,5x=0, 解得x=0.【总结升华】此题是一元一次方程与一元二次方程的解法的小综合,注意本题中说的是“方程”,而不是“一元二次方程”. 【变式】(1)x=1是的根,则a= .(2)已知关于x 的一元二次方程 22(1)210m x x m −++−=有一个根是0,求m 的值.【答案】(1)当x=1时,1-a+7=0,解得a=8.(2)由题意得一、单选题【答案】D【分析】根据一元二次方程的定义进行判断即可.【详解】解:A 、当0a =时,该方程不是关于x 的一元二次方程,故A 不符合题意;B 、方程整理后不含有二次项,该方程不是关于x 的一元二次方程,故B 不符合题意;C 、该方程属于分式方程,不是关于x 的一元二次方程,故C 不符合题意;D 、符合一元二次方程的定义,故D 符合题意. 故选:D .【点睛】本题主要考查了一元二次方程的定义.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是()200ax bx c a ++=≠.特别要注意0a ≠的条件.这是在做题过程中容易忽视的知识点.A .解的整数部分是3,十分位是1B .解的整数部分是3,十分位是2C .解的整数部分是3,十分位是3D .解的整数部分是3,十分位是4【答案】B【分析】通过观察表格可得20x px q ++=时,3.2 3.3x <<,即可求解.【详解】解:由表格可知,当 3.2x =时,20x px q ++<,当 3.3x =时,20x px q ++>,∴20x px q ++=时,3.2 3.3x <<,∴解的整数部分是3,十分位是2. 故选:B .【点睛】本题考查一元二次方程的解,通过观察所给的信息,确定一元二次方程解的范围是解题的关键. 3.(2022秋·江苏徐州·九年级校考期末)关于x 的一元二次方程()22110a x x a −++−=的一个根是0,则a 的值是( ) A .1− B .1C .1或1−D .1−或0【答案】A【分析】根据方程是一元二次方程,可得10a −≠,将0x =代入解析式,求出a 的值即可.【详解】解:∵关于x 的一元二次方程()22110a x x a −++−=的一个根是0,∴10a −≠,210a −=,∴1a =−; 故选A .【点睛】本题考查一元二次方程的定义和一元二次方程的解.熟练掌握一元二次方程二次项系数不为0,使等式成立的未知数的值是方程的解,是解题的关键. 二、填空题4.(2023·江苏扬州·统考一模)若关于x 的方程220x mx =--的一个根为3,则m 的值为_______. 【答案】73【分析】根据题意把3代入方程,得到关于m 的方程,解方程即可得.【详解】解:依题意得23320m =--,解得:73m =,故答案为:73.5.(2023春·江苏南京·九年级统考期中)若m 是方程210x x +−=的一个根,则代数式22023m m −−的值为________. 【答案】2022【分析】根据m 是方程210x x +−=的一个根,得到210m m +−=,进而得到21m m +=,代入代数式计算即可得解.【详解】解:∵m 是方程210x x +−=的一个根,∴210m m +−=,∴21m m +=,∴()2220232023202312022m m m m −−=−+=−=;故答案为:2022.【点睛】本题考查的是一元二次方程的解,熟练掌握方程的解是使方程成立的未知数的值,是解题的关键.【答案】4−【分析】根据一元二次方程的定义得出40a −≠且22a −=,再求出a 即可.【详解】解:∵关于x 的方程()24 320a a x x −−+−=是一元二次方程,∴40a −≠且22a −=, 解得:4a =−. 故答案为:4−.【点睛】本题考查了一元二次方程的定义和绝对值,能根据一元二次方程的定义得出40a −≠且22a −=是解此题的关键. 三、解答题【答案】212a a +,9.【分析】先计算括号内的分式的减法,再把除法化为乘法运算,约分后可得结果,再把2290a a +−=化为229a a −=,再整体代入计算即可.【详解】解:22441(2)44a a a a ⎛⎫+⋅−÷− ⎪−⎝⎭()()244412242a a a a a a +−=+−−()()()22412242a a a aa −=+−−()12a a =+212a a =+,∵2290a a +−=,∴229a a +=,∴原式19=.【点睛】本题考查的是分式的化简求值,一元二次方程的解的含义,掌握“分式的混合运算以及整体代入法求值”是解本题的关键.【答案】(1)②③ (2)74(3)5522⎛⎫− ⎪⎝⎭,【分析】(1)设两个不同的点P (m ,n )和Q (-n ,-m )是一对 “反换点”;①假设图象上存在“反换点”P Q 、,将P (m ,n ),Q (-n ,-m )坐标分别代入解析式,计算两等式是否有解,若有解,则图象存在反换点;(2)设(),3P a a −,则()3,Q a a −−,其中3a >,由题意得()()()22233362OPQa Sa a a −=−−−⨯−=,求出a的值,进而得到P 点坐标,然后代入ky x =中计算求解即可;(3)假设24y x x =−−图象上存在“反换点”P Q 、,则有2244n m m m n n ⎧=−−⎨=−⎩①②,①+②式得()()50m n m n ++−=,有50m n +−=即5n m =+,将5n m =+代入①中求解m 的值,n 的值,进而得到P Q 、的点坐标,计算两点的中点坐标即可.(1)解:设两个不同的点P (m ,n )和Q (-n ,-m )是一对 “反换点”,且m n ≠−即0m n +≠①假设2y x =−+图象上存在“反换点”P Q 、,将P (m ,n )代入2y x =−+,则有2n m =−+即2n m +=将Q (-n ,-m )代入2y x =−+,则有()2m n −=−−+即2n m +=−2n m +=与2n m +=−矛盾 ∴P (m ,n )和Q (-n ,-m )不能同时在2y x =−+图象上∴2y x =−+图象上不存在“反换点”故①不符合题意;②假设2y x =−图象上存在“反换点”P Q 、,将P (m ,n )代入2y x =−,则有2n m =− 即mn 2=− 将Q (-n ,-m )代入2y x =−,则有2m n −=−−即mn 2=− mn 2=−与mn 2=−相同 ∴P (m ,n )和Q (-n ,-m )均在2y x =−图象上 ∴2y x =−图象上存在“反换点” 故②符合题意; ③假设22y x =−图象上存在“反换点”P Q 、,将P (m ,n )代入22y x =−,则有22n m =−① 将Q (-n ,-m )代入22y x =−,则有()22m n −=−−即22m n =② 将①代入②中得()2222m m =⨯−即48m m = 解得12m =或0m =(舍去)∴存在,m n 使P (m ,n )和Q (-n ,-m )均在22y x =−图象上∴22y x =−图象上存在“反换点”故③符合题意;故答案为:②③.(2)解:设(),3P a a −,则()3,Q a a −−,其中3a >∴()()()22233362OPQ a S a a a −=−−−⨯−= 解得72a = 132a −= ∴71,22P ⎛⎫ ⎪⎝⎭ 将71,22P ⎛⎫ ⎪⎝⎭代入k y x =得1722k = 解得74k = ∴k 的值为74.(3)解:假设24y x x =−−图象上存在“反换点”P Q 、则有2244n m m m n n ⎧=−−⎨=−⎩①② ①+②式得2244n m m m n n +=−−+−()()50m n m n ++−=∴50m n +−=或0m n +=(舍去)5n m =+将5n m =+代入①中得2550m m ++=解得m =或m =当52m −=时,52n =,此时P ⎝⎭,Q ⎛ ⎝⎭,两点的中点坐标为55,22⎛⎫− ⎪⎝⎭;当m =时,n =,此时P ⎝⎭,Q ⎝⎭,两点的中点坐标为55,22⎛⎫− ⎪⎝⎭;∴存在“反换点”,线段中点坐标为55,22⎛⎫− ⎪⎝⎭.【点睛】本题考查了新定义下的实数运算,反比例函数与几何综合,解一元二次方程等知识.解题的关键在于理解题意并用适当的方法解方程.一、单选题 1.(2022秋·江苏连云港·九年级校考阶段练习)一元二次方程2323x x −=的二次项系数、一次项系数、常数项分别是( )A .3、2、3−B .3、2、3C .3、2−、3D .3、2−、3−【答案】D【分析】将一元二次方程2323x x −=化为一般形式即可求得结果. 【详解】解:将一元二次方程2323x x −=化为一般形式,得23230x x −−=,二次项系数为3,一次项系数为2−,常数项为3−.故选:D .【点睛】本题考查了一元二次方程的一般形式以及多项式的有关概念,解决问题的关键是将一元二次方程化为一般形式. 2.(2022秋·江苏无锡·九年级校考阶段练习)若关于x 的一元二次方程()2215320m x x m m −++−+=的常数项为0,则m =( )A .1B .2C .1或2D .0【答案】B【分析】根据一元二次方程成立的条件和常数项为0列出方程组,解方程组即可求解.【详解】若关于x 的一元二次方程()2215320m x x m m −++−+=的常数项为0,则232010m m m ⎧−+=⎨−≠⎩,解得2m =,故选:B .【点睛】本题考查了一元二次方程的一般形式和一元二次方程的含义,熟练掌握知识点是解题的关键.A . 1.073−B . 1.089−C . 1.117−D . 1.123− 【答案】C 【分析】根据表格中的数据,可判断代数式23x x −的值为4.61和4.56时,对应x 的值为−1.12和−1.11,观察原方程可理解为求代数式23x x −的值为4.6时,对应的x 的值,由此判断即可.【详解】解:∵x=−1.12时,23 4.61x x −=;x=−1.11时,23 4.56x x −=; ∴23 4.6x x −=时,对应x 应满足,∴原方程的近似解为:−1.117.故选C .【点睛】本题考查一元二次方程的近似解,理解表格中的数据,掌握求近似解的方法是解题关键.二、填空题4.(2022秋·江苏连云港·九年级校考阶段练习)若关于x 的一元二次方程()2100ax bx a +−=≠有一根为1x =,则一元二次方程()()21110a x b x −+−−=必有一根为______.【答案】2【分析】利用整体思想设1x t −=,得到方程210at bt +−=,再根据210(0)ax bx a +−=≠即可得到t 的值,最后得出结论.【详解】解:∵在2(1)(1)10−+−−=a x b x 中,设1x t −=∴210at bt +−=∵210(0)ax bx a +−=≠有一个根1x =∴在210at bt +−=中1t =∴即在2(1)(1)10−+−−=a x b x 中,11x −=∴2x =故答案为:2【点睛】本题考查了换元法解一元二次方程,利用整体思想解一元二次方程是解题的关键. 5.(2023春·江苏宿迁·九年级统考阶段练习)已知m 是方程2210x x +−=的一个根,则代数式2242021m m ++的值为_________【答案】2023【分析】由方程根的定义得到221m m +=,整体代入2242021m m ++即可得到答案.【详解】解:∵m 是方程2210x x +−=的一个根,∴2210m m +−=,∴221m m +=,∴()222420212220212120212023m m m m ++=++=⨯+=.故答案为:2023【点睛】此题考查了一元二次方程的解和代数式的值,熟练掌握一元二次方程解的定义是解题的关键. 6.(2023春·江苏南京·九年级校联考阶段练习)已知方程20x bx c ++=的两个根分别是2、1,则b c +=______.【答案】1−【分析】把1x =代入20x bx c ++=得出10b c ++=,整理即可得出答案.【详解】解:把1x =代入20x bx c ++=得:10b c ++=,∴1b c +=−.故答案为:1−.【点睛】本题主要考查了一元二次方程的解,解题的关键是熟练掌握方程解的定义,得出10b c ++=.三、解答题【答案】(1)m=1±(2)m=【分析】(1)根据方程中只含有一个未知数且未知数的最高次数是1次的整式方程是一元一次方程,可得答案;(2)根据一元二次方程的定义求解,一元二次方程必须满足两个条件:(1) 未知数的最高次数是2;(2) 二次项系数不为0;由这两个条件得到相应的关系式,再求解即可.【详解】(1)解:由题意,得m2﹣1=1,解得m=当m=m0,解得m当mm2﹣1=0,解得m=±1,m=±1时,该方程是一元一次方程,综上,当m=±1时,该方程是关于x的一元一次方程;(2)解:由题意,得m2﹣1=2且m,解得m当m x的一元二次方程.【点睛】本题利用了一元二次方程的概念,只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0 (且a≠0) ,特别要注意a≠0的条件,这是在做题过程中容易忽视的知识点.8.(2022秋·九年级课时练习)已知关于x的方程(m﹣1)x2+(m﹣2)x﹣2m+1=0.(1)m为何值时,此方程是一元一次方程?求出该一元一次方程的解;(2)m为何值时,此方程是一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数和常数项.【答案】(1)m =1;x =﹣1(2)m≠1;二次项系数为m ﹣1,一次项系数为m ﹣2,常数项为﹣2m+1【分析】(1)当二次项系数为0,一次项系数不为0时,方程为一元一次方程,然后解方程即可;(2)当二次项系数不为0时,方程是一元二次方程.(1)解:若关于x 的方程(m ﹣1)x2+(m ﹣2)x ﹣2m+1=0是一元一次方程,则m ﹣1=0且m ﹣2≠0,解得m =1.∴原方程变形为﹣x ﹣2+1=0解得x =﹣1.(2)解:当m≠1时,关于x 的方程(m ﹣1)x2+(m ﹣2)x ﹣2m+1=0是一元二次方程,此时该方程的二次项系数为m ﹣1,一次项系数为m ﹣2,常数项为﹣2m+1.【点睛】本题考查了一元二次方程、一元一次方程的定义及解一元一次方程,难度不大.掌握一元一次方程及一元二次方程的相关定义是解决本题的关键.【答案】(1)0m ≥且1m ≠;(2)9【分析】(1)根据一元二次方程的定义和二次根式有意义的条件进行求解即可;(2)把1x =代入230ax bx ++=中得到3a b +=−,再由22()4()a b ab a b −+=+进行求解即可.【详解】解:(1)∵方程2(1)1m x −+=是关于x 的一元二次方程,∴100m m −≠⎧⎨≥⎩,∴0m ≥且1m ≠;(2)∵1x =是方程230ax bx ++=的一个根,∴30++=a b ,即3a b +=−∴222222()4242()9a b ab a ab b ab a ab b a b −+=−++=++=+=. 【点睛】本题主要考查了一元二次方程的定义,一元二次方程的解,二次根式有意义的条件,完全平方公式,解题的关键在于能够熟练掌握一元二次方程的相关知识.10.(2022秋·江苏·九年级阶段练习)已知m是方程x2﹣2x﹣3=0的一个根,求(m﹣2)2+(m+3)(m ﹣3)的值.【答案】1【分析】根据方程的根的定义,得到m2﹣2m﹣3=0,化简得m2﹣2m=3,再化简原式得原式=2(m2﹣2m)﹣5,将m2﹣2m=3代入原式,从而求得原式的值.【详解】解:∵m是方程x2﹣2x﹣3=0的一个根,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴(m﹣2)2+(m+3)(m﹣3)=m2﹣4m+4+m2﹣9=2(m2﹣2m)﹣5=2×3﹣5=1.【点睛】本题考查了方程的根的定义,整式的乘法,掌握相关定义并进行正确的运算是解题的关键,解题中注意整体代入法的运用.【答案】(1)±3(2)见解析【分析】(1)认真阅读题目,理解新运算的定义,然后计算即可;(2)先判断出(﹣3x2+6x﹣5)与(﹣x2+2x+3)大小关系,然后根据新运算定义计算.(1)解:∵x2*(x2﹣2)=30,x2≥(x2﹣2)∴x2+3(x2-2)=30,解得x=±3,故答案为:±3.(2)解:∵(﹣3x2+6x﹣5)-(﹣x2+2x+3)=﹣2x2+4x﹣8=﹣2(x﹣1)2﹣6<0,∴﹣3x2+6x ﹣5<﹣x2+2x+3,(﹣3x2+6x ﹣5)*(﹣x2+2x+3)=(﹣3x2+6x ﹣5)﹣3(﹣x2+2x+3)=﹣3x2+6x ﹣5+3x2﹣6x ﹣9=﹣14, ∵化简后的结果与x 取值无关,∴不论x 取何值,结果都应该等于﹣14,不可能等于40,∴小华说小明计算错误.【点睛】本题考查解一元二次方程的能力和新定义的应用,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 12.(2022秋·九年级课时练习)已知方程()22(a x)a x x a 8a 16−=++−+是关于x 的一元二次方程. (1)求a 的取值范围;(2)若该方程的一次项系数为0,求此方程的根.【答案】(1)a 1≠;(2)1x 4=−,2x 4=【分析】(1)先把方程化为一元二次方程的一般形式,再考虑二次项系数不为0即可;(2)把方程化为一般形式后,根据条件一次项系数为0列出方程,求出a 的值,再代入原方程,解出方程即可.【详解】解:()1化简,得()2a 1x 3ax 8a 160−+−+=.方程()22(a x)a x x a 8a 16−=++−+是关于x 的一元二次方程,得a 10−≠,解得a 1≠,当a 1≠时,方程()22(a x)a x x a 8a 16−=++−+是关于x 的一元二次方程;()2由一次项系数为零,得a 0=.则原方程是2x 160−+=,即2x 160−=.因式分解得()()x 4x 40+−=, 解得1x 4=−,2x 4=.【点睛】本题考查了一元二次方程的定义,一元二次方程的二次项的系数不能为0,一元二次方程不含一次项时可选用因式分解法解一元二次方程.13.(2022秋·九年级课时练习)当m 为何值时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5.(1)为一元二次方程;(2)为一元一次方程.【答案】(1)m =3(2)m =﹣1或m =0,m =2【分析】(1)根据一元二次方程的定义,可得答案;(2)根据一元一次方程的定义,可得答案.(1)由关于x 的方程(m+1)x|m ﹣1|+(m ﹣3)x =5一元二次方程,得1210m m ⎧−=⎨+≠⎩,解得m =3.当m =3时,关于x 的方程(m+1)x|m ﹣1|+(m ﹣3)x =5的一元二次方程.(2)由关于x 的方程(m+1)x|m ﹣1|+(m ﹣3)x =5的一元一次方程,得m+1=0或11130m m m ⎧−=⎨++−≠⎩,解得m =﹣1或m =0,m =2,当m =﹣1或m =0,m =2时,关于x 的方程(m+1)x|m ﹣1|+(m ﹣3)x =5的一元一次方程.【点睛】本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.。

中考总复习一元二次方程分式方程的解法及应用--知识讲解

中考总复习一元二次方程分式方程的解法及应用--知识讲解

中考总复习一元二次方程分式方程的解法及应用--知识讲解一、一元二次方程的解法一元二次方程是指一个未知数的平方最高次数为2的方程。

一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b和c为已知常数,且a≠0。

解一元二次方程的方法有以下几种:1.因式分解法:对方程进行因式分解,然后令每个因式等于0,求解得到方程的解。

2. 公式法:利用求根公式(-b±√(b^2-4ac))/2a,计算出方程的根。

3.完全平方式:对一元二次方程进行配方处理,将其化为完全平方的形式,然后求解。

4.图像法:将方程的解与图像相结合,通过观察图像的交点来确定方程的解。

二、一元二次方程的应用1.抛物线问题:一元二次方程常用来描述抛物线的形状与运动轨迹。

在物理学、工程学等领域中,抛物线的特性与运动轨迹有很多应用。

2.几何问题:一元二次方程可以用来解决与几何问题相关的计算和推理。

如求解一个平面图形的面积、找到一个图形的对称轴等。

3.速度问题:一元二次方程可以用来描述具有变速度的运动过程。

在物理学和运动学中,可以通过一元二次方程来计算运动物体的速度、加速度等相关参数。

4.财务问题:一元二次方程可以用来解决与财务相关的问题,如计算利润、成本和销售量之间的关系等。

5.人口增长问题:一元二次方程可以用来描述人口增长的模型。

通过一元二次方程的解,可以预测人口增长的趋势和规律。

总结:一元二次方程是数学中常见的一种方程形式,掌握解一元二次方程的方法对于提高数学学习的能力和解决实际问题具有重要意义。

在解题过程中,要根据具体情况选择合适的方法,并灵活运用数学知识解决问题。

中考数学《一元二次方程》总复习(苏教版)PPT共17页

中考数学《一元二次方程》总复习(苏教版)PPT共17页

41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与来自 难的遭遇里百折不饶。——贝多芬
中考数学《一元二次方程》总复习
(苏教版)
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
45、自己的饭量自己知道。——苏联

江苏省海安县城东镇韩洋初级中学中考数学专题复习5 分

江苏省海安县城东镇韩洋初级中学中考数学专题复习5 分

分式一、中考要求:1.经历用字母表示现实情境中数量关系(分式、分式方程)的过程,了解分式、分式方程的概念,体会分式、分式方程的模型思想,进一步发展符号感.2.经历通过观察、归纳、类比、猜想、获得分式的基本性质、分式乘除运算法则、分式加减运算法则的过程,发展学生的合情推理能力与代数恒等变形能力.3.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,会解可化为一元一次方程的分式方程(方程中分式不超过两个)会检验分式方程的根.4.能解决一些与分式、分式方程有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识.5.通过学习,能获得学习代数知识的常用方法,能感受学习代数的价值.二、知识要点:1.分式:整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含有字母,那么称A B为分式. 注:(1)若B ≠0,则A B 有意义;(2)若B=0,则A B 无意义;(2)若A=0且B ≠0,则A B =0 2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.3.约分:把一个分式的分子和分母的公团式约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.5.分式的加减法法则:(1)同分母的分式相加减,分母不变,把分子相加减;(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.6.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.7.通分注意事项:(1)通分的关键是确定最简公分母,最简公分母应为各分母系救的最小公倍数与所有相同因式的最高次幂的积;(2)易把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.8.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.9.对于化简求值的题型要注意解题格式,要先化简,再代人字母的值求值.10.分式方程.分母中含有未知数的方程叫做分式方程.11.分式方程的解法:解分式方程的关键是大分母(方程两边都乘以最简公分母人将分式方程转化为整式方程.12.分式方程的增根问题:⑴ 增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根l 增根;⑵ 验根:因为解分式方程可能出现增根,所以解分式方程必须验根.13.分式方程的应用:列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.14.通过解分式方程初步体验“转化”的数学思想方法,并能观察分析所给的各个特殊分式或分式方程,灵活应用不同的解法,特别是技巧性的解法解决问题.三、经典例题剖析:1、当x____时,分式31-x 有意义.2、先化简,再求值:231()11x x x x x x---+g ,其中22x =-. 3、先将)11(122xx x x +•+-化简,然后请你自选一个合理的x 值,求原式的值。

江苏省海安县城东镇韩洋初级中学中考数学专题复习4 分

江苏省海安县城东镇韩洋初级中学中考数学专题复习4 分

分解因式一、中考要求:1.经历探索分解因式方法的过程,体会数学知识之间的整体联系(整式乘法与分解因式).2.了解分解因式的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).3、通过乘法公式22()()+-=-,222a b a b a b±=±+的逆向变形,进一步发展学生观()2a b a ab b察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力.二、知识要点:1.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2.分解困式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:公式22()()a b a b a b-=+-;222±+=±2()a ab b a b3.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解.4.分解因式时常见的思维误区:提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项“ 1”易漏掉.分解不彻底,如保留中括号形式,还能继续分解等三、经典例题剖析:1.下列各式从左到右的变形,属于因式分解的是()22.(1) B.a-a-2=a(a-1)-2-+=-+Aa a b a ab a2222C a b a b a bD a a a-+=-++--=--.49(23)(23) .45(2)94. 下列各组多项式中没有公因式的是()A.3x-2与 6x2-4x B.3(a-b)2与11(b-a)3C.mx—my与 ny—nx D.ab—ac与 ab—bc5. 分解因式:x2-9=___________,322a-2a b+ab=___________6. 在实数范围内分解因式:ab2-2a=____________7.分解因式的结果是(a2+2)(a2-2)的多项式是___________.8.分解因式:(1)25(a+b)2-9(a-b)2 (2)22222(m+n)-4m n9.(阅读理解题)分解因式:x2-120x+3456分析:由于常数项数值较大,则采用x 2-120x变为差的平方的形式进行分解,这样简便易行:x2-120x+3456 = x2-2×60x+3600-3600+3456= (x-60)2-144=(x-60+12)(x-60-12)=(x-48)(x-72) 请按照上面的方法分解因式:x2+42x-3526。

江苏省海安县城东镇韩洋初级中学九年级数学12月月考试题 苏科版

江苏省海安县城东镇韩洋初级中学九年级数学12月月考试题 苏科版

江苏省海安县城东镇韩洋初级中学2016届九年级数学上学期12月月考试题卷面分值:150分 答卷时间:120分 一、选择题(每题3分,共30分)1.一元二次方程x 2+4x ﹣3=0的两根为x 1、x 2,则x 1•x 2的值是( ) A .4 B .﹣4 C .﹣3 D .3 2.下列图形中,为中心对称图形的是( )A .B .C .D .3.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( ) A .2.5 B .5 C .10 D .15 4.在反比例函数x my 31-=图象上有两点A (x 1,y 1)、B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( )A .m >31B .m <31C .m ≥31D .m ≤315.如图的四个转盘中,C ,D 转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( )A .B .C .D .6.二次函数的最大值为( )A .3B .4C .5D .6 7如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F , 且AB =1,CD =3,那么EF 的长是 ( ) A .13 B .23C .34D .458.关于x 的一元二次方程0122=-+x kx 有两个不相等实数根,则k 的取值范围是( )A. 1->kB. 1-≥kC. 0≠kD. 1->k 且0≠k9.如图,AB 是⊙O 的直径,AB =8,点M 在⊙O 上,∠MAB =20°,N 是弧MB 的中点,P 是直径AB 上的一动点,若MN =1,则△PMN 周长的最小值为( ).第7题图EBA10.如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是()A.①②B.①②③C.①④D.①②④二、填空题(每题3分,共24分)11.方程x2 =x的解是.12.将抛物线2y x=-向左平移2个单位后,得到的抛物线的解析式是 .13.已知圆的半径是2,则该圆的内接正六边形的面积是.14.如图,在ABC∆中,BCDE//,6=AD,3=DB,4=AE,则EC的长为 .15.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为。

江苏省海安县城东镇韩洋初级中学中考数学专题复习7 一元一次方程与二元一次方程组

江苏省海安县城东镇韩洋初级中学中考数学专题复习7 一元一次方程与二元一次方程组

中考要求:1.根据具体问题中的数量关系,经历形成方程模型、解方程和运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.了解一元一次方程及其相关概念,会解一元一次方程(数字系数)3.能以一元一次方程为工具解决一些简单的实际问题,包括列方程、求解方程和解释结果的实际意义及合理性,提高分析问题、解决问题的能力.4.在经历建立方程模型解决实际问题的过程中,体会数学的应用价值.5.经历从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想,发展灵活运用有关知识解决实际问题的能力,培养良好的数学应用意识.6.了解二元一次方程(组)的有关概念,会解简单的二元一次方程组(数字系数人能根据具体问题中的数量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性.7.了解二元一次方程组的图象解法,初步体会方程与函数的关系.8.了解解二元一次方程组的“消元”思想.从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想.知识点讲解:1.方程:含有未知数的等式叫方程.2.一元一次方程:只含有一个未知数,并且未知数的指数是1(次)系数不为0,这样的方程叫一元一次方程.一般形式:ax+b=0(a≠0)3.解一元一次方程的一般步骤及注意事项:4.等式的基本性质及用等式的性质解方程:性质1:等式两边同时加上(或减去)同一个数或同一个代数式,所得结果仍是等式.若a=b,则a±m=b±m性质2:等式两边同时乘以同一个数(或除以同一个不为0的数)所得结果仍是等式;若a=b,则am=bm等式其他性质:若a=b,b=c,则a=c(传递性).等式的基本性质是解方程的依据,在使用时要注意式性质成立的条件.5.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.6.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.7.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.8.二元一次方程组的解法.(1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法.(2)减消无法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法. 9.整体思想解方程组.(1)整体代入.如解方程组3(1) 5 5(1)3(5) x y y x -=+⎧⎨-=+⎩①②,方程①的左边可化为3(x+5)-18=y+5③,把②中的 3(x+5)看作一个整体代入③中,可简化计算过程,求得y .然后求出方程组的解.(2)整体加减,如1+3y 19 313x+y 11 3x ⎧=⎪⎪⎨⎪=⎪⎩①②因为方程①和②的未知数x 、y 的系数正好对调,所以可采用两个方程二元一次方程与一次函数的区别和联系.区别:(1)二元一次方程有两个未知数,而一次函数有两个变量;(2)二元一次方程用一个等式表示两个未知数的关系,而一次函数既可以用一个等式表示两个变量之间的关系,又可以用列表或图象来表示两个变量之间的关系.联系:(1)在直角坐标系中分别描出以二元一次方程的解为坐标的点,这些点都在相应的一次函数的图象上;(2)在一次函数的图象上任取一点,它的坐标都适合相应的二元一次方程.10.两个一次函数图象的交点与二元一次方程组的解的联系:在同一直 坐标系中,两个一次函数图象的交点的坐标就是相应的二元一次方程组的解.反过来,以二元一次方程组的解为坐标的点一定是相应的两个一次函数的图象的交点,11.用作图象的方法解二元一次方程组:(1)将相应的二元一次方程组改写成一次函数的表达式;(2)在同一坐标系内作出这两个一次函数的图象;(3)观察图象的交点坐标,即得二元一次方程组的解.整体相加减求解.利用①+②,得x+y=9③,利用②-①得x -y=3④,可使③、④组成简单的方程组求得x ,y .经典例题剖析:1.若代数式2354x+322n m 3x m n +-与是同类项,则x=__________. 2.已知2x+5y =3,用含y 的代数式表示x ,则x=___________;当y=1时,x=________3.当k=_______时,方程5x -k=3x +8的解是-2.4.有一个数,十位数字是a ,个位数字是b ,十分位数字是c ,那么这个数可表示为_______.5.三个连续奇数的和是15,那么其中最大的奇数为_______.6.若2x+y+4+(x-2)=0则 3x+2y =_______7.方程x+y=22x+2y=3⎧⎨⎩没有解,由此一次函数y=2-x 与y= 32 -x 的图象必定( ) A .重合 B .平行 C .相交 D .无法判断8.已知点(2,-1)是方程y=kx +1的一个解,则直线y=kx +l 的图象不经过的象限是_______9.若a+b 4b 与3a+b 是同类二次根式,求a 、b 的值.10.解方程组:⑴2x+5y=53x+2y=5 3x-5y=102x+5y=7⎧⎧⎨⎨⎩⎩⑵11.若x=-2y=1⎧⎨⎩ 是方程组ax+by=1bx+ay=7⎧⎨⎩的解,则(a+b )(a -b )的值为_______. 12.学生问老师多少岁,老师说我像你这么大时你才2岁,你长到我这么大时,我就35岁了,请你算算老师、学生各多少岁?13.今年我省荔枝又喜获丰收. 目前市场价格稳定,荔枝种植户普遍获利. 据估计,今年全省荔枝总产量为50 000吨,销售收入为61 000万元. 已知“妃子笑”品种售价为1.5万元/吨,其它品种平均售价为0.8万元/吨,求“妃子笑”和其它品种的荔枝产量各多少吨. 如果设“妃子笑”荔枝产量为x 吨,其它品种荔枝产量为y 吨,那么可列出方程组为 .解:x+y=500001.5x+0.8y=61000⎧⎨⎩ 14.甲、乙两件服装的成本共n0元,商店老板为获取利润,决定将甲服装按50%利润定价,乙服装接40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?答:甲、乙两件服装的成本分别为300元,200元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程
一、中考要求:
1.经历由具体问题抽象出一元二次方程的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型.
2.能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力.
3.了解一元二次方程及其相关概念,会用配方法、公式法、分解因式法解简单的一元二次方程(数字系数人并在解一元二次方程的过程中体会转化等数学思想.
4.经历在具体情境中估计一元二次方程解的过程,发展估算意识和能力.
二、知识点讲解:
1.一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0)
2.一元二次方程的解法:
⑴配方法:配方法是一种以配方为手段,以开平方为基础的一种解一元二次方程的方法.用
配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化二次项系数为1,即方程两边同除以二次项系数;②移项,即使方程的左边为二次项和一次项,右边为常数项;
③配方,即方程两边都加上一次
项系数的绝对值一半的平方;④化原方程为(x+m)2=n的形式;⑤如果n≥0就可以用两边开平方来求出方程的解;如果n=<0,则原方程无解.
⑵公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来
的.一元二次方程的求根公式是
a ac
b
b
x
2
4 2-
±
-
=(b2-4ac≥0)
⑶因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.它的理论
根据是两个因式中至少要有一个等于0,因式分解法的步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.
3.一元二次方程的注意事项:
⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0时,不含有二次项,即不是
一元二次方程.如关于x的方程(k2-1)x2+2kx+1=0中,当k=±1时就是一元一次方程了.
⑵应用求根公式解一元二次方程时应注意:①化方程为一元二次方程的一般形式;②确定
a、b、c的值;③求出b2-4ac的值;④若b2-4ac≥0,则代人求根公式,求出x1,x2.若
b2-4a<0,则方程无解.
⑶方程两边绝不能随便约去含有未知数的代数式.如-2(x+4)2=3(x+4)中,不能随便
约去(x+4
⑷注意解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.
4.构建一元二次方程数学模型:一元二次方程也是刻画现实问题的有效数学模型,通过审题弄清具体问题中的数量关系,是构建数学模型,解决实际问题的关键.
5.注重.解法的选择与验根:在具体问题中要注意恰当的选择解法,以保证解题过程简洁流畅,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性.
三、经典例题剖析:
1、下列方程中,关于x的一元二次方程是()
2
2
222
11
.3(1)2(1) .20
.0 .21
A x x B
x y
C ax bx c
D x x x
+=++-=
++=+=-
4、方程22
(1)280
m x x
-+-=的一个根是2,则另一个根是_____________.
5、已知一元二次方程x2 +2x-8=0的一根是2,则另一个根是______________.
6、解方程:x2+2x-3=0
解:x2+2x-3=0,x2+2x=3,即x+l=2或x+1=2.所以x1=1,x2 =3.
点拨:考查解方程的知识,还可用公式法或因式分解法解.
7、已知方程5x2+kx-10=0一个根是-5,求它的另一个根及k的值.
解:设方程的另一根是x,那么,
1
10
5
5
x
-=-
1
222
2,x=,+(-5),5[
5555
k
=-=--
所以又因为所以+(-5)=-
k
5
,所以k=-5×[
2
5
+(-5)]=23.
答:方程的另一根是
2
5
,k的值是23.点拨:利用根与系数的关系来解.
8、某水果批发商场经销一种高档水果如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?解:设每千克水果应涨价x元,依题意,得(500-2 0 x)(10+x)=6000.整理,得x2-15x+50=0.解这个方程,x1=5,x2=10.要使顾客得到实惠,应取x=5.答:每千克应涨价5元..
点拨:应抓住“要使顾客得到实惠”这句话来取舍根的情况.。

相关文档
最新文档