沙堤乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沙堤乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)若方程组的解为x,y,且x+y>0,则k的取值范围是()
A. k>4
B. k>﹣4
C. k<4
D. k<﹣4
【答案】B
【考点】解二元一次方程组,解一元一次不等式
【解析】【解答】解:两式相加得:4x+4y=k+4
∵x+y>0
∴4x+4y=4(x+y)>0
即k+4>0
k>﹣4
故答案为:B.
【分析】先观察x,y的系数,系数之和都是4,所以两式相加得x+y=(k+4)÷4,再让k+4>0,解得k>﹣4
2、(2分)若,则a的取值范围为()
A. 正数
B. 非负数
C. 1,0
D. 0
【答案】C
【考点】算术平方根
【解析】【解答】∵,
∴a≥0,a= ,即a的算术平方根等于它本身,
∴a=1或0.
故答案为:C.
【分析】由题意知a的算术平方根等于它本身,所以a=1或0.
3、(2分)实数在数轴上的位量如图所示,则下面的关系式中正确的个数为()
A. 1
B. 2
C. 3
D. 4【答案】B
【考点】实数在数轴上的表示,实数大小的比较
【解析】【解答】解:由数轴可知:
b<-a<0<a<-b,
∴a+b<0,b-a<0,>,|a|<|b|,
故①②错误;③④正确.
故答案为:B.
【分析】由数轴可知:b<-a<0<a<-b,从而可逐一判断对错.
4、(2分)如图,与∠B互为同旁内角的有()
A. 1个
B. 2个
C. 3个
D. 4个【答案】C
【考点】同位角、内错角、同旁内角
【解析】【解答】解:∵当直线AB、AC被直线BC所截,∠B与∠C是同旁内角;
当直线BC、DE被直线AB所截,∠B与∠EDB是同旁内角;
当直线BC、AC被直线AB所截,∠B与∠A是同旁内角;
∴与∠B互为同旁内角的有∠C、∠EDB、∠A
故答案为:C
【分析】根据同旁内角的定义,两个角在两直线之内,在第三条直线的同旁,即可求解。

5、(2分)下列对实数的说法其中错误的是()
A. 实数与数轴上的点一一对应
B. 两个无理数的和不一定是无理数
C. 负数没有平方根也没有立方根
D. 算术平方根等于它本身的数只有0或1
【答案】C
【考点】算术平方根,实数在数轴上的表示,有理数及其分类
【解析】【解答】A. 实数与数轴上的点一一对应,故A不符合题意;
B. =2,故B不符合题意;
C. 负数立方根是负数,故C符合题意;
D. 算术平方根等于它本身的数只有0或1,故D不符合题意;
故答案为:C.
【分析】实数与数轴上的点是一一对应的关系;两个无理数的和不一定是无理数,可能是0,也可能是有理数;负数立方根是负数,负数没有平方根;算术平方根等于它本身的数只有0或1.
6、(2分)下列方程中,是二元一次方程的是()
A.3x﹣2y=4z
B.6xy+9=0
C.
D.
【答案】D
【考点】二元一次方程的定义
【解析】【解答】解:根据二元一次方程的定义,方程有两个未知数,方程两边都是整式,故D符合题意,故答案为:D
【分析】根据二元一次方程的定义:方程有两个未知数,含未知数项的最高次数都是1次,方程两边都是整式,即可得出答案。

7、(2分)如图,在下列条件中,能判断AD∥BC的是()
A. ∠DAC=∠BCA
B. ∠DCB+∠ABC=180°
C. ∠ABD=∠BDC
D. ∠BAC=∠ACD
【答案】A
【考点】平行线的判定
【解析】【解答】解:A、∵∠DAC=∠BCA,∴AD∥BC(内错角相等,两直线平行),A符合题意;
B、根据“∠DCB+∠ABC=180°”只能判定“DC∥AB”,而非AD∥BC,B不符合题意;
C、根据“∠ABD=∠BDC”只能判定“DC∥AB”,而非AD∥BC,C不符合题意;
D、根据“∠BAC=∠ACD”只能判定“DC∥AB”,而非AD∥BC,D不符合题意;
故答案为:A.
【分析】根据各个选项中各角的关系,再利用平行线的判定定理,对各选项逐一判断即可。

8、(2分)的平方根是()
A. 4
B. -4
C. ±4
D. ±2
【答案】D
【考点】平方根,二次根式的性质与化简
【解析】【解答】解:=4,4的平方根是±2.
故答案为:D
【分析】首先将化简,再求化简结果的平方根。

9、(2分)下列方程组中,是二元一次方程组的是()
A.
B.
C.
D.
【答案】B
【考点】二元一次方程组的解
【解析】【解答】解:A、方程6xy=7是二元二次方程,故A不符合题意;
B、方程组是二元一次方程组,故B符合题意;
C、方程3x2﹣x﹣3=0,是一元二次方程,故此C不符合题意;
D、方程﹣1=y是分式方程,故D不符合题意.
故答案为:B.
【分析】二元一次方程组满足的条件:含有两个未知数;未知数的最高次数是1;是整式方程。

根据这三个条件即可判断。

10、(2分)计算=()
A. -8
B. 2
C. -4
D. -14
【答案】A
【考点】实数的运算
【解析】【解答】原式=-5-3=-8.故答案为:A
【分析】负数的绝对值是正数,再根据实数的运算性质计算即可。

11、(2分)如图,长方形ABCD的边AD长为2,边AB长为1,AD在数轴上,以原点D为圆心,对角线BD的长为半径画弧,交正半轴于一点,则这个点表示的实数是()
A. B. C. D.
【答案】A
【考点】实数在数轴上的表示
【解析】【解答】解:∵长方形ABCD的边AD长为2,边AB长为1,
∴,
∴这个点表示的实数是:,
故答案为:A.
【分析】首先根据勾股定理算出DB的长,然后根据同圆的半径相等及原点右边表示的是正数即可得出答案。

12、(2分)不等式3x<18 的解集是()
A.x>6
B.x<6
C.x<-6
D.x<0
【答案】B
【考点】解一元一次不等式
【解析】【解答】解:(1)系数化为1得:x<6
【分析】不等式的两边同时除以3即可求出答案。

二、填空题
13、(1分)的算术平方根为________.
【答案】2
【考点】算术平方根
【解析】【解答】解:的算术平方根为2.
故答案为:2.
【分析】,即求4的算术平方根;算术平方根是正的平方根.
14、(1分)写出一个比-1小的无理数________.
【答案】
【考点】实数大小的比较
【解析】【解答】解:比-1小的无理数为:
【分析】根据无理数的大小比较,写出一个比-1小的无理数即可。

此题答案不唯一。

15、(1分)若则x+y+z=________.
【答案】3
【考点】三元一次方程组解法及应用
【解析】【解答】解:在中,由①+②+③得:,
∴.
【分析】方程组中的三个方的x、y、z的系数都是1,因此由(①+②+③)÷2,就可求出结果。

16、(2分)平方等于的数是________,-64的立方根是_______
【答案】;-4
【考点】平方根,立方根及开立方
【解析】【解答】解:∵(±)2=
∴平方等于的数是±;
-64的立方根是-4
故答案为:±;-4
【分析】根据平方根的定义及立方根的定义求解即可。

17、(1分)规定[x]表示不超过x的最大整数,如[2.3]=2,[-π]=-4,若[y]=2,则y的取值范围是________。

【答案】2≤y<3
【考点】不等式及其性质
【解析】【解答】解:∵[y]表示不超过x的最大整数,[y]=3,
∴且y<4,
即 x<3.故答案为: x<3.
【分析】根据:规定[x]表示不超过x的最大整数,[y]=2,说明y的整数部分不超过2,据此作出判断即可。

18、(1分)任何实数a,可用[a]表示不超过a的最大整数,如[2]=2,[3.7]=3,现对72进行如下操作:

这样对72只需进行3次操作后变为1,类似地:对109只需进行________次操作后变为1.
【答案】3
【考点】估算无理数的大小
【解析】【解答】解:85→第一次[ ]=9→第二次[ ]=3→第三次[ ]=1
故对85只需进行3次操作后变为1
【分析】根据[a]表示不超过a的最大整数,由102=100,112=121可知,对109进行第一次操作等于10,由32=9,42=16可知第二次操作等于3,以此类推即可得出答案。

三、解答题
19、(10分)近年来,由于乱砍滥伐,掠夺性使用森林资源,我国长江、黄河流域植被遭到破坏,土地沙化严重,洪涝灾害时有发生,沿黄某地区为积极响应和支持“保护母亲河”的倡议,建造了长100千米,宽0.5千米的防护林.有关部门为统计这一防护林共有多少棵树,从中选出10块防护林(每块长1km、宽0.5km)进行统计.
(1)在这个问题中,总体、个体、样本各是什么?
(2)请你谈谈要想了解整个防护林的树木棵数,采用哪种调查方式较好?说出你的理由.
【答案】(1)解:总体:建造的长100千米,宽0.5千米的防护林中每块长1km、宽0.5km的树的棵树;个体:一块(每块长1km、宽0.5km)防护林的树的棵树;
样本:抽查的10块防护林的树的棵树
(2)解:采用抽查的方式较好,因为数量较大,不容易调查
【考点】全面调查与抽样调查,总体、个体、样本、样本容量
【解析】【分析】(1)总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量,根据总体、个体和样本的定义即可解答;
(2)一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,根据抽样调查和普查的定义及特征进行选择即可.
20、(9分)某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1 000m及女生800m 测试成绩整理、绘制成如下不完整的统计图(图①、图②),请根据统计图提供的信息,回答下列问题:
(1)该校毕业生中男生有________人,女生有________人;
(2)扇形统计图中a=________,b=________;
(3)补全条形统计图(不必写出计算过程).
【答案】(1)300;200
(2)12;62
(3)解:由图象,得8分以下的人数有:500×10%=50人,
∴女生有:50﹣20=30人.
得10分的女生有:62%×500﹣180=130人.
补全图象为:
【考点】扇形统计图,条形统计图
【解析】【解答】解:⑴由统计图,得男生人数有:20+40+60+180=300人,
女生人数有:500﹣300=200人.
故答案为:300,200;
⑵由条形统计图,得
60÷500×100%=12%,
∴a%=12%,
∴a=12.
∴b%=1﹣10%﹣12%﹣16%,
∴b=62.
故答案为:12,62;
【分析】(1)根据条形统计图对应的数据相加可得男生人数,根据调查的总数减去男生人数可得女生人数;(2)根据条形统计图计算8分和10分所占的百分比即可确定字母a、b的值;
(3)根据两个统计图计算8分以下的女生人数和得分是10分的女生人数即可补全统计图.
21、(5分)如图,直线BE、CF相交于O,∠AOB=90°,∠COD=90°,∠EOF=30°,求∠AOD的度数.
【答案】解:∵∠EOF=30°
∴∠COB=∠EOF=30°
∵∠AOB=90°,∠AOB=∠AOC+∠COB
∴∠AOC=90°-30°=60°
∴∠AOD=∠COD+∠AOC=150°
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等得出∠COB=∠EOF=30°,根据角的和差得出∠AOC=90°-30°=60°,∠AOD=∠COD+∠AOC=150°。

22、(10分)为了解用电量的多少,李明在六月初连续八天同一时刻观察电表显示的度数,记录如下:
(1)估计李明家六月份的总用电量是多少度;
(2)若每度电的费用是0.5元,估计李明家六月份共付电费多少元?
【答案】(1)解:平均每天的用电量= =4度∴估计李明家六月份的总用电量为4×30=120度(2)解:总电费=总度数×每度电的费用=60答:李明家六月份的总用电量为120度;李明家六月份共付电费60元
【考点】统计表
【解析】【分析】(1)根据8号的电表显示和1号的电表显示,两数相减除以7可得平均每天的用电量,然后乘以6月份的天数即可确定总电量;
(2)根据总电费=总度数×每度电的费用代入对应的数据计算即可解答.
23、(5分)如图,直线AB、CD相交于O点,∠AOC=80°,OE⊥AB,OF平分∠DOB,求∠EOF的度数.
【答案】解:∵∠AOC=80°,∴∠BOD=∠AOC=80°,∵OF平分∠DOB,∴∠DOF= ∠DOB=40°,∵OE⊥AB,∴∠AOE=90°,∵∠AOC=80°,∴∠EOD=180°-90°-80°=10°,∴∠EOF=∠EOD+∠DOF=10°+40°=50°.
【考点】角的平分线,角的运算,对顶角、邻补角
【解析】【分析】根据图形和已知求出∠EOD的度数,再由角平分线性质、对顶角相等和角的和差,求出∠EOF=∠EOD+∠DOF的度数.
24、(15分)学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:
(1)求该校七年一班此次预选赛的总人数;
(2)补全条形统计图,并求出书法所在扇形圆心角的度数;
(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?【答案】(1)解:6÷25%=24(人).故该校七年一班此次预选赛的总人数是24人(2)解:24﹣6﹣4﹣6=8(人),书法所在扇形圆心角的度数8÷24×360°=120°;
补全条形统计图如下:
(3)解:480÷24×2=20×2
=40(名)
故本次比赛全学年约有40名学生获奖
【考点】扇形统计图,条形统计图
【解析】【分析】(1)先根据版画人数除以所占的百分比可得总人数;
(2)先根据(1)中的总人数减去其余的人数可得书法参赛的人数,然后计算圆心角,补全统计图即可;(3)根据总数计算班级数量,然后乘以2可得获奖人数.
25、(5分)如图,在△ABC中,∠ABC与∠ACB的平分线相交于O.过点O作EF∥BC分别交AB、AC 于E、F.若∠BOC=130°,∠ABC:∠ACB=3:2,求∠AEF和∠EFC.
【答案】解:∵∠ABC:∠ACB=3:2,
∴设∠ABC=3x,∠ACB=2x,
∵BO、CO分别平分∠ ABC、∠ ACB,
∴∠ABO=∠CBO=x,∠ACO=∠BCO=x,
又∵∠BOC=130°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
∴130°+x+x=180°,
解得:x=20°,
∴∠ABC=3x=60°,∠ACB=2x=40°,
∵EF∥BC,
∴∠AEF=∠ABC=60°,
∠EFC+∠ACB=180°,
∴∠EFC=140°.
【考点】平行线的性质
【解析】【分析】根据已知条件设∠ABC=3x,∠ACB=2x,由角平分线性质得∠ABO=∠CBO=x,∠ACO=∠BCO=x,在△BOC中,根据三角形内角和定理列出方程,解之求得x值,从而得∠ABC=60°,∠ACB=40°,再由平行线性质同位角相等得∠AEF=60°,同旁内角互补得∠EFC=140°.
26、(15分)“节约用水、人人有责”,某班学生利用课余时间对金辉小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,并且将5月份各户居民的节水量统计整理成如图所示的统计图表
节水量/立方米1 1.52.53
户数/户5080a70
(1)写出统计表中a的值和扇形统计图中2.5立方米对应扇形的圆心角度数.
(2)根据题意,将5月份各居民的节水量的条形统计图补充完整.
(3)求该小区300户居民5月份平均每户节约用水量,若用每立方米水需4元水费,请你估算每户居民1年可节约多少元钱的水费?
【答案】(1)解:由题意可得,a=300﹣50﹣80﹣70=100,
扇形统计图中2.5立方米对应扇形的圆心角度数是:=120°
(2)解:补全的条形统计图如图所示:
(3)解:由题意可得,5月份平均每户节约用水量为:=2.1(立方米),
2.1×12×4=100.8(元),
即求该小区300户居民5月份平均每户节约用水量2.1立方米,若用每立方米水需4元水费,每户居民1年可节约100.8元钱的水费
【考点】扇形统计图,条形统计图
【解析】【分析】(1)根据总数减去节水量对应的数据和可得a的值,利用节水量是2.5立方米的百分比乘以360°可得对应的圆心角的度数;
(2)根据(1)中a的值即可补全统计图;
(3)利用加权平均数计算平均每户节约的用水量,然后乘以需要的水费乘以12个月可得结论.。

相关文档
最新文档