七年级平面图形的认识(一)专题练习(解析版)

合集下载

七年级上册平面图形的认识(一)单元测试卷 (word版,含解析)

七年级上册平面图形的认识(一)单元测试卷 (word版,含解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.将一副三角板放在同一平面内,使直角顶点重合于点O(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【答案】(1)解:∵而同理:∴∴(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:(3)解:仍然成立.理由如下:∵又∵∴【解析】【分析】(1)先计算出再根据(2)根据(1)中得出的度数直接写出结论即可.(3)根据即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.2.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒(1)当t=________秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=________°;(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC 与∠AOM有怎样的数量关系?并说明理由;(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)①当t=________秒时,OM平分∠AOC?(4)②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.【答案】(1)2.25;45(2)解:∠NOC﹣∠AOM=45°,∵∠AON=90°+10t,∴∠NOC=90°+10t﹣45°=45°+10t,∵∠AOM=10t,∴∠NOC﹣∠AOM=45°(3)3(4)解:②∠NOC﹣∠AOM=45°.∵∠AOB=5t,∠AOM=10t,∠MON=90°,∠BOC=45°,∵∠AON=90°+∠AOM=90°+10t,∠AOC=∠AOB+∠BOC=45°+5t,∴∠NOC=∠AON﹣∠AOC=90°+10t﹣45°﹣5t=45°+5t,∴∠NOC﹣∠AOM=45°.【解析】【解答】解:(1)∵∠AOC=45°,OM平分∠AOC,∴∠AOM= =22.5°,∴t=2.25秒,∵∠MON=90°,∠MOC=22.5°,∴∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;故答案为:2.25,45;·(3)①∵∠AOB=5t,∠AOM=10t,∴∠AOC=45°+5t,∵OM平分∠AOC,∴∠AOM= AOC,∴10t= (45°+5t),∴t=3秒,故答案为:3.【分析】(1)根据角平分线的定义得到∠AOM= =22.5°,于是得到t=2.25秒,由于∠MON=90°,∠MOC=22.5°,即可得到∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;(2)根据题意得∠AON=90°+10t,求得∠NOC=90°+10t﹣45°=45°+10t,即可得到结论;(3)①根据题意得∠AOB=5t,∠AOM=10t,求得∠AOC=45°+5t,根据角平分线的定义得到∠AOM= AOC,列方程即可得到结论;(4)②根据角的和差即可得到结论.3.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,∁….例如:当α=30°时,OA1, OA2, OA3, OA4的位置如图2所示,其中OA3恰好落在ON 上,∠A3OA4=120°;当α=20°时,OA1, OA2, OA3, OA4, OA3的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是________;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3, OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是________(4)(选做题)当OA i所在的射线是∠A i OA k(i,j,k是正整数,且OA j与OA k不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且α=180°),旋转是否可以停止?写出你的探究思路.【答案】(1)45°(2)解:如图所示.∵α<30°,∴∠A0OA3<180°,4α<180°.∵OA4平分∠A2OA3,∴2(180°﹣6α)+ =4α,解得:(3),,(4)解:对于角α=120°不能停止.理由如下:无论a为多少度,旋转过若干次后,一定会出现OA i是∠A i OA K是的角平分线,所以旋转会停止.但特殊的,当a为120°时,第一次旋转120°,∠MOA1=120°,第二次旋转240°时,与OM 重合,第三次旋转360°,又与OM重合,第四次旋转480°时,又与OA1重合,…依此类推,旋转的终边只会出现“与OM重合”或“与OA1重合”两种情况,不会出第三条射线,所以不会出现OA i是∠A i OA K是的角平分线这种情况,旋转不会停止【解析】【解答】解:(1)解:如图所示.aφ=45°,【分析】(1)根据题意,明确每次旋转的角度,计算即可;(2)根据各角的度数,找出等量关系式,列出方程,求出α的度数即可;(3)类比第(2)小题的算法,分三种情况讨论,求出α的度数即可;(4)无论a为多少度,旋转很多次,总会出一次OA i是∠A i OA K是的角平分线,但当a=120度时,只有两条射线,不会出现OA i是∠A i OA K是的角平分线,所以旋转会中止.4.如图(1)如图1,AB∥CD,∠AEP=40°,∠PFD=130°。

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、轮船航行到B处观测小岛A的方向是北偏西32°,那么小岛A观测到轮船B 的方向是()A.南偏西32°B.南偏东32°C.南偏西58°D.南偏东58°2、如图,在一张半透明的纸上画一条直线,在直线外任取一点,折出过点且与直线垂直的直线,这样的直线只能折出一条,理由是( )A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.两点之间线段最短C.在平面内,过一点有且只有一条直线与已知直线垂直D.经过直线外一点有且只有一条直线与已知直线平行3、点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A. AC= BCB. AC+ BC= ABC. AB=2 ACD. BC= AB4、如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.58°C.68°D.60°5、如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42°,则∠2等于()A.130°B.138°C.140°D.142°6、如图,∥,直线分别交、于点,,平分,已知,则=()A. B. C. D.7、如图,AE BD,,则的度数是A. B. C. D.8、若∠A=35°16′,则其余角的度数为()A.54°44′B.54°84′C.55°44′D.144°44′9、如图所示,一圆柱高8cm,底面半径为2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是()A.20cmB.10cmC.14cmD.无法确定10、将一把直尺与一块三角板如图所示放置,若∠1=40°,则∠2的度数为()A.50°B.110°C.130°D.150°11、如图,河道l的一侧有A、B两个村庄,现要铺设一条引水管道把河水引向A、B两村,下列四种方案中最节省材料的是()A. B. C. D.12、如图,一轮船以12海里/时的速度从港口A出发向东北方向航行,另一轮船以5海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后两船相距()A.13 海里B.16 海里C.20 海里D.26 海里13、如图,将△ABC绕着点C按顺时针方向旋转,B点落在B'位置,A点落在A'位置,若AC⊥A' B',则∠BAC的度数是( )A.50B.60C.70D.8014、下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过一点有且仅有一条直线与已知直线平行;④长方体是四棱柱;其中正确的有()A.1个B.2个C.3个D.4个15、两条直线相交所成的四个角分别满足下列条件之一,其中不能判定这两条直线垂直的条件是()A.两对对顶角分别相等B.有一对对顶角互补C.有一对邻补角相等 D.有三个角相等二、填空题(共10题,共计30分)16、如图,为平角,已知平分,平分,与相交于点,,则的度数为________.17、若一个角的余角是它的补角的,这个角的度数________.18、如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=56°23′,则∠BOC的度数为________.19、如图,已知∠AOB=75°,∠COD=35°,∠COD在∠AOB的内部绕着点O旋转(OC与OA不重合,OD与OB不重合),若OE为∠AOC的角平分线.则2∠BOE-∠BOD的值为________.20、计算:________.21、下面是六个推断:①因为平角的两条边在一条直线上,所以直线是一个平角;②因为周角的两条边在一条射线上,所以射线是一个周角;③因为扇形是圆的一部分,所以圆周的一部分是扇形;④因为平行的线段没有交点,所以不相交的两条线段平行;⑤因为正方形的边长都相等,所以边长相等的四边形是正方形;⑥因为等腰三角形有两个内角相等,所以有两个内角相等的三角形是等腰三角形;其中正确的结论有________个,其序号是________;22、若,则的余角为________.23、下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b;③内错角相等;④对顶角相等.其中真命题的是________(填写序号)24、如图,∠AOB=90°,以O为顶点的锐角共有________ 个.25、如图,数轴上标出若干个点,每相邻两点相距1个单位,其中点A,B,C,D,E,F对应数分别是整数a,b,c,d,e,f,且d﹣2a=12,那么数轴上的原点是点________.26、一个角的补角比这个角的余角的2倍还多40°,求这个角的度数.27、如图,C是线段AB的中点,D,E分别是线段AC,CB上的点,且AD=AC,DE= AB,若AB=24cm,求线段CE的长.28、如图,E为DF上的点,B为AC上的点,DF∥AC,∠C=∠D,求证:∠2=∠1.29、如图,已知∠AOD和∠BOC都是直角,∠AOC=38°,OE平分∠BOD,求∠COE的度数。

数学七年级上册 平面图形的认识(一)单元测试卷(解析版)

数学七年级上册 平面图形的认识(一)单元测试卷(解析版)

一、初一数学几何模型部分解答题压轴题精选(难)1.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.2.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【答案】(1)解:AB∥CD.理由如下:如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)证明:如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥G H;(3)解:∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°-∠3=90°-2∠2.∴∠EPK=180°-∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK= ∠EPK=45°+∠2.∴∠HPQ=∠QPK-∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK= ∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.3.如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【答案】(1)MN=MC+NC= AC+ BC= (AC+BC)= ×(8+6)= ×14=7(2)MN=MC+NC= (AC+BC)= a(3)MN=MC-NC= AC- BC= (AC-BC)= b(4)如图,只要满足点C在线段AB所在直线上,点M、N分别是AC、BC的中点.那么MN就等于AB的一半.【解析】【分析】(1)根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半,那么MC、CN的和就应该是AC、BC和的一半,也就是说MN是AB的一半,有了AC、CB的值,那么就有了AB的值,也就能求出MN的值了;(2)方法同(1)只不过AC、BC的值换成了AC+CB=a cm,其他步骤是一样的;(3)当C在线段AB的延长线上时,根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半.于是,MC、NC的差就应该是AC、BC的差的一半,也就是说MN是AC-BC即AB的一半.有AC-BC的值,MN也就能求出来了;(4)综合上面我们可发现,无论C在线段AB 的什么位置(包括延长线),无论AC、BC的值是多少,MN都恒等于AB的一半.4.如图1,已知,点A、B在直线a上,点C、B在直线b上,且于E.(1)求证:;(2)如图2,平分交于点F,平分交于点G,求的度数;(3)如图3,P为线段上一点,I为线段上一点,连接,N为的角平分线上一点,且,则、、之间的数量关系是________. 【答案】(1)证明:过作 ,∴∴∴∴∴(2)解:作,,设,,由(1)知:,,,∴,∴,同理:,∴(3)【解析】【解答】解:(3)结论:或,I.∠NCD在∠BCD内部时,过I点作,过N点作,设∠IPN=∠BPN=x, =y,∴∠BCD=3y.∵a∥b,∴∴,,,∴,,∴,∴∴II. 在外部时,如图3(2):过I点作,过N点作,设∠IPN=∠BPN=x, =y,∴∠BCD=y.∵a∥b,∴IG∥a∥∴,,,∴,,∴,∴∴.故答案为:.【分析】(1) 过作EF∥a,由BC⊥AD可知,由平行可知,,从而可得 = + = ;(2)作,,设,,由平行线性质和邻补角定义可得,,进而计算出即可解答;(3)分两种情况解答:I.∠NCD在∠BCD内部,II 外部,仿照(2)解答即可.5.已知:如图1,在平面直角坐标系中,点A,B,E分别是x轴和y轴上的任意点.BD是∠ABE的平分线,BD的反向延长线与∠OAB的平分线交于点C.(1)探究:求∠C的度数.(2)发现:当点A,点B分别在x轴和y轴的正半轴上移动时,∠C的大小是否发生变化?若不变,请直接写出结论;若发生变化,请求出∠C的变化范围.(3)应用:如图2在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延长线与∠EDC外角的平分线相交于点P,求∠P的度数.【答案】(1)解:∵∠ABE=∠OAB+∠AOB,∠AOB=90°,∴∠ABE=∠OAB+90°,∵BD是∠ABE的平分线,AC平分∠OAB,∴∠ABE=2∠ABD,∠OAB=2∠BAC,∴2∠ABD=2∠BAC+90°,∴∠ABD=∠BAC+45°,又∵∠ABD=∠BAC+∠C,∴∠C=45°(2)解:不变.理由如下:∵∠ABE=∠OAB+∠AOB,∠AOB=90°,∴∠ABE=∠OAB+90°,∵BD是∠ABE的平分线,AC平分∠OAB,∴∠ABE=2∠ABD,∠OAB=2∠BAC,∴2∠ABD=2∠BAC+∠AOB,∴∠ABD=∠BAC+ ∠AOB,又∵∠ABD=∠BAC+∠C,∴∠C=∠AOB=45°(3)解:延长ED,BC相交于点G.在四边形ABGE中,∵∠G=360°﹣(∠A+∠B+∠E)=50°,∴∠P=∠FCD﹣∠CDP=(∠DCB﹣∠CDG)=∠G= ×50°=25°【解析】【分析】(1)(2)根据三角形外角的性质和角平分线的性质进行解答;(3)延长ED,BC相交于点G,根据四边形形内角和为360°求得∠G的度数,再根据三角形外角的性质和角平分线的性质求∠P的度数.6.在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F,如图所示,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;晓东通过观察,实验,提出猜想:BE+CD=BC,他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.(1)下面是小东证明该猜想的部分思路,请补充完整;①在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与________全等,判定它们全等的依据是________;②由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB=________°;(2)请直接利用①,②已得到的结论,完成证明猜想BE+CD=BC的过程.【答案】(1)△BMF;SAS;60(2)证明:由①知,∠BFE=60°,∴∠CFD=∠BFE=60°∵△BEF≌△BMF,∴∠BFE=∠BFM=60°,∴∠CFM=∠BFC-∠BFM=120°-60°=60°,∴∠CFM=∠CFD=60°,∵CE是∠ACB的平分线,∴∠FCM=∠FCD,在△FCM和△FCD中,,∴△FCM≌△FCD(ASA),∴CM=CD,∴BC=CM+BM=CD+BE,∴BE+CD=BC.【解析】【解答】解:(1)解:①在BC上取一点M,使BM=BE,连接FM,如图所示:∵BD、CE是△ABC的两条角平分线,∴∠FBE=∠FBM= ∠ABC,在△BEF和△BMF中,,∴△BEF≌△BMF(SAS),故答案为:△BMF,SAS;②∵BD、CE是△ABC的两条角平分线,∴∠FBC+FCB= (∠ABC+∠ACB),在△ABC中,∠A+∠ABC+∠ACB=180°,∵∠A=60°,∴∠ABC+∠ACB=180°-∠A=180°-60°=120°,∴∠BFC=180°-(∠FBC+∠FCB)=180°- (∠ABC+∠ACB)=180°- ×120°=120°,∴∠EFB=60°,故答案为:60;【分析】(1)①由BD,CE是△ABC的两条角平分线知∠FBE=∠FBC= ∠ABC,结合BE=BM,BF=BF,依据“SAS”即可证得△BEF≌△BMF;②利用三角形内角和求出∠ABC+∠ACB=120°,进而得出∠FBC+∠FCB=60°,得出∠BFC=120°,即可得出结论;(2)利用角平分线得出∠EBF=∠MBF,进而得出△BEF≌△BMF,求出∠BFM,即可判断出∠CFM=∠CFD,即可判断出△FCM≌△FCD,即可得出结论.7.已知:如图所示,直线,另一直线交于,交于,且,点为直线上一动点,过点的直线交于点,且 .(1)如图1,当点在点右边且点在点左边时,的平分线与的平分线交于点,求的度数;(2)如图2,当点在点右边且点在点右边时,的平分线与的平分线交于点,求的度数;(3)当点在点左边且点在点左边时,的平分线与的平分线所在直线交于点,请直接写出的度数,不说明理由.【答案】(1)解:过点作 .∵平分 .∴ .∴(两直线平行,内错角相等).同理可证..∴ .(2)解:过点作 .∵ .∴ .∵平分 .∴ .∴(两直线平行,同旁内角互补).∵平分 .∴(两直线平行,内错角相等).∴ .(3)解:过点作 .∵平分 .∴(两直线平行等,内错角相等).∴平分 ..∴ .∴(两直线平行,同旁内角互补)..【解析】【分析】(1)过点作,由角平分线定义可得,利用两直线平行内错角相等,可得,同理可得∠CPE=∠PCA= ∠DCA=25°,从而求出∠BPC的度数.(2)过点作 . 利用邻补角定义可得∠DBA=100°,由角平分线定义可得∠DBP= ∠DBA=50°,根据两直线平行,同旁内角互补可得∠BPE=130°.根据角平分线定义及两直线平行,内错角相等角可得∠PCA=∠CPE= ∠DCA=25°,从而求∠BPC的度数.(3)过点作 . 根据两直线平行,内错角相等角可得∠DBP=∠DPE=40°,根据邻补角可求出∠CPE的度数,由角平分线的定义可得∠PCA= ∠DCA=65°,根据两直线平行,同旁内角互补可求出∠CPE的度数,继而求出∠BPC的度数.8.如图(1)图中,∠ABC的两边和∠DEF的两边分别互相平行,既AB∥DE,BC∥EF,试说明∠ABC=∠DEF.(2)一个角的两边分别平行于另一个角的两边,除了图1中相等情形外,是否存在其他不相等情形,探究此情形下两个角的关系(画出图形,写出结论并说明理由).(3)如果一个角的两边分别垂直于另一个角的两边,则这两个角是什么关系?(画出图形,直接写出结论)(4)如果一个角的两边和另一个角的两边,其中一边互相平行,另一边互相垂直,则这两个角是什么关系?(画出图形,直接写出结论)【答案】(1)∵ AB∥DE,∴∠E=∠EOB,∵BC∥EF ,∴∠EOB=∠B,∴∠ABC=∠DEF;(2)如图,∵ AB∥DC,∴∠1=∠DMB,∵BE∥FD ,∴∠BMD+∠2=180°,∴∠2+∠1=180°;(3)此题分两种情况,如图①∵PE⊥OA,PF⊥OB,∴∠PEO=∠PFO=90°,∴∠P+∠O=360°-∠PEO-∠PFO=180°;如图② ∵PE⊥OA,PF⊥OB,∴∠PEO=∠PFO=90°,∴∠P=∠O;综上所述:一个角的两边分别垂直于另一个角的两边,则这两个角相等或互补;(4)如图所示,①∵AB∥EH,∴∠ABC=∠BDE,∵BC⊥EG,∴∠CFE=90°,∴∠BDE+∠E=90°,∴∠E+∠ABC=90°;②∵BC⊥EG,∴∠CFE=90°,∵AB∥EH∴∠MBC=∠HDB,∵∠HDB=∠E+∠CFE=∠E +90°,∴∠MBC=∠E+90°,即∠MBC-∠E=90°,综上所述,如果一个角的两边和另一个角的两边,其中一边互相平行,另一边互相垂直,则这两个角是和为90°,或差为90°。

七年级上册平面图形的认识(一)单元测试题(Word版 含解析)

七年级上册平面图形的认识(一)单元测试题(Word版 含解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图1,点为直线上一点,过点作射线,使,将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.(1)将图1中的三角板绕点逆时针旋转至图,使一边在的内部,且恰好平分,问:此时直线是否平分?请直接写出结论:直线 ________(平分或不平分) .(2)将图1中的三角板绕点以每秒的速度沿逆时针方向旋转一周,在旋转的过程中,第秒时,直线恰好平分锐角,则的值为________.(直接写出结果)(3)将图1中的三角板绕点顺时针旋转,请探究:当始终在的内部时(如图3),与的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.【答案】(1)平分(2)或49(3)解:不变,设,,,【解析】【解答】(1)直线平分;(2)或【分析】(1)根据图形得到直线ON平分∠AOC ;(2)由三角板绕点 O 以每秒 5 °的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON恰好平分锐角∠AOC,求出t的值;(3)根据题意得到∠AON=50°−y,∠AOM−∠NOC=x−y=40°.2.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,∁….例如:当α=30°时,OA1, OA2, OA3, OA4的位置如图2所示,其中OA3恰好落在ON 上,∠A3OA4=120°;当α=20°时,OA1, OA2, OA3, OA4, OA3的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是________;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3, OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是________(4)(选做题)当OA i所在的射线是∠A i OA k(i,j,k是正整数,且OA j与OA k不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且α=180°),旋转是否可以停止?写出你的探究思路.【答案】(1)45°(2)解:如图所示.∵α<30°,∴∠A0OA3<180°,4α<180°.∵OA4平分∠A2OA3,∴2(180°﹣6α)+ =4α,解得:(3),,(4)解:对于角α=120°不能停止.理由如下:无论a为多少度,旋转过若干次后,一定会出现OA i是∠A i OA K是的角平分线,所以旋转会停止.但特殊的,当a为120°时,第一次旋转120°,∠MOA1=120°,第二次旋转240°时,与OM 重合,第三次旋转360°,又与OM重合,第四次旋转480°时,又与OA1重合,…依此类推,旋转的终边只会出现“与OM重合”或“与OA1重合”两种情况,不会出第三条射线,所以不会出现OA i是∠A i OA K是的角平分线这种情况,旋转不会停止【解析】【解答】解:(1)解:如图所示.aφ=45°,【分析】(1)根据题意,明确每次旋转的角度,计算即可;(2)根据各角的度数,找出等量关系式,列出方程,求出α的度数即可;(3)类比第(2)小题的算法,分三种情况讨论,求出α的度数即可;(4)无论a为多少度,旋转很多次,总会出一次OA i是∠A i OA K是的角平分线,但当a=120度时,只有两条射线,不会出现OA i是∠A i OA K是的角平分线,所以旋转会中止.3.如图1,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC 的中点.(1)若点C恰为AB的中点,求DE的长;(2)若AC=6cm,求DE的长;(3)试说明不论AC取何值(不超过16cm),DE的长不变;(4)知识迁移:如图2,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD、OE 分别平分∠AOC和∠BOC,试说明∠DOE=65°与射线OC的位置无关.【答案】(1)解:∵点C恰为AB的中点,∴AC=BC= AB=8cm,∵点D、E分别是AC和BC的中点,∴DC= AC=4cm,CE= BC=4cm,∴DE=8cm(2)解:∵AB=16cm,AC=6cm,∴BC=10cm,由(1)得,DC= AC=3cm,CE= CB=5cm,∴DE=8cm(3)解:∵点D、E分别是AC和BC的中点,∴DC= AC,CE= BC,∴DE= (AC+BC)= AB,∴不论AC取何值(不超过16cm),DE的长不变(4)解:∵OD、OE分别平分∠AOC和∠BOC,∴∠DOC= ∠AOC,∠EOC= ∠BOC,∴∠DOE=∠DOC+∠EOC= (∠AOC+∠BOC)= ∠AOB=65°,∴∠DOE=65°与射线OC的位置无关【解析】【分析】(1)由点C恰为AB的中点,得到AC=BC的值,再由点D、E分别是AC和BC的中点,求出DE的值;(2)由(1)得,DC= AC的值,CE= CB的值,得到DE的值;(3)由点D、E分别是AC和BC的中点,得到不论AC取何值(不超过16cm),DE 的长不变;(4)由OD、OE分别平分∠AOC和∠BOC,根据角平分线定义,得到∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=∠AOB,得到∠DOE=65°与射线OC的位置无关. 4.如图1,已知,点A、B在直线a上,点C、B在直线b上,且于E.(1)求证:;(2)如图2,平分交于点F,平分交于点G,求的度数;(3)如图3,P为线段上一点,I为线段上一点,连接,N为的角平分线上一点,且,则、、之间的数量关系是________. 【答案】(1)证明:过作 ,∴∴∴∴∴(2)解:作,,设,,由(1)知:,,,∴,∴,同理:,∴(3)【解析】【解答】解:(3)结论:或,I.∠NCD在∠BCD内部时,过I点作,过N点作,设∠IPN=∠BPN=x, =y,∴∠BCD=3y.∵a∥b,∴∴,,,∴,,∴,∴∴II. 在外部时,如图3(2):过I点作,过N点作,设∠IPN=∠BPN=x, =y,∴∠BCD=y.∵a∥b,∴IG∥a∥∴,,,∴,,∴,∴∴.故答案为:.【分析】(1) 过作EF∥a,由BC⊥AD可知,由平行可知,,从而可得 = + = ;(2)作,,设,,由平行线性质和邻补角定义可得,,进而计算出即可解答;(3)分两种情况解答:I.∠NCD在∠BCD内部,II 外部,仿照(2)解答即可.5.如图1, .如图2,点分别是上的点,且, .(1)求证: F;(2)若的角平分线与的角平分线交于点,请补全图形并直接写出与之间的关系为________.【答案】(1)证明:如图,延长EH,交CD的延长线与M,(2)∠BFE=2∠P.【解析】【解答】解:(2)结论:∠BFE=2∠P,理由如下:如图,设∠B=∠HEF=y.∠BFE=x=,故答案为:∠BFE=2∠P.【分析】(1)延长EH,交CD的延长线与M,根据平行线的性质及等量代换即可证明;(2)设∠B=∠HEF=y,∠BFE=x,根据平行的性质结合三角形的内角和定理得出∠BFE=2∠P.6.(1)思考探究:如图①,的内角的平分线与外角的平分线相交于点,请探究与的关系是________.(2)类比探究:如图②,四边形中,设,,,四边形的内角与外角的平分线相交于点 .求的度数.(用,的代数式表示)(3)拓展迁移:如图③,将(2)中改为,其它条件不变,请在图③中画出,并直接写出 ________.(用,的代数式表示)【答案】(1)(2)解:延长、,交于点 .,由(1)知:∴ .(3)【解析】【解答】解:(1)∵平分,平分,∴,∵是的外角∴∵是的外角∴( 3 )延长,交于点 . 作与外角的平分线相交于点 . 如图:,【分析】(1)利用角平分线求出∠PCD= ∠ACD,∠PBD= ∠ABC,再利用三角形的一个外角定理即可求出.(2)延长BA、CD交于点F,然后根据(1)的结题可得到∠P的表达式.(3)延长AB、DC交于F,然后根据(1)的结题可得到∠P的表达式.7.探究与发现:(1)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.(2)探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.(3)探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.(4)探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:▲ .【答案】(1)解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;(2)探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC= ∠ADC,∠PCD= ∠ACD,∴∠DPC=180°-∠PDC-∠PCD,=180°- ∠ADC- ∠ACD,=180°- (∠ADC+∠ACD),=180°- (180°-∠A),=90°+ ∠A;(3)探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC= ∠ADC,∠PCD= ∠BCD,∴∠DPC=180°-∠PDC-∠PCD,=180°- ∠ADC- ∠BCD,=180°- (∠ADC+∠BCD),=180°- (360°-∠A-∠B),= (∠A+∠B);(4)探究四:六边形ABCDEF的内角和为:(6-2)•180°=720°,∵DP、CP分别平分∠EDC和∠BCD,∴∠PDC= ∠EDC,∠PCD= ∠BCD,∴∠P=180°-∠PDC-∠PCD=180°- ∠EDC- ∠BCD=180°- (∠EDC+∠BCD)=180°- (720°-∠A-∠B-∠E-∠F)= (∠A+∠B+∠E+∠F)-180°,即∠P= (∠A+∠B+∠E+∠F)-180°.【解析】【分析】探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC= ∠ADC,∠PCD= ∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠EDC+∠BCD,然后同理探究二解答即可.8.如图1,在△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于点A1,(1)分别计算:当∠A分别为700、800时,求∠A1的度数.(2)根据(1)中的计算结果,写出∠A与∠A1之间的数量关系________.(3)∠A1BC的角平分线与∠A1CD的角平分线交于点A2,∠A2BC的角平分线与∠A2CD的角平分线交于点A3,如此继续下去可得A4,…,∠A n,请写出∠A5与∠A的数量关系________.(4)如图2,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时,有下面两个结论:①∠Q+∠A1的值为定值;②∠D-∠A1的值为定值.其中有且只有一个是正确,请写出正确结论,并求出其值.【答案】(1)解:∵A1C、A1B分别是∠ACD、∠ABC的角平分线∴∠A1BC= ∠ABC,∠A1CD= ∠ACD由三角形的外角性质知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,即:∠A1= (∠ACD-∠ABC)= ∠A;当∠A=70°时,∠A1=35°;当∠A=80°,∠A1=40°(2)∠A=2∠A1(3)∠A5= ∠A(4)解:△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°-∠Q),化简得:∠A1+∠Q=180°故①的结论是正确,且这个定值为180°【解析】【解答】解:(2)由(1)可知∠A1== ∠A即∠A=2∠A1(3)同(1)可求得:∠A2= ∠A1= ∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A;当n=5时,∠A5= ∠A= ∠A【分析】(1)由三角形的外角性质易知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,而∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1,可得∠A1= (∠ACD-∠ABC)= ∠A(2)根据(1)可得到∠A=2∠A1(3)根据(1)可得到∠A2= ∠A1=∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A,根据这个规律即可解题.(4)用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.9.如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.【答案】(1)解:∵AB∥CD,∴∠A+∠ACD=180°,∴∠ACD=180°-40°=140°∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠ECP,∠DCP=2∠PCF∴∠ECF= ∠ACD=70°(2)解:不变.数量关系为:∠APC=2∠AFC.∵AB∥CD,∴∠AFC=∠DCF,∠APC=∠DCP∵CF平分∠DCP,∴∠DCP=2∠DCF,∴∠APC=2∠AFC(3)解:∵AB∥CD,∴∠AEC=∠ECD当∠AEC=∠ACF时,则有∠ECD=∠ACF,∴∠ACE=∠DCF∴∠PCD=∠ACD=70°∴∠APC=∠PCD=70°【解析】【分析】(1)先根据平行线的性质,得出∠ACD=120°,再根据CE、CF分别平分∠ACP和∠DCP,即可得出∠ECF的度数;(2)根据平行线的性质得出∠APC=∠PCD,∠AFC=∠FCD,再根据CF平分∠PCD,即可得到∠PCD=2∠FCD进而得出∠APC=2∠AFC;(3)根据∠AEC=∠ECD,∠AEC=∠ACF,得出∠ECD=∠ACF,进而得到∠ACE=∠FCD,根据∠ECF=70°,∠ACD=140°,可求得∠APC的度数.10.如图,四边形ABCD的内角∠DCB与外角∠ABE的平分线相交于点F.(1)若BF∥CD,∠ABC=80°,求∠DCB的度数;(2)已知四边形ABCD中,∠A=105º,∠D=125º,求∠F的度数;(3)猜想∠F、∠A、∠D之间的数量关系,并说明理由.【答案】(1)解:∵∠ABC=80°,∴∠ABE=180°-∠ABC=100°,∵BF平分∠ABE,∴∠EBF= ∠ABE=50°,∵BF∥CD∴∠BCD=∠EBF=50°(2)解:∵∠FBE是△EBC的外角,∴∠F=∠EBF-∠ECF∵BF平分∠ABE、CF平分∠BCD,∴∠EBF= ∠ABE=,∠ECF= ∠BCD,∵∠ABE=180°-∠ABC,∴∠F= (180°-∠ABC)- ∠BCD= [180°-(∠ABC+∠BCD)],∵在四边形ABCD中,∠ABC+∠BCD=360°-∠A-∠D,∴∠F= [180°-(360°-∠A-∠D)],∴∠F= (∠A+∠D-180°),∵∠A=105º,∠D=125º,∴∠F= (105º +125º -180°)=25°(3)解:结论:∠F= (∠A+∠D-180°)理由如下:∵∠FBE是△EBC的外角,∴∠F=∠EBF-∠ECF∵BF平分∠ABE、CF平分∠BCD,∴∠EBF= ∠ABE=,∠ECF= ∠BCD,∵∠ABE=180°-∠ABC,∴∠F= (180°-∠ABC)- ∠BCD= [180°-(∠ABC+∠BCD)],∵在四边形ABCD中,∠ABC+∠BCD=360°-∠A-∠D,∴∠F= [180°-(360°-∠A-∠D)],∴∠F= (∠A+∠D-180°)【解析】【分析】(1)由角平分线的性质和邻补角的定义可得:∠FBE=∠FBA= ∠ABE=(180°-∠ABC);由平行线的性质可得∠BCD=∠FBE可求解;(2)由平行线的性质可得:∠ABC+∠A=180°;∠BCD+∠D=180°;由已知条件可得:∠ABC=180°-∠A;∠BCD=180°-∠D;由角平分线的性质和邻补角的定义可得:∠FBE=∠FBA= ∠ABE=(180°-∠ABC);∠BCF=∠BCD,由三角形外角的性质可得∠FBE=∠F+∠BCF,于是∠F=∠FBE-∠BCF,把求得的∠FBE和∠BCF的度数代入计算即可求解;(3)结合(1)和(2)的结论可求解:∠F=(∠A+∠D-180°)。

七上 平面图形的认识(一) 全章 课时练习 含答案

七上 平面图形的认识(一) 全章 课时练习 含答案

第六章平面图形的认识(一)第1课时线段、射线、直线【基础巩固】1.下列说法中,正确的是( )A.射线OA和射线AO表示同一条射线B.延长直线ABC.经过两点有一条直线,并且只有一条直线D.如果AC=BC,那么点C是线段AB的中点2.如果要在墙上固定一根木条,你认为至少要钉子( )A.1根B.2根C.3根D.4根3.下列图形中,能够相交的是( )4.线段AB=2 cm,延长AB到C,使BC=AB,再延长BA到D,使BD=2AB,则线段CD的长为( )A.4 cm B.5 cm C.6 cm D.2 cm5.下列说法:①延长直线AB到C;②延长射线Oc到D;③反向延长射线OC到D;④延长线段AB到C其中正确的是( )A.①②B.②③C.③④D.①④6.在直线l上顺次取A、B、C三点,使得AB=5 cm,BC=3 cm,如果O是线段AC的中点,那么线段OB的长度是( )A.0.5 cm B.1 cm C.1.5 cm D.2 cm7.如图,点A、B、C是直线上的三个点,则下图中有_______条线段,_______射线,_______条直线.8.平面上三条直线两两相交,最少有_______个交点,最多有_______个交点.9.已知点C是线段AB的中点,AB的长度为10 cm,则AC的长度为_______cm.10.如图,点C是线段AB上的点,点D是线段BC的中点,若AB=10,AC=6,则CD=_______.11.如图,D是AB的中点,E是BC的中点,图中共有线段_______条.(1)若AB=3,BC=5,则DE=_______;(2)若AC=8,EC=3,则AD=_______.12.如图,在平面内有A、B、C三点.(1)画直线AC、线段BC、射线BA;(2)取线段BC的中点D,连接AD;(3)延长线段CB到E,使EB=CB,并连接AE.13.如图的“金鱼”中,含有哪些可以用图中字母表示的线段、射线和直线?14.已知线段AB=6 cm,回答下列问题:(1)当点C到A、B的距离之和等于6 cm时,点C的位置应在哪里?(2)是否存在点C,使它到A、B两点的距离之和等于5 cm?15.如图,AB=12 cm,AM=25AB,BN=13BM,求MN的长.【拓展提优】16.如图,已知线段AB=10 cm,点C是AB上任一点,点M、N分别是AC和CB的中点,则MN的长度为( )A.6 cm B.5 cm C.4 cm D.3 cm17.平面上有四点,过其中每两点画出一条直线,可以画出直线的条数为( ) A.1或4 B.1或6 C.4或6 D.1或4或618.同一平面内的三条直线最多可把平面分成n部分,n的值为( ) A.4 B.5 C.6 D.719.已知点A、B、C都在直线l上,且AB=5 cm,BC=3 cm,那么点A与点C之间的距离是( )A.8 cm B.2 cm C.8 cm或2 cm D.4 cm20.已知线段AB的长为18 cm,点C在线段AB的延长线上,且AC=53BC,则线段BC=_______.21.如图,C、D是线段AB上的两个点,CD=8 cm,M是AC的中点,N是DB的中点,MN =12 cm,那么线段AB的长为_______cm.22.如图,同一平面内2条直线相交,只有1个交点,3条直线两两相交最多有3个交点,4条直线两两相交最多有_______个交点,5条直线两两相交,最多有_______个交点,请你猜想:10条直线两两相交,最多有多少个交点?23.直线上有3个点,这条直线上共有几条射线?直线上有4个点呢?直线上有n个点呢?24.如图,C是线段AB的中点,D是线段AC的中点,已知图中所有线段的长度之和为23,则线段AC的长为_______.25.如图是一个小区的街道图,A、B、C、…、X、Y、Z是道路交叉的17个路口,站在任一路口都可以沿直线看到过这个路口的所有街道,现要使岗哨们能看到小区的所有街道,那么,最少要设_______个岗哨.参考答案【基础巩固】1.C 2.B 3.D 4.C 5.C 6.B7.3 6 18.1 3 9.5 10.2 11.10 (1)4 (2)1 12.略13.线段:AB,AC,BD,BE,CD,CF,DE,DF,EF 射线:AB,AC,BA,CA.直线:AB,AC14.(1)线段AB上(2)不存在15.MN=24 5【拓展提优】16.B17.D18.D19.C20.27 cm 20.1622.6 10 45个23.6条8条2n条24.731325.4第2课时角(1)【基础巩固】1.下列说法中正确的是( )A.两条射线组成的图形叫做角B.直线是一个平角C.一条射线就是一个周角D.∠AOB与∠BOA表示同一个角2.下图中,能用∠1、∠ACB、∠C三种方法表示同一个角的是( )3.在时刻8:30,时钟上时针和分针之间的夹角为( )A.85°B.75°C.70°D.60°4.利用一副三角板上已知度数的角,不能画出的角是( )A.15°B.135°C.165°D.100°5.下列说法正确的是( )A.一个锐角与一个钝角的和等于一个平角B.两个锐角的和大于一个直角C.一个锐角与一个钝角的和大于两个直角D.两个钝角的和一定大于一个平角6.如图,将图中∠1、∠2、∠3表示的角改用大写字母表示分别为_______,_______,_______.7.42.34°=_______°_______'_______".56°25'12"=_______°,60°22'+32°18'=_______°_______'.8.时钟在2点整时,其时针和分针所成的角的度数为_______.9.如图,O是直线l上一点,∠AOB=100°,则∠1+∠2=_______.10.根据下图填空.(1)∠AOC=_______+_______;(2)∠AOC-∠AOB=_______;(3)∠COD=∠AOD-_______;(4)∠BOC=_______-∠COD;(5)∠AOB+∠COD=_______-_______.11.计算:(1)90°-22°30';(2)180°-42°30'40";(3)32°30'×4;(4) 112°30'÷5.12.如图,已知∠AOC=∠BOD=110°,∠BOC=75°,求∠AOD的度数.13.钟面上的角的问题.(1)8时15分,时针与分针的夹角是多少?(2)从12时整开始,至少再过多长时间,分针与时针再一次重合?14.按下列要求画图,并回答问题:(1)用量角器分别量出图中∠A、∠B、∠C的度数.(2)延长AB到D,用量角器量出∠CBD的度数.(3)根据量出的结果,你发现了什么?【拓展提优】15.将31. 62°化成度分秒表示,结果是( )A.31°6'2" B.31°37'12" C.31°37'2" D.31°37' 16.两个锐角的和( )A.定是锐角B.一定是直角C.一定是钝角D.可能是钝角、直角或锐角17.已知x、y都是钝角的度数,甲、乙、丙、丁四人计算16(x+y)的结果依次为50°、26°、72°.90°,你认为结果可能正确的是( )A.甲B.乙C.丙D.丁18.如图,∠AOC和∠BOD都是直角,如果∠AOB=140°,则∠DOC的度数是( )A.30°B.40°C.50°D.60°19.如图,在一个正方体的2个面上画了两条对角线AB、AC,那么这两条对角线的夹角等于( )A.60°B.75°C.90°D.135°20.如图,点O在直线DB上,已知∠1=15°,∠AOC=90°,则∠2的度数为_______.21.如图,已知∠BOD=45°,∠AOE=90°,那么图中不大于90°的角有_______个,它们的度数之和是_______.22.如图,已知∠AOC=160°,∠AOD=∠COD,∠AOB是直角.试求∠BOD的度数.23.如图,将两块直角三角尺的直角顶点C叠放在一起.(1)若∠DCB=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数.(3)猜想∠ACB与∠DCE的关系,并写出你的猜想,不需要说明理由.参考答案【基础巩固】1.D2.C3.B4.D5.D6.∠ADE∠DEC∠B7.42 20 24 56.42 92 408.60°9.80°10. (1)∠AOB∠BOC(2)∠BOC(3)∠AOC(4)∠BOD(5)∠AOD∠BOC11. (1)67°30' (2)137°29'20" (3)130°(4)22.5°12.145°13.(1)157.5°(2)1小时5511分14.(1)略(2)略(3)∠CBD=∠A+∠C【拓展提优】15.B16.D17.A18.B19.A20.105°21.10 450°22.10°23.(1)125°(2)40°(3)∠ACB+∠DCE=180°第3课时角(2)【基础巩固】1.如图,因为OC平分∠AOB,所以∠_______=∠_______,或∠AOC=_______∠AOB,或∠BOC=_______∠AOB,或∠AOB=_______∠AOC,或∠AOB=∠BOC.2.如图,∠COD为平角,AO⊥OE,∠AOC=2∠DOE,则∠AOC=_______,3.已知∠AOC=60°,∠AOB:∠AOC=2:3,则∠BOC的度数是_______.4.如图,点A、O、B在一条直线上,且∠ACC=50°,OD平分∠ACC,则∠BOD=_______.5.利用一副三角板除了可直接作出30°、45°、60°和90°的角之外,还可以作出一些特殊的角,如图中作出的∠ABC的度数为()A.55°B.65°C.75°D.105°6.如图,∠BOC=2∠AOB,∠BOC=50°,则∠AOC等于( )A.25°B.100°C.75°D.60°7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD的度数是( )A.20°B.40°C.50°D.80°8.如图,从平角∠POQ的顶点出发画一条射线OB,OA、OC分别是∠QOB、∠BOP的角平分线,求∠AOC的度数.9.如图,已知O是直线MN上的一点,∠AOB=90°,OC平分∠BON,∠3=24°.求∠1和∠MOC的度数.10.如图,∠AOB=90°,∠EOD=70°,OC是射线,OE、OD分别是∠AOB、∠BOC的角平分线.(1)因为_______,所以∠BOE=_______.(2)求∠BOC的度数,并说明理由.11.按下列语句画出图形.(1)作线段AB=3 cm;(2)过线段AB的中点C作射线CD;(3)作∠ACD的平分线CE;(4)量出∠BCD的度数,求∠DCE的大小.12.如图,∠AOB=35°,∠BOC=50°,∠COD=21°,OE平分∠AOD.求∠BOE的度数.【拓展提优】13.如图,把矩形ABCD沿EF对折后使两部分重叠,若∠1=50°,则∠BFE等于( ) A.55°B.65°C.75°D.85°14.已知∠AOB=60°,其角平分线为OM,∠BOC=20°,其角平分线为ON,则∠MON 的大小为( )A.20°B.40°C.20°或40° D.10°或30°15.现在的时间是9时20分,此时钟面上的时针与分针的夹角是( )A.150°B.160°C.162°D.165°16.如图,已知∠AOB,下列说法:①∠AOP=∠BOP;②∠AOP=12∠AOB;③∠AOB=∠AOP+∠BOP;④∠AOP=12∠BOP=∠AOB.其中能说明射线OP一定是∠AOB的平分线的有( )A.①②B.①③④C.①④D.只有④17.如图,已知∠BOC=2∠AOC,OD是∠AOB的平分线,且∠AOB=120°,求∠COD的度数.18.已知∠AOB=80°,∠BOC=30°,OD平分∠AOB,根据题意,画出图形,解答下列问题:(1)求∠BOD的度数;(2)求∠COD的度数.19.如图,已知∠BOC=2∠AOB.OD平分∠AOC,∠BOD=14°.求∠AOB的度数.20.如图,OB、OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的式子是( )A.2α-β B.α-βC.α+βD.以上都不正确21.如图,已知OB、OC、OD为∠AOE内三条射线.(1)若OB、OC、OD为∠AOE的四等分线,且图中所有锐角的和为400°,求∠AOE的度数;(2)若∠AOE=80°,∠BOD=30°,求图中所有锐角的和.参考答案【基础巩固】1.∠AOC∠BOC 12122 2 2.60° 3.100°或20° 4.155° 5.C 6.C7.C8.90°9.∠1=33°,∠MOC=147°10.(1)OE平分∠AOB 45°(2)50°11.略12. 18°【拓展提优】13.B14.C15.B16.D17.20°18.(1)40°(2)70°或10°19.28°20.A21.(1)∠AOE=80. (2)380°第4课时余角、补角、对顶角(1)【基础巩固】1.已知∠A=75°,则∠A的余角的度数是_______.2.已知一个角的余角等于42°35',则它的补角等于_______.3.(1)因为∠1和∠2互余,所以∠1+∠2=_______(或∠1=_______-∠2);(2)因为∠1和∠2互补,所以∠1+∠2=_______(或∠1=_______-∠2).4.如果∠1+∠2=90°,∠2+∠3=90°,则∠1与∠3的关系为_______,其理由是_______.如果∠1+∠2=180°,∠2+∠3=180°,则∠1与∠3的关系为_______,其理由是_______.5.如果∠a=60°,那么∠a的余角的度数是( )A.30°B.60°C.90°D.120°6.如图,点O在直线PQ上,OA是∠QOB的平分线,OC是∠POB的平分线,那么下列说法错误的是( )A.∠AOB与∠POC互余B.∠POC与∠QOA互余C.∠POC与∠QOB互补D.∠AOP与∠AOB互补7.如图,点O在直线AB上,且OC⊥OD,若∠COA=36°,则∠DOB的大小为( ) A.36°B.54°C.64°D.72°8.已知∠AOB=3∠BOC,若∠BOC=30°,则∠AOC等于( )A.120°B.120°或60°C.30°D.30°或90°9.互为补角的两个角( )A.都是锐角B.都是钝角C.都是直角D.是两个直角或一个锐角和一个钝角10.一个角的余角与它的补角互补,则这个角的度数为( )A.30°B.60°C.45°D.90°11.一个角的余角一定比它本身大吗?一个角的补角一定比它本身大吗?一个角的补角一定比它的余角大吗?如果成立,请说明大多少;如果不一定,请举反例说明.12.如图,O是直线AB上一点,∠AOE=∠FOD=90°,OB平分∠COD,图中与∠DOE互余的角有哪些?与∠DOE互补的角有哪些?13.如图,AOB为一条直线,∠1+∠2=90°,∠COD是直角.(1)请写出图中相等的角,并说明理由.(2)请分别写出图中互余的角和互补的角.【拓展提优】14.判断:(1) 90°的角叫余角,180°的角叫补角.( )(2)如果∠1+∠2+∠3=180°,那么∠1、∠2与∠3互补.( )(3)如果两个角相等,则它们的补角相等.( )(4)如果∠α>∠β,那么∠α的补角比∠θ的补角大.( )15.如果一个角的余角是35°16'16",那么它的补角是_______;如果一个角是它的余角的一半,那么这个角是_______.16.若互余的两个角有一条公共边,则这两个角的角平分线所组成的角( ) A.等于45°B.小于45°C.小于或等于45°D.大于或等于45°17.如图,直线l1与l2相交于点O,OM⊥l1,若∠α=44°,则∠β等于( ) A.56°B.46°C.45°D.44°18.如图,∠BOA=∠COD=90°,∠AOC:∠BOC=1:5,则∠BOD等于( ) A.105°B.112.5°C.135°D.157.5°19.一个角的补角比它的余角的2倍还多10°,求这个角的度数.20.(1)在如图①所示的2×2正方形网格中,连接AB、AC、AD,测量并计算∠1 +∠2 +∠3是多少度.(2)在如图②所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5是多少度?(3)猜想在n×n正方形网格中,按上述方法得到角的度数的和是多少?(n为正整数)21.如图,点A、O、B在一条直线上,若∠1是锐角,则∠1的余角是( )A.12∠2-∠1B.12∠2-32∠1C.12(∠2-∠1)D.13(∠2-∠1)22.如图,在直线AB上取一点O,在AB同侧引射线OC、OD、OE、OF,使∠COE和∠BOE 互余,射线OF和OD分别平分∠COE和∠BOE.试探究∠AOF+∠BOD与∠DOF的关系,并说明理由.参考答案【基础巩固】1.15°2.132°35'3.(1)90°90°(2)180°180°4.相等同角的余角相等相等同角的补角相等5.A6.C7.B8.B9.D10.C11.一个角的余角不一定比本身大,如60°的余角就比本身小;一个角的补角也不一定比它本身大,如120°的补角比本身小;一个角的补角一定比它的余角大,大90°.12.与∠DOE互余的角:∠FOE,∠DOB,∠BCC;与∠DOE互补的角:∠FOB,∠ECC 13.(1)∠1=∠AOC,∠BOE=∠BOC.理由略(2)互余的角:∠1与∠2,∠AOC与∠2;互补的角:∠1与∠BOE,∠1与∠BOC,∠AOC与∠BOC,∠AOC与∠BOE【拓展提优】14.(1)×(2)×(3)√(4)×15. 125°16'16" 30°16.C17.B18.D19.10°20.(1)135°(2)225°(3)(2n-1)×45°21. C22.∠COE+∠BOE=90°,∠DOF=45°,∠AOF+∠BOD=135°,从而∠AOF+∠BOD=3∠DOF.第5课时余角、补角、对顶角(2)【基础巩固】1.下列各图中,∠1与∠2是对顶角的是( )2.关于对顶角,下列说法正确的是( )A.有公共顶点的两个角B.一个角的两边分别是另一个角的两边的延长线C.有公共顶点且相等的两个角D.一个角的两边分别是另一个角的两边的反向延长线3.已知∠1与∠2是对顶角,且∠1+∠2=216°,则∠2的补角的度数是( ) A.125°B.108°C.144°D.72°4.如图,直线AB和CD相交于点O,∠AOE=90°,那么图中∠DOE与∠COA的关系是( )A.对顶角B.相等C.互余D.互补5.下列命题中正确的是( )A.相等的两个角是对顶角B.和等于90°的两个角互为余角C.如果∠1+∠2+∠3=180°,那么∠1、∠2、∠3互为补角D.一个角的补角一定大于这个角6.下列说法正确的是( )A.若两个角是对顶角,这两个角必相等B.若两个角相等,这两个角必为对顶角C.若两个角不是对顶角,这两个角不相等D.以上说法都不正确7.如图,图中共有_______对对顶角.8.三条直线相交于一点,共可组成_______对对顶角;直线a、b、c两两相交于点A、B、C,则共可组成_______对对顶角.9.如图,∠1=15°,∠AOC=90°,点B、O、D在同一直线上,则∠2的度数为_______.10.如图,直线AB、CD相交于点O,∠AOC=70°,OE把∠BOD分成两部分,∠BOE:∠EOD=3:2,试求∠EOD的度数.11.如图,直线AB、CD相交于点O,OE是∠AOD的平分线,∠FOC=90°,∠1=40°,求∠2与∠3的度数.12.如图,直线AB、EF相交于点D,∠ADC=90°.(1)∠1的对顶角是_______;∠2的余角有_______.(2)若∠1与∠2的度数之比为1:4,求∠CDF、∠EDB的度数.【拓展提优】13.如图,直线AB、CD相交于点O,OE平分∠AOD,若∠BOD=100°,则∠AOE=_______.14.若∠1与∠3互余,∠2与∠3互补,则∠1与∠2的关系是( )A.∠1=∠2 B.∠1与∠2互余C.∠1与∠2互补D.∠2-∠1=90°15.已知∠A的补角是一个锐角,有三位同学计算25∠A时答案分别为32°、87°、58°,其中只有一位同学的答案是正确的,求∠A的度数.16.如图,AB、CD相交于点O,∠DOE=90°,∠AOC=72°,求∠BOE的度数.17.如图,直线AC、DE相交于点O,OE是∠AOB的平分线,∠COD=50°,试求∠AOB的度数.18.如图,已知直线AB、CD相交于点O,∠COE=90°.(1)在∠1、∠2、∠3、∠4中,哪些是对顶角?哪些是互余的角?哪些是互补的角?(2)如果∠1=48°,请分别求出∠2、∠3、∠4的度数.19.如图,∠AOC和∠BOD都是直角,且∠DOC=28°,求∠AOB的度数.20.如图,直线AB、CD、EF相交于点O.(1)写出图中所有的对顶角;(2)若∠AOE=55°,∠BOD=25°,求∠AOD、∠AOF和∠DOF的度数.参考答案【基础巩固】1.C2.D3.D4.C5.B6.A7.48.6 69. 105°10.28°11.∠2=65°,∠3=50°12.(1)∠BDF ∠1,∠BDF (2)∠CDF=108°,∠EDB=162°【拓展提优】13.40°14.D.15.145°16.18°17.100°18.(1)∠1与∠2是对顶角,∠1与∠3互余,∠2与∠3互余,∠1与∠4互补,∠2与∠4互补(2)∠2=48°,∠3=42°,∠4=132°19.152°【高分拔尖】20.(1)∠AOE与∠BOF,∠AOC与∠BOD,∠EOD与∠FOC,∠EOB与∠FOA,∠AOD与∠BOC,∠ECC与∠FOD.(2)∠AOD=155°,∠AOF=125°,∠DOF=80°第6课时平行【基础巩固】1.下列说法正确的是( )A.不相交的两条直线是平行线B.如果线段AB与线段CD不相交.那么直线AB与直线CD平行C.同一平面内,不相交的两条射线叫做平行线D.同一平面内,没有公共点的两条直线是平行线2.如果直线a∥b,c∥d,则( )A.a∥c B.a∥d C.b∥c D.以上均不对3.下列说法中,错误的是( )A.若直线a∥b,c与a相交,则b与c也相交B.若直线a与b相交,c与a相交,则b∥cC.若直线a∥b,b∥c,则a∥cD.若直线AB∥CD,则AB上所有点都在CD同侧4.在同一平面内有三条直线,如果要使其中两条且只有两条平行,那么它们( ) A.没有交点B.只有一个交点C.有两个交点D.有三个交点5.在同一平面内,两条不重合的直线的位置关系只有两种:_______、_______.6.如图,方格纸中每个小正方形的边长都为1,则两平行直线AB、CD之间的距离是_______.7.在同一平面内,若直线a∥c,b//c,则a_______b.理由:_______.8.如图,EF∥AB,FC∥AB,则点E、C、F在一条直线上.理由:_______.9.在同一平面内,直线l1与l2满足下列条件,写出其对应的位置关系:(1)l1与l2如没有公共点,则l1与l2_______;(2)l1与l2有且只有一个公共点,则l1与l2_______;(3)l1与l2有两个公共点,则l1与l2_______.10.用三角板和直尺按下列要求画图:(1)在图①中,过点A画直线l∥BC;(2)在图②中,过点C画CE∥DA,与AB相交于点E;连接BD,过点C画CF∥DB,与AB 的延长线相交于点F.11.如图,取AB的中点D,AC的中点E,连接DE.(1)猜想DE与BC是否平行,用直尺和三角板加以检验.(2)用刻度尺量一量DE与BC的长度,你能得到什么结论?(3)用量角器量一量∠ADE与∠B的度数,你又发现了什么?【拓展提优】12.下列说法中,正确的有( )①两条不相交的直线是平行线;②过一点有且只有一条直线与已知直线平行;③同一平面内的三条直线,它们的交点个数可能是0或1或2或3;④在同一平面内,和第三条直线都不相交的两条直线平行;⑤过两条相交直线外一点A,能作一直线m与这两条直线都平行;⑥在同一平面内不相交的两条射线必平行.A.1个B.2个C.3个D.4个13.在如图所示的方格纸中,(1)经过线段AB外一点C,仅限用直尺画直线AB的平行线EF.(2)过点D画一条与直线AB平行的直线DH.(3) DH与EF平行吗?如果平行,请用符号表示.(4)从中你发现了什么结论?14.(1)在如图所示的方格纸上,画DE∥ABEF∥BC;(2)∠ABC与∠DEF的大小有什么关系?15.如图,E、F分别是线段AB、AD的中点.(1)过点E画直线EH∥AC,交BC于点H;过点F画直线FG∥AC,交DC于点G.EH与FG平行吗?为什么?(2)连接EF、GH,量出∠FEH、∠EHG、∠HGF、∠GFE的度数,其中哪些角相等?哪些角互补?16.(1)按要求作图:①在△ABC在边AB上取中点D,过点D画BC的平行线交AC于点E;②在△OMN的边MN上顺次取三等分点P、Q,分别过点P、Q作OM的平行线,交ON于点S、T.(2)量出AE、EC的长,量出OS、ST、TN的长,你有什么发现?17.如图,在同一平面内,一组互相平行的直线共n条(n为大于1的正整数),它们和两条平行线a、b相交,构成若干个“#”字形,设构成的“#”字形个数为x,请填写下表:参考答案【基础巩固】1.D2.D3.B4.C5.平行相交 6.37.∥如果两条直线都与第三条直线平行,那么这两条直线也互相平行8.过直线外一点有且只有一条直线与已知直线平行9.(1)平行(2)相交(3)重合10.略11.(1)平行(2)DE=12BC(3)∠ADE=∠B【拓展提优】12.B13.(1)~(2)略(3)平行,DH∥EF (4)平行于同一直线的两条直线互相平行14.(1)略(2)相等或互补15.(1) EH∥FG,理由略(2)∠FEH=∠HGF,∠EHG=∠GFE,互补的角有;∠FEH与∠GHE,∠FEH与∠GFE,∠HGF与∠GHE,∠HGF与∠GFE 16.(1)略(2)AE =EC,OS=ST=TN17.1 3 6 10()12 n n-第7课时垂直【基础巩固】1.经过一点_______一条直线垂直于已知直线.2.如图,∠1与∠2满足_______条件时,能使OA⊥OB(只要添一个条件即可)3.如果两条直线相交成_______.那么这两条直线互相垂直.4.如图,计划把河水引到水池A中,先引AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是_______.5.在一个平面内过直线l上一点A画l的平行线,能画出_______条;过直线l上一点A画l的垂线,能画出_______条.6.点到直线的距离是指这点到这条直线的( )A.垂线段B.垂线C.垂线的长度D.垂线段的长度7.已知OA⊥OC.且∠AOB:∠AOC=2:3.则∠BOC的度数是( )A.30°B.150°C.30°或150°D.不能确定8.点A为直线l外一点,点B在直线l上,若AB=5 cm,则点A到直线l的距离为( ) A.等于5 cm B.大于5 cm C.小于5 cm D.最多为5 cm9.如图,直线AB、CD相交于点O,OE⊥AB于点O,∠COE=55°,则∠BOD的度数是( ) A.40°B.45°C.30°D.35°10.如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE的度数是( )A.125°B.135°C.145°D.155°11.如图,已知直线AB、CD和AB上一点M,过点M分别画直线AB、CD的垂线.12.按题目要求画图,并回答相关问题.(1)画两条直线m、n,使m∥n,在直线m上任取两点A、B,分别过点A、B作直线n的垂线,垂足分别为C、D,量一量线段AC、BD的长,你发现了什么结论?(2)如图,点P是∠AOB内一点,过点P作PM⊥OA,垂足为M,作PN⊥OB,垂足为N,量一量∠MPN和∠O,你发现了什么结论?13.如图,污水处理厂A要把处理过的水引入排水沟PQ,应如何铺设排水管道,才能使用料最短,试画出铺设管道路线,并说明理由.【拓展提优】14.下列说法正确的有( )①两条直线相交,交点叫垂足;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③在同一平面内,一条直线有且只有一条垂线;④在同一平面内,一条线段有无数条垂线;⑤过一点不可能向一条射线或线段所在的直线作垂线;⑥若a⊥b,则a是b的垂线,b不是a的垂线.A.2个B.3个C.4个D.5个15.如图,AD⊥BD,BC⊥CD,AB=a,BC=b,则BD的范围是( ) A.大于a B.小于bC.大于a或小于b D.大于b且小于a16.如图,△ABC中,AB⊥AC,AD⊥BC,则图形中能表示点到直线的距离的线段有_______条.17.如图,在下面的格点图中,直线AC与CD相交于点C.(1)过点E画直线EF,使EF⊥AC;(2)分别表示(1)中三条直线之间的位置关系.18.如图,学校要测出一块空地三角形ABC的面积,以便计算绿化成本,现已测出BC的长为5m,还要测出哪些量才能算出空地的面积?怎样测量?请在图中表示出来.19.如图,某长方形木板在运输过程中不慎折断,请在剩余的木板上画一条线段,以便截出一块面积最大的长方形木板.20.在上午10时30分到11时30分之间,时针和分针成直角的时刻是_______.21.在一个圆形时钟的表面,OA表示秒针,OB表示分针(O为两针的旋转中心).若现在时间恰好是12时整,问经过多少秒后,△OAB的面积第一次达到最大?参考答案【基础巩固】1.有且只有2.互余 3. 90°的角4.垂线段最短 5.01 6.D7.C8.D9.D 10.B11.略12.(1)图略,AC=BD.(2)图略,∠MPN与∠O互补13.过点A向PQ作垂线段,理由:垂线段最短.【拓展提优】14.A15.D16.517.(1)如图所示(2)EF⊥AC,CD⊥AC,EF∥CD18.还要测出点A到BC的距离,图略19.略20.10时38211分或11时1011分21.151559第8课时平面图形的认识(一)单元复习【知识梳理】1.直线、射线与线段线段、_______都是直线的一部分,两点之间______________最短;_______确定一条直线.2.角如果两个角的和是_______,这两个角叫做互为余角;同角(或等角)的余角_______ 如果两个角的和是_______,这两个角叫做互为补角;同角(或等角)的补角_______.对顶角_______.3.两条直线的关系在同一平面内,_______两条直线叫做平行线.过直线外一点______________直线与已知直线平行,如果两条直线都和已知直线平行,那么这两条直线_______.两条直线相交,所成的四个角中有一个角是_______,那么这两条直线互相垂直.垂线的性质:①_______,②_______.4.距离两点之间的距离:____________________________.点到直线的距离:____________________________.【单元训练】1.如图,图中共有线段( )A.1条B.3条C.5条D.6条2.若∠α+∠β=90°,∠β+∠γ=90°,则∠α与∠γ的关系是( )A.互余B.互补C.相等D.没有关系3.经过直线外的一点画已知直线的平行线可画( )A.1条B.2条C.无数条D.无法画4.如图,图中小于平角的角有( )A.4个B.5个C.6个D.7个5.如图,从A地到C地,可供选择的方案是走水路、走陆路、走空中,从A地到B地有2条水路、2条陆路,从B地到C地有3条陆路可供选择,走空中从A地不经B地直接到C 地,则从A地到C地可供选择的方案有( )A.20种B.8种C.5种D.13种6.下列说法中正确的有( )①同角或等角的补角相等;②两个锐角与一个钝角的和一定大于平角;③两锐角之和一定大于直角;④两个钝角的和一定大于平角.A.1个B.2个C.3个D.0个7.如图,如果∠AOC是平角,OE是∠BOC的平分线,OD是∠AOB的平分线,则图中与∠BOE互余的角是( )B.只有∠BODC.∠BOD与∠COED.∠AOD与∠BOD8.线段AB=5 cm,BC=2 cm,则A、C两点间的距离为()A.7 cm B.3 cmC.7 cm或3 cm D.不小于3 cm且不大于7 cm9.用一副三角板画角,不能画出的度数是( )A.80°B.15°C.75°D.150°10.(1)若∠a的余角是30°,则∠a=_______.(2)已知∠1=71°30',则∠1的补角等于_______.11.计算:52°18'=_______°;24°20’×4 =_______°_______'.12.一个角的余角和补角之比为2:5,则这个角等于_______.13.如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD的度数是_______.14.中国象棋棋盘中蕴含着定位问题.如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.例如,图中“马”所在的位置可以直接走到点A、B处,若“马”的位置在点C,为了到达点D,请按“马”走的规则,在图中的棋盘中用虚线画出一种你认为合理的行走路线.15.如图,线段AC=6 cm,线段BC=15 cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2.求MN的长.16.如图,已知OE是∠AOB的平分线,C是∠AOE内的一点,若∠BOC=2∠AOC,∠AOB =114°,求∠EOC的度数.17.如图,点C、D分别是∠AOB的边OA、OB上的点.(用三角板和直尺画图)(1)过点C作OB的垂线CF,垂足为F;(2)过点D作OA的平行线DE.18.如图,∠AOB为直角,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC.(1)如果∠AOC=s0°,求∠MON的度数.(2)如果∠AOC为任意一个锐角,你能求出∠MON的度数吗?若能,请求出来;若不能,请说明理由.19.如图,正方形ABCD内部有若干个点,用这些点以及正方形ABCD的顶点A、B、C、D 把原正方形分割成一些三角形(互相不重叠):(1)填写下表:(2)原正方形能否被分割成2012个三角形?若能,求此时正方形ABCD内部有多少个点;若不能,请说明理由.20.如图,点D、E在BC上,∠BDF、∠AEG都是直角,且∠1=∠2.(1)若∠2=3∠4,求∠1的度数.(2)探究∠3与∠4的关系,并说明理由.21.如图①,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板绕点O按逆时针方向旋转至图②,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:直线ON是否平分∠AOC?请说明理由.(2)将图中的三角板绕点O按每秒6°的速度逆时针方向旋转一周,在旋转的过程中,直线ON恰好平分∠AOC,求t的值.(3)将图①中的三角板绕点O按顺时针方向旋转至图③的位置,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.参考答案1.D2.C3.A4.D5.D6.B7.D8.D9.A10. (1)60°(2)108.5°11.52.3 97 20 12.30°13.135°14.略15.8 cm 16. 19°17.略18. (1)45°(2)45°19.(1)8 10 2n+2 (2)1005个20.(1) 67.5°(2)∠3=∠4,理由:等角的余角相等21.(1) ON平分∠ACC,理由略(2)t=10或40(3)30°。

七年级平面图形的认识(一)单元测试题(Word版 含解析)

七年级平面图形的认识(一)单元测试题(Word版 含解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.(1)求证:∠EHC+∠GFE=180°.(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG∴FG∥EH,∴∠GFE+∠HEF=180°,∵AB∥CD∴∠BEH=∠CHE∴∠EHC+∠GFE=180°(2)解:设∠EHM=x,∵HG⊥HE,∴∠GHK=90°-x,∵MH平分∠CHG,∴∠EHC=90°-2x,∵AB∥CD∴∠HMB=90°-x,∴∠HMB=∠MHG=90°-x,∵AB∥CD,∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,∴∠GHD=2∠EHM;(3)解:延长FG,GK,交CD于R,交HE于S,如图,∵AB∥CD,∠BFG=50°∴∠HRG=50°∵FG⊥HG,∴∠GHR=40°,∵HG⊥HE,∴∠EHG=90°,∴∠CHE=180°-90°-40°=50°,∵AB∥CD,∴∠FEH=∠CHE=50°,∵EP是∠HEF的平分线,∴∠SEP= ∠FEH=25°,∵GH平分∠HGF,∴∠HGS= ∠HGF=45°,∴∠HSG=45°,∵∠SEP+∠SPE=∠HSP=45°,∴∠EPS=20°,即∠NPK=20°.【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.3.如图(1),在△ABC和△EDC中,D为△ABC边AC上一点,CA平分∠BCE,BC=CD,AC=CE.(1)求证:△ABC≌△EDC;(2)如图(2),若∠ACB=60°,连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.①求∠DHF的度数;②若EB平分∠DEC,试说明:BE平分∠ABC.【答案】(1)证明:∵CA平分∠BCE,∴∠ACB=∠ACE.在△ABC和△EDC中.∵BC=CD,∠ACB=∠ACE,AC=CE.∴△ABC≌△EDC(SAS).(2)解:①在△BCF和△DCG中∵BC=DC, ∠BCD=∠DCE,CF=CG,∴△BCF≌△DCG(SAS),∴∠CBF=∠CDG.∵∠CBF+∠BCF=∠CDG+∠DHF∴∠BCF=∠DHF=60°.②∵EB平分∠DEC,∴∠DEH=∠BEC.∵∠DHF=60°,∴∠HDE=60°-∠DEH.∵∠BCE=60°+60°=120°,∴∠CBE=180°-120°-∠BEC=60°-∠BEC.∴∠HDE=∠CBE. ∠A=∠DEG.∵△ABC≌△EDC, △BCF≌△DCG(已证)∴∠BFC=∠DGC,∵∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,∴∠ABF=∠HDE,∴∠ABF=∠CBE,∴BE平分∠ABC.【解析】【分析】(1)由角平分线定义得出∠ACB=∠ACE,由ASA证明△ABC≌△EDC即可.(2)①由ASA证明△BCF≌△DCG,得出∠CBF=∠CDG;在△BCF,△DHF中,由三角形内角和定理得出∠BCF=∠DHF=60°.②由全等三角形的性质得出∠A=∠DEG,∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,从而得出∠ABF=∠HDE,∠ABF=∠CBE,即BE平分∠ABC.4.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD。

苏科版七年级数学上册期末复习专题练第6章 平面图形的认识(一) 【含答案】

苏科版七年级数学上册期末复习专题练第6章 平面图形的认识(一) 【含答案】

苏科版七年级数学上册期末复习专题练第6章 平面图形的认识(一)一、选择题1、下列结论:①两点确定一条直线;②直线AB 与直线BA 是同一条直线;③线段AB 与线段BA 是同一条线段;④射线OA 与射线AO 是同一条射线.其中正确的结论共有( )个.A .1B .2C .3D .42、根据下图,下列说法中不正确的是( ) A .图①中直线经过点B .图②中直线,相交于点l A a b AC .图③中点在线段上D .图④中射线与线段有公共点C AB CD AB 3、如图,是北偏东方向的一条射线,若射线 与射线垂直,则的方位角是()OA 30°OB OA OB A .北偏东 B .北偏西 C .西偏北 D .北偏西30°30°60︒60︒(3题) (7题) (8题)4、如图,C 是线段上一点,D 、E 分别是线段、的中点,若,,则的值为( AB AB AC 20AB =2CD =DE )A .6B .7C .8D .95、已知线段,点是直线上一点,,点是线段的中点,点是线段10cm AB =C AB 4cm BC =M AB N 的中点,则线段的长度是( )BC MN A . B . C .或 D .或3cm 5cm 3cm 7cm 5cm 7cm6、点分,时针与分针所夹的角为( )410A .B .C .D .55︒65︒70︒75︒7、如图,将一副三角板重叠放在一起,使直角顶点重合于点.若,则( )O 120AOC ∠=︒BOD ∠=A .30°B .40°C .50°D .60°8、如图,OD 平分∠AOB ,OC ⊥OD ,OE 平分∠AOC ,若∠BOE =15°,则∠AOD 的度数为( )A .18°B .20°C .22°D .30°9、如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若∠BFE =3∠BFH ,∠BFH =20°,则∠GFH 的度数是( )A .85°B .90°C .95°D .100°(9题) (10题)10、如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°二、填空题11、下列生产和生活现象:①用两个钉子就可以把木条固定在墙上;②把弯曲的公路改直,就能缩短路程;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从地到地架设电线,A B 总是尽可能沿着线段架设.其中能用“两点之间,线段最短”来解释的现象有________.(填序号)AB 12、如图:点C 为线段AB 上的一点,M 、N 分别为AC 、BC 的中点,AB =40,则MN =_____.13、已知,如图,直线AB 、CD 交于点O ,OE ⊥AB 于O ,∠COE =50°,则∠BOD =______.(13题) (14题) (16题) (17题)14、如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.15、已知线段,是的中点,点在直线上,且,则线段的长度是______6cm AB =O AB C AB 5cm CA =OC .cm 16、如图所示,90AOC ∠=︒,点B ,O ,D 在同一直线上,若126∠=︒,则2∠的度数为______.17、如图,一副三角板按图示放置,已知∠AOC =65°,则∠AOB =______°.18、看下面小明和小丽的对话:小明:“我今天12点10分到达图书馆时,你已经开始看书了,你是什么时间到的呢?小丽:“我11点30分从家出发,到达图书馆时,钟表的时针与分针的夹角恰好是11°.”回答问题:小丽从家到图书馆共用了 分钟.三、解答题19、如图,在网格中有和点D ,请用无刻度的直尺在网格中按下列要求画图.BAC ∠(1)过点D 面;(在图①中画)//DM AC (2)以点D 为顶点作,使与互余.(在图② 中只画一个)EDF ∠EDF ∠BAC ∠20、已知:如图,点在线段上,点是中点,.求线段长,C D AB D AB 1,123AC AB AB ==CD 21、如图,点O 在直线AB 上,OC . OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =140°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .( 请用含α的代数式表示);22、已知:如图,,平分,且.2COB AOC ∠=∠OD AOB ∠19COD ∠=︒(1)_____;AOB ∠=AOC ∠(2)____;COD ∠=AOC ∠(3)求的度数.AOB ∠23、如图,B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动1次,C 是线段BD 的中点,,设点B 运动时间为t 秒().10cm AD =010t ≤≤(1)当时,①________cm ,②此时线段CD 的长度=_______cm ;2t =AB =(2)用含有t 的代数式表示运动过程中AB 的长;(3)在运动过程中,若AB 中点为E ,则EC 的长度是否变化?若不变,求出EC 的长;若变化,请说明理由.24、如图,直线AB 、CD 相交于点O ,AOD ∠为锐角,OE CD ⊥,OF 平分BOD ∠(1)图中与AOE ∠互余的角为__________;(2)若EOB DOB ∠=∠,求AOE ∠的度数;(3)图中与锐角AOE ∠互补角的个数随AOE ∠的度数变化而变化,直接写出与AOE ∠互补的角的个数及对应的AOE ∠的度数25、如图,直角三角板的直角顶点在直线上,,是三角板的两条直角边,平O AB OC OD OE 分.AOD ∠(1)若,求的度数;20COE ∠=︒BOD ∠(2)若,则 ;(用含的代数式表示)COE α∠=BOD ∠=2α︒α(3)当三角板绕点逆时针旋转到图2的位置时,其他条件不变,请直接写出与之间有O COE ∠BOD ∠怎样的数量关系.26、(问题情境)苏科版义务教育教科书数学七上第178页第13题有这样的一个问题:“如图1,OC是∠AOB内一条射线,OD、OE分别平分∠AOB、∠AOC.若∠AOC=30°,∠BOC=90°,求∠DOE的度数”,小明在做题中发现:解决这个问题时∠AOC的度数不知道也可以求出∠DOE的度数.也就是说这个题目可以简化为:如图1,OC是∠AOB内一条射线,OD、OE分别平分∠AOB、∠AOC.若∠BOC=90°,求∠DOE的度数.(1)请你先完成这个简化后的问题的解答;(变式探究)小明在完成以上问题解答后,作如下变式探究:(2)如图1,若∠BOC=m°,则∠DOE= °;(变式拓展)小明继续探究:(3)已知直线AM、BN相交于点O,若OC是∠AOB外一条射线,且不与OM、ON重合,OD、OE分别平分∠AOB、∠AOC,当∠BOC=m°时,求∠DOE的度数(自己在备用图中画出示意图求解).答案一、选择题1、下列结论:①两点确定一条直线;②直线AB与直线BA是同一条直线;③线段AB与线段BA是同一条线段;④射线OA与射线AO是同一条射线.其中正确的结论共有()个.A.1B.2C.3D.4C【分析】根据直线、线段和射线以及直线的公理进行判断即可.解:①两点确定一条直线,正确;②直线AB与直线BA是同一条直线,正确;③线段AB与线段BA是同一条线段,正确;④射线OA与射线AO不是同一条射线,错误;故选C.2、根据下图,下列说法中不正确的是()l A a b AA.图①中直线经过点B.图②中直线,相交于点C AB CD ABC.图③中点在线段上D.图④中射线与线段有公共点C【分析】根据点和直线的位置关系、射线和线段的延伸性、直线与直线相交的表示方法等知识点对每一项进行分析,即可得出答案.【详解】解:A、图①中直线l经过点A,正确;B、图②中直线a、b相交于点A,正确;C、图③中点C在线段AB外,故本选项错误;D、图④中射线CD与线段AB有公共点,正确;故选:C.OA30°OB OA OB3、如图,是北偏东方向的一条射线,若射线与射线垂直,则的方位角是()A .北偏东B .北偏西C .西偏北D .北偏西30°30°60︒60︒D 【分析】根据垂直,可得∠AOB 的度数,根据角的和差,可得答案.【详解】解:∵射线OB 与射线OA 垂直,∴∠AOB =90°,∴∠1=90°-30°=60°,故射线OB 的方向角是北偏西60°,故选:D .4、如图,C 是线段上一点,D 、E 分别是线段、的中点,若,,则的值为( AB AB AC 20AB =2CD =DE )A .6B .7C .8D .9A 【分析】由D 是线段AB 的中点可计算出AD 的长度,结合CD =2可求得AC =8,再由E 是线段AC 的中点可求得CE 的长度,最后根据DE =CD +CE 即可得出答案.【详解】解:∵D 是线段AB 的中点,AB =20,∴AD =AB =10,12又∵CD =2,∴AC =AD -CD =10-2=8,∵E 是线段AC 的中点,AC =8,∴CE =AC =4,∴DE =CD +CE =2+4=6.故选:A .125、已知线段,点是直线上一点,,点是线段的中点,点是线段10cm AB =C AB 4cm BC =M AB N 的中点,则线段的长度是( )BC MN A . B . C .或D .或3cm 5cm 3cm 7cm 5cm 7cmC【分析】根据题意知,点在点左侧时,;点在点右侧时,,因为C B MN BM BN =-C B +MN BM BN =点是线段的中点,点是线段的中点,分别算出长度,代入计算即可.M AB N BC ,BM BN 【详解】解:因为点是直线上一点,所以需要分类讨论:C AB (1)点在点左侧时,作图如下:C B∵,,∴,,10cm AB =4cm BC =152BM AB cm ==122BN BC cm ==又∵,∴.MN BM BN =-=523MN cm -=(2)当点在点右侧时,作图如下:C B由(1)知,,,152BM AB cm ==122BN BC cm ==∵,∴,+MN BM BN =+=5+2=7cm MN BM BN =综上所述,的长度是或.故选:CMN 3cm 7cm 6、点分,时针与分针所夹的角为( )410A .B .C .D .55︒65︒70︒75︒B【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,找出4点10分时针和分针分别转动角度即可求出.【详解】解:点10分时,分针在指在2时位置处,时针指在4时过10分钟处,4 由于一大格是,10分钟转过的角度为,30°1030560⨯︒=︒因此4点10分时,分针与时针的夹角是.故选:.230565⨯︒+︒=︒B7、如图,将一副三角板重叠放在一起,使直角顶点重合于点.若,则( )O 120AOC ∠=︒BOD ∠=A .30°B .40°C .50°D .60°D 【分析】根据角的和差关系求解即可.【详解】解:∵∠AOC =120°,∴∠BOC =∠AOC -∠AOB =30°,∴∠BOD =∠COD -∠BOC =60°.故选:D .8、如图,OD 平分∠AOB ,OC ⊥OD ,OE 平分∠AOC ,若∠BOE =15°,则∠AOD 的度数为( )A .18°B .20°C .22°D .30°B 【分析】根据垂线的性质、角平分线的定义得出含∠AOD 的等式求解即可.【详解】解:∵OC ⊥OD ,∴∠COD =90°,∴∠AOC =∠COD +∠AOD =90°+∠AOD ,∵OD 平分∠AOB ,OE平分∠AOC ,∠BOE =15°,∴∠AOE =∠AOC =∠BOE +∠AOB =15°+2∠AOD ,12∴15°+2∠AOD =(90°+∠AOD ),∴∠AOD =20°,故选:B .129、如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若∠BFE =3∠BFH ,∠BFH =20°,则∠GFH 的度数是( )A .85°B .90°C .95°D .100°D 【分析】根据折叠求出∠CFG =∠EFG =∠CFE ,根据∠BFE =3∠BFH ,∠BFH =20°,即可求出12∠GFH =∠GFE +∠HFE 的度数.【详解】解:∵将长方形纸片ABCD 的角C 沿着GF 折叠(点F 在BC 上,不与B ,使点C 落在长方形内部点E 处,∴∠CFG =∠EFG =∠CFE ,12∵∠BFE =3∠BFH ,∠BFH =20°,∴∠BFE =60°,∴∠CFE =120°,∴∠GFE =60°,∵∠EFH =∠EFB ﹣∠BFH ,∴∠EFH ==40°,∴∠GFH =∠GFE +∠EFH =60°+40°=100°.故选:D .10、如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°C【分析】根据角平分线定义求出∠AOA 1=∠AOB=32°,同理即可求出答案.12∵∠AOB=64°,OA 1平分∠AOB ,∴∠AOA 1=∠AOB=32°,12∵OA 2平分∠AOA 1,∴∠AOA 2=∠AOA 1=16°,12同理∠AOA 3=8°,∠AOA 4=4°,故选:C .二、填空题11、下列生产和生活现象:①用两个钉子就可以把木条固定在墙上;②把弯曲的公路改直,就能缩短路程;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从地到地架设电线,A B 总是尽可能沿着线段架设.其中能用“两点之间,线段最短”来解释的现象有________.(填序号)AB ②④【分析】根据两点之间,线段最短的性质,对各个选项逐个分析,即可得到答案.【详解】①用两个钉子就可以把木条固定在墙上,可用两点可确定一条直线解释;②把弯曲的公路改直,就能缩短路程,可用两点之间,线段最短解释;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,可用两点可确定一条直线解释;④从地到地架设电线,总是尽可能沿着线段架设,可用两点之间,线段最短解释;故②④.A B AB 12、如图:点C 为线段AB 上的一点,M 、N 分别为AC 、BC 的中点,AB=40,则MN =_____.20【分析】由题意易得,进而可得,进而问题可11,22MC AC CN CB ==111222MN MC CN AC CB AB =+=+=求解.【详解】解:∵M 、N 分别为AC 、BC 的中点,∴,11,22MC AC CN CB ==∵AB =40,∴;11120222MN MC CN AC CB AB =+=+==故答案为20.13、已知,如图,直线AB 、CD 交于点O ,OE ⊥AB 于O ,∠COE =50°,则∠BOD =______.40°【分析】运用对顶角的定义如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角、邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,叫做邻补角,求解即可.【详解】解:∵OE ⊥AB ,∴∠AOE =90°,∵∠COE =50°,∴∠AOC =90°﹣∠COE =90°﹣50°=40°,∴∠BOD =∠AOC =40°.故40°.14、如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.65°【详解】∵把一张长方形纸片沿AB 折叠,∴∠2=∠3,∵∠1+∠2+∠3=180°,∠1=50°,∴∠2=(180°-∠1)2=65°.÷15、已知线段,是的中点,点在直线上,且,则线段的长度是______6cm AB =O AB C AB 5cm CA =OC .cm 2或8【分析】根据点C 在直线AB 上,可以从两种情况进行分析计算:当点C 在线段AB 上时和当点C 不在线段AB 上时,即可计算得到答案.【详解】解:当点C 在A 、B 之间时,如图1所示∵线段AB =6cm ,O 是AB 的中点,∴OA =AB =×6cm =3c m ,1212∴OC =CA ﹣OA =5cm ﹣3cm =2cm .当点C 在点A 的左边时,如图2所示,∵线段AB =6cm ,O 是AB 的中点,CA =5cm ,∴OA =AB =×6c m =3cm ,1212∴OC =CA +OA =5cm +3c m =8c m 故答案为2或8.16、如图所示,90AOC ∠=︒,点B ,O ,D 在同一直线上,若126∠=︒,则2∠的度数为______.116°【分析】由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB互补,即可求出∠2的度数.∠=︒,∠AOC=90°,∴∠BOC=64°,【详解】解:∵126∵∠2+∠BOC=180°,∴∠2=116°.故116°.17、如图,一副三角板按图示放置,已知∠AOC=65°,则∠AOB=______°.155【分析】根据图形中角之间的关系即可求得∠AOB的度数.【详解】解:∵∠BOC=90°,∴∠AOB=∠AOC+∠BOC=65°+90°=155°故155.18、看下面小明和小丽的对话:小明:“我今天12点10分到达图书馆时,你已经开始看书了,你是什么时间到的呢?小丽:“我11点30分从家出发,到达图书馆时,钟表的时针与分针的夹角恰好是11°.”回答问题:小丽从家到图书馆共用了 分钟.【思路点拨】11点30分时,时针与分针的夹角为165°,分针每分钟转过6°,而时针每分钟转过0.5°,此问题可以转化为追及问题,当分针从与时针的夹角为165°减少到还有11°时所用的时间,以及超过时针11°时所用的时间,设未知数,列方程解答即可,同时注意分钟在时针前11°和在时针后11°两种情况.【解答过程】解:11点30分时,时针与分针的夹角为165°,由钟表时针、分针的旋转规律得,分针每分钟转过6°,而时针每分钟转过0.5°,设小丽从家出发用x 分钟到达图书馆,由题意得:(6°﹣0.5°)x =165°﹣11°或(6°﹣0.5°)x =165°+11°,解得:x =28或x =32,经检验,28分,32分钟均符合题意,故28或32.三、解答题19、如图,在网格中有和点D ,请用无刻度的直尺在网格中按下列要求画图.BAC ∠(1)过点D 面;(在图①中画)//DM AC (2)以点D 为顶点作,使与互余.(在图② 中只画一个)EDF ∠EDF ∠BAC ∠(1)画图见解析,(2)画图见解析【分析】(1)连接点D 与点D 向左平移一个单位,向下平移三个单位的点的直线即可;(2)过点D ,连接以D 为顶点边长为2的正方形对角线,和以D 为顶点边长为1和3的长方形对角线,两条对角线组成的角就是所求的角.【详解】解:(1)如图所示,DM 就是所求直线;(2)如图所示,就是所求角.EDF ∠20、已知:如图,点在线段上,点是中点,.求线段长,C D AB D AB 1,123AC AB AB ==CD 2【分析】根据中点的定义以及题意,分别求出线段AD 与线段AC 的长度,即可得出结论.【详解】∵D 为线段AB 的中点,∴AD =AB =×12=6,1212∵AC =AB ,13∴AC =×12=4,13∴CD =AD -AC =6-4=2.21、如图,点O 在直线AB 上,OC . OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =140°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .( 请用含α的代数式表示);(1)80°;(2)360°-2α【分析】(1)根据OC ⊥OD ,∠DOE =140°可求出∠COE ,再根据射线OE 平分∠BOC .求出BOE ,最后根据平角的意义求出答案;(2)利用(1)的方法,用代数式表示角度即可.【详解】解:(1)∵OC ⊥OD ,∠DOE =140°,∴∠COE =∠DOE -∠COD =140°-90°=50°,∵射线OE 平分∠BOC .∴∠COE =∠BOE =50°,∴∠AOC =180°-∠COE -∠BOE =180°-50°-50°=80°;(2)∵OC ⊥OD ,∠DOE =α,∴∠COE =∠DOE -∠COD =α-90°,∵射线OE 平分∠BOC .∴∠COE =∠BOE =α-90°,∴∠AOC =180°-∠COE -∠BOE =180°-(α-90°)-(α-90°)=360°-2α,故360°-2α.22、已知:如图,,平分,且.2COB AOC ∠=∠OD AOB ∠19COD ∠=︒(1)_____;AOB ∠=AOC ∠(2)____;COD ∠=AOC ∠(3)求的度数.AOB ∠(1)3;(2);(3)12114AOB ∠=︒【分析】(1)根据∠COB=2∠AOC ,∠COB+∠AOC=∠AOB 可得∠AOB=3∠AOC ,(2)由OD 平分 ∠AOB ,∠COD=∠AOD-∠AOC 可得∠COD 与∠AOC 的关系.(3)由OD 平分∠AOB 得到∠AOD=∠AOB 又由∠AOD=∠AOC+∠COD ,可得∠COD 与∠AOB12的关系,从而求出∠AOB 的度数.【详解】解:(1)∵∠COB=2∠AOC , ∠COB+∠AOC=∠AOB∴∠AOB=∠AOC+2∠AOC=3∠AOC (2)∵∠COD=∠AOD-∠AOC= ∠AOB- ∠AOB= ∠AOB121316又∵∠AOB=3∠AOC ∴∠COD=∠AOB=×3∠AOC=∠AOC161612(3)∵OD 平分∠AOB ∴∠AOD=∠AOB 12又∵∠AOD=∠AOC+∠COD ∴∠AOB=∠AOB+19°1213∠AOB=19° ∠AOB=114° 故(1) 3;(2) ;(3) ∠AOB=114°161223、如图,B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动1次,C 是线段BD 的中点,,设点B 运动时间为t 秒().10cm AD =010t ≤≤(1)当时,①________cm ,②此时线段CD 的长度=_______cm ;2t =AB =(2)用含有t 的代数式表示运动过程中AB 的长;(3)在运动过程中,若AB 中点为E ,则EC 的长度是否变化?若不变,求出EC 的长;若变化,请说明理由.(1)①4;②3;(2),;(3)不变,.()2cm 05AB t t =≤≤()()202cm 510AB t t =-<≤5EC =【分析】(1)①根据即可得出结论;②先求出BD 的长,再根据C 是线段BD 的中点即可得到CD 2AB t =的长;(2)分类讨论即可;(3)直接根据中点定义即可得到结论;【详解】(1)①当时,(cm ),2t =224AB =⨯=②此时,(cm ),∵C 是线段BD 的中点,则;1046BD =-=3CD cm =(2)①∵B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动,∴当时,,∴;05t ≤≤2AB t =()2cm 05AB t t =≤≤②当时,,∴;510t <≤()10210202A B t t =--=-()()202cm 510AB t t =-<≤(3)不变;因为AB 的中点为E ,C 是BD 的中点,所以,,所以,.()1122EC AB BD AD =+=11052EC =⨯=24、如图,直线AB 、CD 相交于点O ,AOD ∠为锐角,OE CD ⊥,OF 平分BOD ∠(1)图中与AOE ∠互余的角为__________;(2)若EOB DOB ∠=∠,求AOE ∠的度数;(3)图中与锐角AOE ∠互补角的个数随AOE ∠的度数变化而变化,直接写出与AOE ∠互补的角的个数及对应的AOE ∠的度数(1)AOD ∠、BOC ∠;(2)45︒;(3)见解析.【分析】(1)根据余角的定义可解答;(2)根据补角的定义列方程可解答;(3)设出∠AOE 的度数,依次表达图中的补角,可解.【详解】(1)由题意可得于∠AOE 互余的角为:AOD ∠、BOC∠(2)设AOD x ∠=︒.∵AOD x ∠=︒,∴180180BOD AOD x ∠=︒-∠=︒-︒,BOC AOD x ∠=∠=︒.∵OE CD ⊥,∴90EOC EOD ∠=∠=︒.又∵EOB DOB ∠=∠,∴90180x x ︒+︒=︒-︒,即45x =.∴904545AOE EOD AOD ∠=∠-∠=︒-︒=︒.(3)设∠AOE =α,且0°<α<90°由(1)可知,∠AOD =∠BOC =90°-α,∠BOE =180°-α,∴∠BOD =180°-∠AOD =180°-(90°-α)=90°+α,∵OF 平分∠BOD ,∴∠BOF =∠DOF =45°+2α,∴∠AOF =∠AOD +∠DOF =90°-α+45°+2α=135°-2α,∠EOF =∠AOF +∠AOE =135°+2α,∠COF =∠BOC +∠BOF =90°-α+45°+2α=135°-2α=∠AOF ,①当∠AOF +∠AOE =180°时,即135°-2α+α=180°,解得α=90°,不符合题意;②当∠EOF +∠AOE =180°时,即135°+2α+α=180°,解得α=30°,符合题意;③当∠BOD +∠AOE =180°时,即90°+α+α=180°,解得α=45°,符合题意;综上可知,当锐角30AOE ∠=︒时,互补角有2个,为EOB ∠、EOF ∠.当锐角45AOE ∠=︒时,互补角有3个,为EOB ∠、AOC ∠、DOB ∠.当锐角AOE ∠不等于45︒和30°时,互补角有1个,为EOB ∠.25、如图,直角三角板的直角顶点在直线上,,是三角板的两条直角边,平O AB OC OD OE 分.AOD ∠(1)若,求的度数;20COE ∠=︒BOD ∠(2)若,则 ;(用含的代数式表示)COE α∠=BOD ∠=2α︒α(3)当三角板绕点逆时针旋转到图2的位置时,其他条件不变,请直接写出与之间有O COE ∠BOD ∠怎样的数量关系.【分析】(1)先根据直角计算的度数,再根据角平分线的定义计算的度数,最后利用平角DOE ∠AOD ∠的定义可得结论;(2)类似(1)的方法解答即可;(3)设,则,根据角平分线的定义表示,再利用互余的关系求BOD β∠=180AOD β∠=︒-BOE ∠的度数,可得结论.COE ∠(1)若,20COE ∠=︒,,90COD ∠=︒ 902070EOD ∴∠=︒-︒=︒平分,,OE AOD ∠2140AOD EOD ∴∠=∠=︒;18014040BOD ∴∠=︒-︒=︒(2)若,,COE α∠=90EOD α∴∠=-平分,,OE AOD ∠22(90)1802AOD EOD αα∴∠=∠=-=-;180(1802)2BOD αα∴∠=︒--=故;2α(3),理由是:2BOD COE ∠=∠设,则,BOD β∠=180AOD β∠=︒-平分,,OE AOD ∠118090222EOD AOD ββ︒-∴∠=∠==︒-,,即.90COD ∠=︒ 90(90)22COE ββ∴∠=︒-︒-=2BOD COE ∠=∠26、(问题情境)苏科版义务教育教科书数学七上第178页第13题有这样的一个问题:“如图1,OC 是∠AOB 内一条射线,OD 、OE 分别平分∠AOB 、∠AOC .若∠AOC =30°,∠BOC =90°,求∠DOE 的度数”,小明在做题中发现:解决这个问题时∠AOC 的度数不知道也可以求出∠DOE 的度数.也就是说这个题目可以简化为:如图1,OC 是∠AOB 内一条射线,OD 、OE 分别平分∠AOB 、∠AOC .若∠BOC =90°,求∠DOE 的度数.(1)请你先完成这个简化后的问题的解答;(变式探究)小明在完成以上问题解答后,作如下变式探究:(2)如图1,若∠BOC =m °,则∠DOE = °;(变式拓展)小明继续探究:(3)已知直线AM 、BN 相交于点O ,若OC 是∠AOB 外一条射线,且不与OM 、ON 重合,OD 、OE 分别平分∠AOB 、∠AOC ,当∠BOC =m °时,求∠DOE 的度数(自己在备用图中画出示意图求解).(1)45°;(2);(3)2m °2m °【分析】(1)首先假设∠AOC =a °,然后用a 表示∠AOB ,再根据OD ,OE 两条角平分线,推出∠DOE 即可;(2)首先假设∠AOC =a °,然后用a 表示∠AOB ,再根据OD ,OE 两条角平分线,用m °表示∠DOE 即可;(3)分三种情况讨论,第一种:OC 在AM 上,第二种:OC 在AM 下侧,∠MON 之间,第三种:OC 在∠AON 之间,即可得到∠DOE ,【详解】解:(1)设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+90°,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+90°)﹣a °==45°;121212121902⨯︒(2)设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+m °,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+m °)﹣a °=,故;121212122m °2m °(3)①当OC 在AM 上,即OC 在∠BOM 之间,设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+m °,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+m °)﹣a °=;121212122m °②当OC 在直线AM 下方,且OC 在∠MON 之间时,∠BOC =∠AOB +∠AOC =m °,∠DOE =∠AOE ﹣∠AOD =∠AOC +∠AOB =∠BOC =;1212122m °③当OC 在直线AM 下方,且OC 在∠AON 之间时,由②得,∠BOC =m °,∠DOE =∠AOC +∠AOB =12∠BOC =2m °;综上所述,∠DOE =2m °.1212。

七年级上册平面图形的认识(一)达标检测卷(Word版 含解析)

七年级上册平面图形的认识(一)达标检测卷(Word版 含解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由.(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;【答案】(1)90°(2)解:如图,分别过点E,F作EM∥AB,FN∥AB∴EM∥AB∥FN∴∠B=∠BEM=30°,∠MEF=∠EFN又∵AB∥CD,AB∥FN∴CD∥FN∴∠D+∠DFN=180°又∵∠D =120°∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°∴∠EFD=∠MEF +60°∴∠EFD=∠BEF+30°(3)解:如图,过点F作FH∥EP由(2)知,∠EFD=∠BEF+30°设∠BEF=2x°,则∠EFD=(2x+30)°∵EP平分∠BEF,GF平分∠EFD∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°∵FH∥EP∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠BEF+30°=90°.【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.2.已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧(1)若AB=18,DE=8,线段DE在线段AB上移动①如图1,当E为BC中点时,求AD的长;②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长;(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式,则________.【答案】(1)解:①又 E为BC中点;②设,因点F(异于A、B、C点)在线段AB上,可知:,和当时,此时可画图如图2所示,代入得:解得:,即AD的长为3当时,此时可画图如图3所示,代入得:解得:,即AD的长为5综上,所求的AD的长为3或5;(2) .【解析】【解答】(2)①若DE在如图4的位置设,则又(不符题设,舍去)②如DE在如图5的位置设,则又代入得:解得:则 .【分析】(1)①根据AB的长和可求出AC和BC,根据中点的定义可得CE,再由可得CD,最后根据计算即可得;②设,因点F(异于A、B、C点)在线段AB上,可知,和,所以需分2种情况进行讨论:和,如图2、3(见解析),先根据已知条件判断点E、F位置,再将EF和CE用含x的式子表示出来,最后代入求解即可;(2)设,先判断出DE在AB上的位置,再根据得出x和y 满足的等式,然后将其代入化简即可得.3.问题情境1:如图1,AB∥CD,P是ABCD内部一点,P在BD的右侧,探究∠B,∠P,∠D之间的关系?小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠B,∠P,∠D之间满足____关系。

七年级数学上第六章平面图形的认识(一)练习题及答案

七年级数学上第六章平面图形的认识(一)练习题及答案

七年级数学上第六章平面图形的认识(一)练习题及答案推荐文章七年级数学上册期末测试卷带答案热度:七年级数学上册基础训练答案2017 热度:初一数学上学期期中试卷带答案热度:初一数学上册期中试卷附答案热度:七年级数学上学期末试卷详解答案热度:盛年不重来,一日难再晨,及时当勉励,岁月不待人。

惜取时间认真对待七年级数学练习题。

店铺为大家整理了七年级数学上第六章平面图形的认识(一)练习题,欢迎大家阅读!七年级数学上第六章平面图形的认识(一)习题1.已知线段AB=12cm,直线AB上有一点C,且BC=6cm,M是线段AC的中点,求线段AM的长.2.如图,B、C两点把线段AB分成2:3:4的三部分,M点AD 的中点,CD=8,求MC的长.3.A车站到B车站之间还有3个车站,那么从A车站到B车站方向发出的车辆.一共有多少种不同的车票 ( )A.8B.9C.10D.114.如图,线段AB-4,点O是线段AB上一点,C、D分别是线段OA、OB的中点,小明据此很轻松地求得CD=2,但他在反思的过程中突发奇想:若点O运动到AB的延长线上时,原有的结论“CD=2”是否仍成立?请帮小明画出图形并说明理由.5.如图,A、B、C表示3个村庄,它们被三条河隔开,现在打算在每两个村庄之间都修一条笔直公路,则一共需架多少座桥?请你在图上用字母标明桥的位置.6.如图已知∠AOB+∠AOC=180°,OP、OQ分别平分∠AOB、∠AOC且∠POQ=50°.求∠AO B、∠AOC的度数.7.已知∠AOB=30°,又自∠AOB的顶点O引射线OC.若∠AOC:∠AOB=4:3,那么∠BOC= ( )A.10°B.40°C.45°D.70°或10°8.小明晚上6点多外出购物.看手表上时针与分针的夹角为110°,接近7点回到家,发现时针与分针的夹角又是110°,问小明外出时用了多少时间?9.考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45°,某考室B位于O点南偏东60°,请在图中画出射线OA、OB,并计算∠AOB的度数.10.已知∠a与∠β之和的补角等于∠a与∠β之差的余角,则∠β=( )A.60°B.45°C.75°D.无法求出11.为了解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路,现已知四个村庄及电厂之间距离如图所示(距离单位:公里),则能把电力输送到这四个村庄的输电线的最短总长度应该是 ( )A.19.5B.20.5C.21.5D.25.512.已知线段AB=6.(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和.13.如图,已知∠AOB与∠BOC互为补角,OD是∠AOB的角平分线,OE在∠BOC内,∠BOE= ∠EOC,∠DOE=72°,求∠EOC的度数.14.如图所示,直线l与∠O的两边分别交于点A、B,则图中以O、A、B为端点的射线的条数总和为( )A.5B.6C.7D.815.如图所示,同一直线上有A、B、C、D四点,已知:AD:DB=5:9.AC:CB=9:5,且CD=4cm,求线段AB的长是多少?16.In the figure,Mon is a straight 1ive,If the angles α、β and γ ,satisfgβ:α=2:1,and γ:β=3:1,then the ang1e β=_______,(英汉小词典straight 1ive直线;ang1e角;satisfg满足)17.五位朋友,a、b、c、d、e在公园聚会,见面时握手致意问候,已知a握了4次,b握了1次,C握了3次,d握了2次,到目前为止,e握了( )次.A.1B.2C.3D.418.如图,已知B是线段AC上一点,M是线段AB的中点,N是线段AC的中点,P为NA的中点,Q为MA的中点,则MN:PQ等于 ( )A.1B.2C.3D.419.如图,某汽车公司所营运的公路AB段共有4个车站依次为A、C、D、B,且AC=CD=DB,现想在AB段建一个加油站M,要求使A、B、C、D站的各辆汽车到加油站M所花费的总时间最少,试找出M的位置.20.如图,B、C、D依次是线段AE上的三点,已知AE=8.9cm,BD=3cm则图中以A、B、C、D、E这5个点为端点的所有线段长度的和为_______cm.21.如图是一个3×3的正方形,则图中∠1+∠2+∠3+…+∠9的度数(degree)是_______.22.钟面上从2点到4点有几次时针与分针成60°的角?分别是几时几分?23.电子跳蚤游戏盘为△ABC,AB=8a,AC=9a,BC=10a,如果电子跳蚤开始时在BC边上P0处,BP0=4a,第一步跳蚤跳到AC边上P1处且CP1=CP0;第二步跳蚤以P1跳到AB边上P2处,且AP2=AP1;第三步跳蚤跳到BC边上P3处,且BP3=BP2……跳蚤按上述规则跳下去,第2001次落到P2001,请计算P0与P2001之间的距离.24.如图,已知C是线段AB的中点D是线段AC的中点,且图中所有线段的长度和为2010,求线段AC的长度.25.设有甲、乙、丙三人,他们的步行速度相同,骑车速度也相同,骑车的速度为步行速度的3倍,现甲自A地去B地,乙、丙则从B地去A地,双方同时出发,出发时,甲、乙为步行,丙骑车,途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按各自原有方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己又步行,三人仍按各自方向继续前进,问:三人之中谁最选到达自己的目的地?谁最后到达目的地?26.如图,∠A1OA11为一平角,∠A3OA2-∠A2OA1=∠A4OA3-∠A3OA2=…=∠A11OA10-∠A10OA9=2°.求∠A2OA1的度数.七年级数学上第六章平面图形的认识(一)练习题参考答案1.3cm或9cm2.13.C4.25.共建5座桥,分别在M、N、P、Q、R五处(如图所示).6.140°.7.D8.40分钟.9.75°. 10.B11.B12.(1)6条,20;(2)36条,88. 13.72° 14.D 15. cm. 16.40°17.B18.B 19.M应选在CD段(包括C、D)任意一点均可. 20.41.621.405°22.共有四次23.a 24. 25.丙最先到达目的地,甲最后到达目的地.26.9°。

七年级数学平面图形的认识(一)专题练习(解析版)

七年级数学平面图形的认识(一)专题练习(解析版)
3.综合题
(1)ⅰ问题引入 如图①,在△ ABC 中,点 O 是∠ ABC 和∠ ACB 平分线的交点,若∠ A=α,则∠ BOC= ________(用 α 表示);
ⅱ拓展研究 如图②,∠ CBO= ∠ ABC , ∠ BCO= ∠ ACB , ∠ A=α,试求∠ BOC 的度数________ (用 α 表示).

.
【分析】(1)ⅰ根据角平分线的定义,可得出∠ CBO= ∠ ABC,∠ OCB= ∠ ACB,可得出 ∠ CBO+∠ OCB= (180°-∠ A),再在△ COB 中,利用三角形内角和定理得出∠ BOC=180°( ∠ CBO+∠ OCB ) , 即 可得 出 结 果 ; ⅱ 根 据 ∠ CBO= ∠ ABC , ∠ OCB= ∠ ACB , 可 得 出 ∠ CBO+∠ OCB= (180°-∠ A),再在△ COB 中,利用三角形内角和定理得出∠ BOC=180°( ∠ CBO+∠ OCB ) , 即 可得 出 结 果 ; ⅲ 根 据 ∠ CBO= ∠ ABC , ∠ OCB= ∠ ACB , 可 得 出 ∠ CBO+∠ OCB= (180°-∠ A),再在△ COB 中,利用三角形内角和定理得出∠ BOC=180°(∠ CBO+∠ OCB),即可得出结果。 ( 2 ) ⅰ 根 据 ∠ CBO= ∠ DBC , ∠ OCB= ∠ ECB , 可 得 出 ∠ CBO+∠ OCB=180°(∠ DBC+∠ ECB),再根据平角的定义∠ BOC=180°- [360°-(∠ ABC+∠ ACB)】,化简即可 得 出 结 果 ; 根 据 ∠ CBO= ∠ DBC , ∠ OCB= ∠ ECB , 可 得 出 ∠ CBO+∠ OCB=180°-

数学七年级上册 平面图形的认识(一)单元测试与练习(word解析版)

数学七年级上册 平面图形的认识(一)单元测试与练习(word解析版)

一、初一数学几何模型部分解答题压轴题精选(难)1.已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧(1)若AB=18,DE=8,线段DE在线段AB上移动①如图1,当E为BC中点时,求AD的长;②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长;(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式,则________.【答案】(1)解:①又 E为BC中点;②设,因点F(异于A、B、C点)在线段AB上,可知:,和当时,此时可画图如图2所示,代入得:解得:,即AD的长为3当时,此时可画图如图3所示,代入得:解得:,即AD的长为5综上,所求的AD的长为3或5;(2) .【解析】【解答】(2)①若DE在如图4的位置设,则又(不符题设,舍去)②如DE在如图5的位置设,则又代入得:解得:则 .【分析】(1)①根据AB的长和可求出AC和BC,根据中点的定义可得CE,再由可得CD,最后根据计算即可得;②设,因点F(异于A、B、C点)在线段AB上,可知,和,所以需分2种情况进行讨论:和,如图2、3(见解析),先根据已知条件判断点E、F位置,再将EF和CE用含x的式子表示出来,最后代入求解即可;(2)设,先判断出DE在AB上的位置,再根据得出x和y 满足的等式,然后将其代入化简即可得.2.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.3.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD。

七年级上册数学 平面图形的认识(一)专题练习(解析版)

七年级上册数学 平面图形的认识(一)专题练习(解析版)

一、初一数学几何模型部分解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.3.如图,点C在∠AOB的边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.(1)若∠O=40°,求∠ECF的度数;(2)试说明CG平分∠OCD;(3)当∠O为多少度时,CD平分∠OCF?并说明理由.【答案】(1)解:∵DE//OB ,∴∠O=∠ACE,(两直线平行,同位角相等)∵∠O =40°,∴∠ACE =40°,∵∠ACD+∠ACE= (平角定义)∴∠ACD=又∵CF平分∠ACD ,∴ (角平分线定义)∴∠ECF=(2)证明:∵CG⊥CF,∴ .∴又∵)∴∵∴ (等角的余角相等)即CG平分∠OCD(3)解:结论:当∠O=60°时,CD平分∠OCF .当∠O=60°时∵DE//OB,∴∠DCO=∠O=60°.∴∠ACD=120°.又∵CF平分∠ACD∴∠DCF=60°,∴即CD平分∠OCF【解析】【分析】(1)根据平行线“两直线平行,同位角相等”,求得∠ACE=40°,根据平角的定义以及CF平分∠ACD ,可得到∠ACF=70°,然后求出∠ECF的度数;(2)根据∠DCG+∠DCF=90°,∠GCO+∠FCA=90°,以及∠ACF=∠DCF,可得到∠GCO =∠GCD,即可证明CG平分∠OCD;(3)根据两直线平行,内错角相等得出∠DCO=∠O=60°,根据角平分线可得到∠DCF=60°,以此可得∠DCO=∠DCF,即CD平分∠OCF.4.如图1,已知,是等边三角形,点为射线上任意一点(点与点不重合),连结,将线段绕点逆时针旋转得到线段,连结并延长交射线于点.(1)如图1,当时, ________ ,猜想 ________ ;(2)如图2,当点为射线上任意一点时,猜想的度数,并说明理由;【答案】(1)30;60(2)解:结论:,如图:∵,∴在和中,,,∴∴.∴∴;【解析】【解答】证明:(1)∵∠ABC=90°,△ABE是等边三角形,∴∠ABE=60°,∴∠EBF=30°;猜想:;理由如下:如图,∵,,∴,∵,,∴,∴,∴,∴;故答案为:30;60;【分析】(1)∠EBF与∠ABE互余,而∠ABE=60°,即可求得∠EBF的度数;先证明∠BAP=∠EAQ,进而得到△ABP≌△AEQ,证得∠AEQ=∠ABP=90°,则∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°,∠QFC=∠EBF+∠BEF,即可得到答案;(2)先证明∠BAP=∠EAQ,进而得到△ABP≌△AEQ,证得∠AEQ=∠ABP=90°,则∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°,∠QFC=∠EBF+∠BEF,即可得到答案.5.如图①,△ABC的角平分线BD,CE相交于点P.(1)如果∠A=80∘,求∠BPC=.(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示).(3)将直线MN绕点P旋转。

七年级数学平面图形的认识(一)单元测试卷附答案

七年级数学平面图形的认识(一)单元测试卷附答案

一、初一数学几何模型部分解答题压轴题精选(难)1.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.2.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA=________;(2)若∠GOA= ∠BOA,∠GAD= ∠BAD,∠OBA=42°,则∠OGA=________;(3)将(2)中的“∠OBA=42°”改为“∠OBA= ”,其它条件不变,求∠OGA的度数.(用含的代数式表示)(4)若OE将∠BOA分成1︰2两部分,AF平分∠BAD,∠ABO= (30°< α <90°),求∠OGA的度数.(用含的代数式表示)【答案】(1)21°(2)14°(3)解:∵∠BOA=90°,∠OBA=α,∴∠BAD=∠BOA+∠ABO=90°+α,∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD∴∠GAD=30°+ α,∠EOA=30°,∴∠OGA=∠GAD−∠EOA= α.(4)解:当∠EOD:∠COE=1:2时,∴∠EOD=30°,∵∠BAD=∠ABO+∠BOA=α+90°,∵AF平分∠BAD,∴∠FAD= ∠BAD,∵∠FAD=∠EOD+∠OGA,∴2×30°+2∠OGA=α+90°,∴∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得到∠OGA= α−15°,即∠OGA的度数为α+15°或α−15°.【解析】解:(1)∵∠BOA=90°,∠OBA=42°,∴∠BAD=∠BOA+∠ABO=132°,∵AF平分∠BAD,OE平分∠BOA,∠BOA=90°,∴∠GAD= ∠BAD=66°,∠EOA= ∠BOA=45°,∴∠OGA=∠GAD−∠EOA=66°−45°=21°;故答案为21°;⑵∵∠BOA=90°,∠OBA=42°,∴∠BAD=∠BOA+∠ABO=132°,∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD,∴∠GAD=44°,∠EOA=30°,∴∠OGA=∠GAD−∠EOA=44°−30°=14°;故答案为14°;【分析】(1)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(2)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(3)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(4)讨论:当∠EOD:∠COE=1:2时,利用∠BAD=∠ABO+∠BOA=α+90°,∠FAD=∠EOD+∠OGA得到2×30°+2∠OGA=α+90°,则∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得∠OGA= α-15°.3.如图,点C在∠AOB的边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.(1)若∠O=40°,求∠ECF的度数;(2)试说明CG平分∠OCD;(3)当∠O为多少度时,CD平分∠OCF?并说明理由.【答案】(1)解:∵DE//OB ,∴∠O=∠ACE,(两直线平行,同位角相等)∵∠O =40°,∴∠ACE =40°,∵∠ACD+∠ACE= (平角定义)∴∠ACD=又∵CF平分∠ACD ,∴ (角平分线定义)∴∠ECF=(2)证明:∵CG⊥CF,∴ .∴又∵)∴∵∴ (等角的余角相等)即CG平分∠OCD(3)解:结论:当∠O=60°时,CD平分∠OCF .当∠O=60°时∵DE//OB,∴∠DCO=∠O=60°.∴∠ACD=120°.又∵CF平分∠ACD∴∠DCF=60°,∴即CD平分∠OCF【解析】【分析】(1)根据平行线“两直线平行,同位角相等”,求得∠ACE=40°,根据平角的定义以及CF平分∠ACD ,可得到∠ACF=70°,然后求出∠ECF的度数;(2)根据∠DCG+∠DCF=90°,∠GCO+∠FCA=90°,以及∠ACF=∠DCF,可得到∠GCO =∠GCD,即可证明CG平分∠OCD;(3)根据两直线平行,内错角相等得出∠DCO=∠O=60°,根据角平分线可得到∠DCF=60°,以此可得∠DCO=∠DCF,即CD平分∠OCF.4.如图1,直线MN与直线AB,CD分别交于点E,F,∠1与∠2互补(1)试判断直线AB与直线CD的位置关系,并说明理由(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH(3)如图3,在(2)的条件下,连结PH,在GH上取一点K,使得∠PKG=2∠HPK,过点P 作PQ平分∠EPK交EF于点Q,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.(温馨提示:三角形的三个内角和为180°.)【答案】(1)解:如图,∵∠1和∠2互补,∠2和∠3互补,∴∠1=∠3∴AB∥CD(2)解:如图,由(1)得AB∥CD,∴∠BEF+∠EFD=180°又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF∵GH⊥EG,∴PF∥GH.(3)解:∠HPQ的大小不发生变化,理由如下:∵EG⊥HG,∴∠KGP=90°∴∠EPK=180°-∠4=180°-(180-∠3-∠KGP)=90°+∠3∵∠3=2∠6,∴∠EPK=90°+2∠6∵PQ平分∠EPK,∴∠QPK= ∠EPK=45°+∠6∴∠HPQ=∠QPK-∠6=45°∴∠HPQ的大小不发生变化,一直是45°【解析】【分析】(1)利用邻补角的定义可证得∠2与∠3互补,再根据同角的补角相等,可证得∠1=∠3,然后利用同位角相等,两直线平行,可证得结论。

七年级数学上册平面图形的认识(一)单元测试与练习(word解析版)

七年级数学上册平面图形的认识(一)单元测试与练习(word解析版)

一、初一数学几何模型部分解答题压轴题精选(难)1.感知:如图①,∠ACD为△ABC的外角,易得∠ACD=∠A+∠B(不需证明) ;(1)探究:如图②,在四边形ABDC中,试探究∠BDC与∠A、∠B.、∠C之间的关系,并说明理由;(2)应用:如图③,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ 恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=________度;(直接填答案,不需证明) (3)拓展:如图④,BE平分∠ABD,CE平分∠ACD,若∠BAC=100°,∠BDC=150°,则∠BEC=________度. (直接填答案,不需证明)【答案】(1)解:如图5,连接AD并延长至点F.∵∠BDF为△ABD的外角,∴∠BDF=∠BAD+∠B,同理可得∠CDF=∠CAD+∠C,∴∠BDF+∠CDF=∠BAD+∠B+∠CAD+∠C,即∠BDC=∠BAC+∠B+∠C;(2)40°(3)125°【解析】【解答】解:(2)由题意可得∠BXC=90°,由(1)中结论可得∠BXC=∠A+∠ABX+∠ACX,∵∠A=50°,∴∠ABX+∠ACX=90°-50°=40°;(3)如图6,∵∠A=100°,∠BDC=150°,∠BDC=∠A+∠ABD+∠ACD,∴∠ABD+∠ACD=150°-100°=50°,∵BE平分∠ABD,CE平分∠ACD,∴∠ABE+∠ACE= (∠ABD+∠ACD)=25°,又∵∠BEC=∠A+∠ABE+∠ACE,∴∠BEC=100°+25°=125°.【分析】(1)如图5,连接AD并延长至F,然后利用三角形外角的性质进行分析证明即可得到∠BDC=∠BAC+∠B+∠C;(2)由题意可知∠BXC=90°,结合∠A=50°和(1)中所得结论即可得到∠ABX+∠ACX=90°-50°=40°;(3)如图6,利用(1)中所得结论结合已知条件进行分析解答即可.2.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(2)若△ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.【答案】(1)解:不变化.理由:∵AP和BP分别是∠BAO和∠ABO的平分线,∠AOB=90°,∴∠APB=180°(∠OAB+∠ABO)=180° ×90°=135°(2)解:都不变.理由:∵AQ和BQ分别是∠BAO的邻补角和∠ABO的邻补角的平分线,AP和BP分别是∠BAO和∠ABO的平分线,∴∠CAQ=∠QBP=90°,又∠APB=135°,∴∠Q=45°,∴∠C=45°【解析】【分析】根据角平分线定义和三角形内角和定理得到∠APB=180° −(∠OAB+∠ABO);根据邻补角的平分线互相垂直,得到∠CAQ=∠QBP=90°,由∠APB的度数,求出∠Q和∠C的度数.3.如图①,△ABC的角平分线BD,CE相交于点P.(1)如果∠A=80∘,求∠BPC= ________.(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示)________.(3)将直线MN绕点P旋转。

人教版七年级上册数学 平面图形的认识(一)单元测试与练习(word解析版)

人教版七年级上册数学 平面图形的认识(一)单元测试与练习(word解析版)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由.(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;【答案】(1)90°(2)解:如图,分别过点E,F作EM∥AB,FN∥AB∴EM∥AB∥FN∴∠B=∠BEM=30°,∠MEF=∠EFN又∵AB∥CD,AB∥FN∴CD∥FN∴∠D+∠DFN=180°又∵∠D =120°∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°∴∠EFD=∠MEF +60°∴∠EFD=∠BEF+30°(3)解:如图,过点F作FH∥EP由(2)知,∠EFD=∠BEF+30°设∠BEF=2x°,则∠EFD=(2x+30)°∵EP平分∠BEF,GF平分∠EFD∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°∵FH∥EP∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠BEF+30°=90°.【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.2.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.【答案】(1)25°(2)解:∠BOC=65°,OC平分∠MOB∠MOB=2∠BOC=130°∠BON=∠MOB-∠MON=130°-90°=40°∠CON=∠COB-∠BON=65°-40°=25°(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°∠AOC=∠AOB-∠BOC=180°-65°=115°∠MON=90°∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°4∠NOC+∠NOC=25°∠NOC=5°∠NOB=∠NOC+∠BOC=70°【解析】【解答】解:(1)∠MON=90,∠BOC=65°∠MOC=∠MON-∠BOC=90°-65°=25°【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.3.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.(1)若,,求∠D的度数;(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.【答案】(1)解:∵BD平分∠ABC,∴∠CBD= ∠ABC= ×75°=37.5°,∵CD平分△ABC的外角,∴∠DCA= (180°-∠ACB)= (180°-45°)=67.5°,∴∠D=180°-∠DBC-∠DCB=180°-37.5°-67.5°-45°=30°.(2)解:猜想:∠ D = ( ∠ M + ∠ N − 180 ° ).∵∠M+∠N+∠CBM+∠NCB=360°,∴∠D=180°- ∠CBM-∠NCB- ∠NCE.=180°- (360°-∠NCB-∠M-∠N)- ∠NCB- ∠NCE.=180°-180°+ ∠NCB+ ∠M+ ∠N-∠NCB- ∠NCE.= ∠M+ ∠N- ∠NCB- ∠NCE= ,或写成【解析】【分析】(1)根据角平分线的定义可得∠DBC=37.5°,根据邻补角定义以及角平分线定义求得∠DCA的度数为67.5°,最后根据三角形内角和定理即可求得∠D的度数;(2)由四边形内角和与角平分线性质即可求解.4.已知BM、CN分别是△的两个外角的角平分线,、分别是和的角平分线,如图①;、分别是和的三等分线(即,),如图②;依此画图,、分别是和的n等分线(即,),,且为整数.图①图②(1)若,求的度数;(2)设,请用和n的代数式表示的大小,并写出表示的过程;(3)当时,请直接写出 + 与的数量关系.【答案】(1)解:,∵、分别是和的角平分线,∴∴(2)解:在△中, + ,,(3)解:【解析】【分析】(1)先根据三角形内角和定理求出,根据角平分线求出,再根据三角形内角和定理求出即可;(2)先根据三角形内角和定理求出 + ,根据n等分线求出,再根据三角形内角和定理得出,代入求出即可.(3)本题以三角形为载体,主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质、角平分线的性质、三角形的内角和是的性质,熟记性质然灵活运用有关性质来分析、推理、解答是解题的关键.5.如图1,点A、B分别在数轴原点O的左右两侧,且 OA+50=OB,点B对应数是90.(1)求A点对应的数;(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.【答案】(1)解:如图1,∵点B对应数是90,∴OB=90.又∵ OA+50=OB,即 OA+50=90,∴OA=120.∴点A所对应的数是﹣120(2)解:依题意得,MN=|(﹣120+7t)﹣2t|=|﹣120+5t|,PM=|2t﹣(90﹣8t)|=|10t﹣90|,又∵MN=PM,∴|﹣120+5t|=|10t﹣90|,∴﹣120+5t=10t﹣90或﹣120+5t=﹣(10t﹣90)解得t=﹣6或t=14,∵t≥0,∴t=14,点M、N之间的距离等于点P、M之间的距离(3)解:依题意得RQ=( 45+4t)﹣(﹣60﹣4.5t)=105+8.5t,RO=45+4t,PN=(90+8t)﹣(﹣120﹣7t)=210+15t,则22RQ﹣28RO﹣5PN=22(105+8.5t)﹣28(45+4t)﹣5(210+15t)=0【解析】【分析】(1)根据点B对应的数求得OB的长度,结合已知条件和图形来求点A 所对应的数;(2)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t;(3)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t,并求出RQ,RO 及PN,再求出22RQ﹣28RO﹣5PN的值.6.如图,已知,在的右侧,平分,平分,,所在直线交于点.(1)求的度数.(2)若,求的度数(用含的代数式表示).(3)将线段沿方向平移,使得点在点的右侧,其他条件不变,在图中画出平移后的图形,并判断的度数是否发生改变?若改变,求出它的度数(用含的式子表示);若不改变,请说明理由.【答案】(1)解:∵平分,,.(2)解:如图,过点作∵,,, .∵平分,平分,,,,,..(3)解:如图2为平移后的图形.的度数发生了改变.过点作,平分,平分,,,, .∵,,,,.【解析】【分析】(1)根据角平分线的定义即可求∠EDC的度数;(2)过点E作EF∥AB,根据平行于同一直线的两条直线互相平行得出AB∥CD∥EF,然后根据两直线平行内错角相等,即可求∠BED的度数;(3)∠BED的度数改变.过点E作EF∥AB,先由角平分线的定义可得:∠ABE=∠ABC,∠CDE=∠ADC,然后根据两直线平行内错角相等及同旁内角互补可得:,进而可由求得答案.7.如图1,在△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于点A1,(1)分别计算:当∠A分别为700、800时,求∠A1的度数.(2)根据(1)中的计算结果,写出∠A与∠A1之间的数量关系________.(3)∠A1BC的角平分线与∠A1CD的角平分线交于点A2,∠A2BC的角平分线与∠A2CD的角平分线交于点A3,如此继续下去可得A4,…,∠A n,请写出∠A5与∠A的数量关系________.(4)如图2,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时,有下面两个结论:①∠Q+∠A1的值为定值;②∠D-∠A1的值为定值.其中有且只有一个是正确,请写出正确结论,并求出其值.【答案】(1)解:∵A1C、A1B分别是∠ACD、∠ABC的角平分线∴∠A1BC= ∠ABC,∠A1CD= ∠ACD由三角形的外角性质知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,即:∠A1= (∠ACD-∠ABC)= ∠A;当∠A=70°时,∠A1=35°;当∠A=80°,∠A1=40°(2)∠A=2∠A1(3)∠A5= ∠A(4)解:△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°-∠Q),化简得:∠A1+∠Q=180°故①的结论是正确,且这个定值为180°【解析】【解答】解:(2)由(1)可知∠A1== ∠A即∠A=2∠A1(3)同(1)可求得:∠A2= ∠A1= ∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A;当n=5时,∠A5= ∠A= ∠A【分析】(1)由三角形的外角性质易知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,而∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1,可得∠A1= (∠ACD-∠ABC)= ∠A(2)根据(1)可得到∠A=2∠A1(3)根据(1)可得到∠A2= ∠A1=∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A,根据这个规律即可解题.(4)用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.8.请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型一“猪蹄模型”.即已知:如图1,,为、之间一点,连接,得到 .求证:小明笔记上写出的证明过程如下:证明:过点作,∴∵,∴∴ .∵∴请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.(1)如图,若,,则 ________.(2)如图,,平分,平分,,则________.【答案】(1)240°(2)51°【解析】【解答】(1)解:作EM∥AB,FN∥CD,如图,AB∥CD,∴AB∥EM∥FN∥CD,∴∠B=∠1,∠2=∠3,∠4+∠C=180°,∴∠B+∠CFE+∠C=∠1+∠3+∠4+∠C=∠BEF+∠4+∠C=∠BEF +180°,∵,∴∠B+∠CFE+∠C=60°+180°=240°;(2)解:如图,分别过G、H作AB的平行线MN和RS,∵平分,平分,∴∠ABE= ∠ABG,∠SHC=∠DCF= ∠DCG,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE= ∠ABG,∠SHC=∠DCF= ∠DCG,∠NGB+∠ABG=∠MGC+∠DCG=180°,∴∠BHC=180°-∠RHB-∠SHC=180°- (∠ABG+∠DCG),∠BGC=180°-∠NGB-∠MGC=180°-(180°-∠ABG)-(180°-∠DCG)=∠ABG+∠DCG-180°,∴∠BGC=360°-2∠BHC-180°=180°-2∠BHC,又∵∠BGC=∠BHC+27°,∴180°-2∠BHC=∠BHC+27°,∴∠BHC =51°.【分析】(1)作EM∥AB,FN∥CD,如图,根据平行线的性质得AB∥EM∥FN∥CD,所以∠B=∠1,∠2=∠3,∠4+∠C=180°,然后利用等量代换计算∠B+∠F+∠C;(2)分别过G、H作AB的平行线MN和RS,根据平行线的性质和角平分线的性质可用∠ABG和∠DCG 分别表示出∠H和∠G,从而可找到∠H和∠G的关系,结合条件可求得∠H.9.如图,AD∥BC,∠B=∠D=50°,点E、F在BC上,且满足∠CAD=∠CAE,AF平分∠BAE.(1)∠CAF=________°;(2)若平行移动CD,那么∠ACB与∠AEB度数的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(3)在平行移动CD的过程中,是否存在某种情况,使∠AFB=∠ACD?若存在,求出∠ACD度数;若不存在,说明理由.【答案】(1)65(2)解:若平行移动CD,那么∠ACB与∠AEB度数的比值不发生变化.∵AD∥BC,∴∠DAC=∠ACB∵∠CAD=∠CAE∴∠ACB=∠CAE∴∠AEB=∠CAE+∠ACB=2∠ACB即∠ACB:∠AEB=1:2所以,∠ACB与∠AEB度数的比值是:1:2(3)解:存在∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=∠D∴∠D+∠BAD=180°∴AB∥CD∴∠AFB=∠DAF=∠DAC+∠CAF∠ACD=∠CAB=∠BAF+∠CAF∵∠AFB=∠ACD∴∠DAC+∠CAF=∠BAF+∠CAF∴∠DAC=∠BAF∴∠DAC=∠BAF=∠CAE=∠EAF= ∠BAD= ×130°=32.5°∴∠ACD= ∠CAB=∠BAF+∠CAF =3∠DAC=3×32.5°=97.5°【解析】【解答】解:(1)∵AF平分∠BAE,∴∠BAF=∠EAF= ∠BAE,∵∠CAD=∠CAE∴∠CAD=∠CAE= ∠DAE∴∠CAF=∠EAF+∠CAE= ∠BAE+ ∠DAE= ∠BAD∵AD∥BC,∠B=∠D=50°,∴∠BAD=180-∠B=130°,∴∠CAF=65°【分析】(1)根据角平分线的性质可得∠CAF=∠EAF+∠CAE= ∠BAE+ ∠DAE= ∠BAD,再根据平行线的性质得∠BAD =180-∠B,从而得出答案;(2)根据平行线的性质得∠DAC=∠ACB,再由∠CAD=∠CAE,可知∠ACB=∠CAE,从而可得∠AEB =2∠ACB,即可得出答案;(3)根据平行线的性质得∠AFB=∠DAF=∠DAC+∠CAF,∠ACD=∠CAB=∠BAF+∠CAF,再由平行线的性质可得∠BAD=130°,即可求出答案10.如图 1,直线分别交于点 (点在点的右侧),若(1)求证: ;(2)如图2所示,点在之间,且位于的异侧,连,若,则三个角之间存在何种数量关系,并说明理由.(3)如图 3 所示,点在线段上,点在直线的下方,点是直线上一点(在的左侧),连接 ,若 ,则请直接写出与之间的数量【答案】(1)证明:∵∠1=∠BEF,∴∠BEF+∠2=180°∴AB∥CD.(2)解:设∠N= ,∠M= ,∠AEM= ,∠NFD=过M作MP∥AB,过N作NQ∥AB∵,MP∥AB,NQ∥AB∴MP∥NQ∥AB∥CD∴∠EMP= ,∠FNQ=∴∠PMN= - ,∠QNM= -∴ - = -即 = -∴故答案为(3)解:∠N+∠PMH=180°过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.∵,MI∥AB,NQ∥CD∴AB∥MI∥NQ∥CD∴∠BPM=∠PMI∵∠MPN=2∠MPB∴∠MPN=2∠PMI∴∠MON=∠MPN+∠PMI=3∠PMI∵∠NFH=2∠HFD∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD∵∠RFN=∠HFD∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM∴∠MON+∠PRF+∠RFM=360°-∠OMF即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH∵3∠PMI+∠PNH=180°∴3∠PMI+∠FNP+∠FNH=180°∵3∠RFM+∠FNH=180°∴3∠PMI-3∠RFM+∠FNP=0°即∠RFM-∠PMI= ∠FNP∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH∠FNP-2× ∠FNP=180°-∠PMH∠FNP=180°-∠PMH即∠N+∠PMH=180°故答案为∠N+∠PMH=180°【解析】【分析】(1)根据同旁内角互补,两直线平行即可判定AB∥CD;(2)设∠N= ,∠M= ,∠AEM= ,∠NFD= ,过M作MP∥AB,过N作NQ∥AB可得∠PMN= - ,∠QNM= - ,根据平行线性质得到 - = - ,化简即可得到;(3)过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R,根据平行线的性质可得∠BPM=∠PMI,由已知得到∠MON=∠MPN+∠PMI=3∠PMI及∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH,根据平行线的性质得到3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-∠PMI= ∠FNP,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH,即得到∠FNP=180°-∠PMH,即∠N+∠PMH=180°.11.以直线上点为端点作射线,使,将直角的直角顶点放在点处.(1)若直角的边在射线上(图①),求的度数;(2)将直角绕点按逆时针方向转动,使得所在射线平分(图②),说明所在射线是的平分线;(3)将直角绕点按逆时针方向转动到某个位置时,恰好使得(图③),求的度数.【答案】(1)解:∵,又∵,∴ .(2)解:∵平分,∴,∵,∴,,∴,∴所在直线是的平分线.(3)解:设,则,∵,,①若∠COD在∠BOC的外部,∴,解得x=10,∴∠COD=10°,∴∠BOD=60°+10°=70°;②若∠COD在∠BOC的内部,,解得x=30,∴∠COD=30°,∴∠BOD=60°-30°=30°;即或,∴或 .【解析】【分析】(1)代入∠BOE=∠COE+∠COB求出即可;(2)求出∠AOE=∠COE,根据∠DOE=90°求出∠AOE+∠DOB=90°,∠COE+∠COD=90°,推出∠COD=∠DOB,即可得出答案;(3)要分情况讨论,一种是∠COD在∠BOC的内部,另一种是∠COD在∠BOC的外部,再根据平角等于180°可通过列方程求出即可.12.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC=50°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方。

七年级上册数学 平面图形的认识(一)章末训练(Word版 含解析)

七年级上册数学 平面图形的认识(一)章末训练(Word版 含解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图1,直线MN与直线AB,CD分别交于点E,F,∠1与∠2互补(1)试判断直线AB与直线CD的位置关系,并说明理由(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH(3)如图3,在(2)的条件下,连结PH,在GH上取一点K,使得∠PKG=2∠HPK,过点P 作PQ平分∠EPK交EF于点Q,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.(温馨提示:三角形的三个内角和为180°.)【答案】(1)解:如图,∵∠1和∠2互补,∠2和∠3互补,∴∠1=∠3∴AB∥CD(2)解:如图,由(1)得AB∥CD,∴∠BEF+∠EFD=180°又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF∵GH⊥EG,∴PF∥GH.(3)解:∠HPQ的大小不发生变化,理由如下:∵EG⊥HG,∴∠KGP=90°∴∠EPK=180°-∠4=180°-(180-∠3-∠KGP)=90°+∠3∵∠3=2∠6,∴∠EPK=90°+2∠6∵PQ平分∠EPK,∴∠QPK= ∠EPK=45°+∠6∴∠HPQ=∠QPK-∠6=45°∴∠HPQ的大小不发生变化,一直是45°【解析】【分析】(1)利用邻补角的定义可证得∠2与∠3互补,再根据同角的补角相等,可证得∠1=∠3,然后利用同位角相等,两直线平行,可证得结论。

(2)利用两直线平行,同旁内角互补,可证得∠BEF+∠EFD=180°,再利用角平分线的定义去证明∠EPF=90°可得到EG⊥PF,然后利用同垂直于一条直线的两直线平行,可证得结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.如图 1,△ ABC 中,∠ ABC=∠ BAC,D 是 BC 延长线上一动点,连接 AD,AE 平分∠ CAD 交 CD 于点 E,过点 E 作 EH⊥AB,垂足为点 H.直线 EH 与直线 AC 相交于点 F.设∠ AEH=
,∠ ADC= .
(1)求证:∠ EFC=∠ FEC; (2)①若∠ B=30°,∠ CAD=50°,则 =________, =________; ②试探究 与 的关系,并说明理由; (3)若将“D 是 BC 延长线上一动点”改为“D 是 CB 延长线上一动点”,其它条件不变,请在 图 2 中补全图形,并直接写出 与 的关系. 【答案】 (1)证明:∵ ∠ ABC=∠ BAC,EH⊥AB. ∴ ∠ EFC=∠ AFH=90°-∠ BAC,∠ FEC=90°-∠ ABC, ∴ ∠ EFC=∠ FEC.
【答案】 (1)90° (2)解:如图,分别过点 E,F 作 EM∥ AB,FN∥ AB
∴ EM∥ AB∥ FN ∴ ∠ B=∠ BEM=30°,∠ MEF=∠ EFN 又∵ AB∥ CD,AB∥ FN ∴ CD∥ FN ∴ ∠ D+∠ DFN=180° 又∵ ∠ D =120° ∴ ∠ DFN=60° ∴ ∠ BEF=∠ MEF+30°,∠ EFD=∠ EFN+60° ∴ ∠ EFD=∠ MEF +60° ∴ ∠ EFD=∠ BEF+30° (3)解:如图,过点 F 作 FH∥ EP


.


.

.
【解析】【解答】解:(2)①∵ ∠ CAD=50°,AE 平分∠ CAD, ∴ ∠ =∠ AFH-∠ EAC=90°-∠ BAC-∠ EAC=90°-30°-25°=35°. ∵ ∠ ACB=∠ ABC+∠ BAC=60°,∠ CAD=50°, ∴ ∠ =180°-∠ ACB-∠ CAD=180°-60°-50°=70°. 故答案为:35°,70°. 【分析】(1)利用等角的余角相等的性质证明即可.(2)①利用外角定理和角平分线的性质求 解即可;②分别用∠ 和∠ 表示出∠ AEC 即可解.(3)画出图形,将所有的角度集中在△ CEF 的内角和上,列出等式求解即可.
4.如图 ,已知 直线交于点.
, 在 的右侧, 平分
, 平分
, , 所在
(1)求
的度数.
(2)若
,求
的度数(用含 的代数式表示).
(3)将线段 沿 方向平移,使得点 在点 的右侧,其他条件不变,在图 中画出平
2. 综合题
(1)如图,已知点 C 在线段 AB 上,且 AC=6cm,BC=4cm,点 M、N 分别是 AC、BC 的中 点,求线段 MN 的长度.
(2)对于(1)问,如果我们这样叙述:“已知点 C 在直线 AB 上,且 AC=6cm,BC=4cm, 点 M、N 分别是 AC,BC 的中点,求线段 MN 的长度.”结果会有变化吗?如果有,求出结 果;如果没有,说明理由. 【答案】 (1)解:∵ AC=6cm,且 M 是 AC 的中点,
∴ MC= AC= 6=3cm, 同理:CN=2cm, ∴ MN=MC+CN=3cm+2cm=5cm, ∴ 线 上,由(1)得 MN=5cm, 当 C 在线段 AB 的延长线上时,
∵ AC=6cm,且 M 是 AC 的中点
∴ MC= AC= ×6=3cm, 同理:CN=2cm, ∴ MN=MC﹣CN=3cm﹣2cm=1cm, ∴ 当 C 在直线 AB 上时,线段 MN 的长度是 5cm 或 1cm. 【解析】【分析】(1)根据线段的中点定义,由 M 是 AC 的中点,求出 MC、CN 的值, 得到 MN=MC+CN 的值;(2)当点 C 在线段 AB 上,由(1)得 MN 的值;当 C 在线段 AB 的延长线上时,再由 M 是 AC 的中点,求出 MC、CN 的值,得到 MN=MC﹣CN 的值.
一、初一数学几何模型部分解答题压轴题精选(难)
1.如图下图所示,已知 AB//CD, ∠ B=30°,∠ D=120°;
(1)若∠ E=60°,则∠ F=________; (2)请探索∠ E 与∠ F 之间满足的数量关系?说明理由. (3)如下图所示,已知 EP 平分∠ BEF,FG 平分∠ EFD,反向延长 FG 交 EP 于点 P,求∠ P 的度数;
( 2 ) 35° ; 70° ; 解 : ②
, 又∵

.∴
(3)解:图形如下:
, 理 由 如 下 : 由 (1) 可 知 : ,
.
∵ ∠ ABC=∠ BAC,∠ BHE=90°-∠ ABC,∠ F=90°-∠ BAC,

.
又∵

∴ 在△ CEF 中有:∠ ECF+2∠ CEF=180°,

.
.
∵ 2∠ EAC=∠ DAC,
由(2)知,∠ EFD=∠ BEF+30° 设∠ BEF=2x°,则∠ EFD=(2x+30)° ∵ EP 平分∠ BEF,GF 平分∠ EFD
∴ ∠ PEF= ∠ BEF=x°,∠ EFG= ∠ EFD=(x+15)° ∵ FH∥ EP ∴ ∠ PEF=∠ EFH=x°,∠ P=∠ HFG ∵ ∠ HFG=∠ EFG-∠ EFH=15° ∴ ∠ P=15° 【解析】【解答】解:(1)分别过点 E、F 作 EM∥ AB,FN∥ AB,则有 AB∥ EM∥ FN∥ CD. ∴ ∠ B=∠ BEM=30°,∠ MEF=∠ EFN,∠ DFN=180°-∠ CDF=60°, ∴ ∠ BEF=∠ MEF+30°,∠ EFD=∠ EFN+60°, ∴ ∠ EFD=∠ BEF+30°=90°. 【分析】(1)分别过点 E、F 作 AB 的平行线,根据平行线的性质即可求解; (2)根据平行线的性质可得∠ DFN=60°,∠ BEM=30°,∠ MEF=∠ NFE,即可得到结论; (3)过点 F 作 FH∥ EP,设∠ BEF=2x°,根据(2)中结论即可表示出∠ BFD,根据角平分线 的定义可得∠ PEF=x°,∠ EFG=(x+15)°,再根据平行线的性质即可得到结论.
相关文档
最新文档