全等三角形判定5
三角形全等的判定(五)HL判定方法专题训练

’
.
.
AA8 △AC S S , E D( A )
廖 :C D.
.
.
‘ ‘ . .
.
。
ACB + EAC =9 。. B 0 AC + C D =9 。 0.
工AC日= &4 . G
’
( ) 立 , 由略 . 2成 理 三 角形 全等 的判 定 ( )S 判定 方法专 题训 练 ( 三 A A 题在 第 2 1页 )
‘
. .
义 . E l 。D 为公 共 边 . D △C E(S ) ‘ △B E D SS. 三 角形全 等的 判定 ( ) A 二 S S判 定方 法专 题训 练 ( 题在 第 1 9页 )
夯 实 基 础
1 ( )S . 1S S
2. 3 C B .
BC =ED.
5 △BO . A
又 ’AB=AC.‘△ADC △AE& . ‘ . .
. .
1 C 2 AD=A . . E或 c D:船 或 C A= B D 3 由 3= /4.可 得 ZA D = /AB AB 为 公 共 边 . . - . _B - C, 工2=
2 C ∥曰 . E 提 示 :. 上 D F A . E B= F B ‘ A ,D上 D, . A D ’ J
=9 0。,. AB = C ,’ C = BD. 又 . C = BF . 。 ‘ D . . ’
‘ .
.
7 南 已 知 可 得 到 △A曰 . E
.
.
5..CD 上AB .. ADC:9 。 ’ ‘ . ’ O.
‘ ‘
夯 实 基 础
B 2. D
三角形全等的判定方法(5种)例题+练习(全面)

教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1 边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”. 注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在∆ABC和∆ABD中,∠A=∠A,AB=AB,BC=BD,显然这两个三角形不全等. 例1 如图,AC=AD,∠CAB=∠DAB,求证:∆ACB≌∆ADB.例2 如图,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF求证:BF=CE.例3.(1)如图①,根据“SAS”,如果BD=CE, = ,那么即可判定△BDC≌△CEB;(2) 如图②,已知BC=EC,∠BCE=ACD,要使△ABC≌△DEC,则应添加的一个条件为例4.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌,理由是;△ABE≌,理由是.例5.如图,在△ABC和△DEF中,如果AB=DE,BC=EF,只要找出∠ =∠或∥,就可得到△ABC≌△DEF.例6.如图,已知AB∥DE,AB=DE,BF=CE,求证:△ABC≌△DEF.例7.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E例8.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在△ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E,F,连接CE,BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是:.(不添加辅助线)例2.如图,已知AD平分∠BAC,且∠ABD=∠ACD,则由“AAS”可直接判定△≌△.例3.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,那么AE= cm.例4.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.例5.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证:BC=DC.例6.如图,在△ABC中,D是BC边上的点 (不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE.请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1) 你添加的条件是:;(2) 证明:例7.如图,A在DE上,F在AB上,且BC=DC,∠1=∠2=∠3,则DE的长等于 ( ) A.DC B.BCC.AB D.AE+AC【基础训练】1.如图,已知AB=DC,∠ABC=∠DCB,则有△ABC≌_______,理由是_______;且有∠ACB=_______,AC=_______.2.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌_______,理由是_______;△ABF≌_______,理由是_______.3.如图,在△ABC和△BAD中,因为AB=BA,∠ABC=∠BAD,_______=_______,根据“SAS”可以得到△ABC≌△BAD.4.如图,要用“SAS”证△ABC≌△ADE,若AB=AD,AC=AE,则还需条件( ).A.∠B=∠D B∠C=∠EC.∠1=∠2 D.∠3=∠45.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).A.60°B.50°C.45°D.30°6.如图,如果AE=CF,AD∥BC,AD=CB,那么△ADF和ACBE全等吗?请说明理由.7.如图,已知AD与BC相交于点O,∠CAB=∠DBA,AC=BD.求证:(1)∠C=∠D;(2)△AOC≌△BOD.8.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.9.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.10.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.A BC DEF角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS ”. 例1、如图,在△ABC 中,∠ABC =45°,H 是高AD 和高BE 的交点,试说明BH =AC .例2、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm . 求BE 的长.例3、如图, 在△ABC 中, AC ⊥BC, CE ⊥AB 于E, AF 平分∠CAB 交CE 于点F, 过F 作FD ∥BC 交AB 于点D. 求证:AC =AD.例4、如图, 在ABC中, ∠A=90°, BD平分B, DE⊥BC于E, 且BE=EC,(1)求∠ABC与∠C的度数;(2)求证:BC=2AB.边边边三边分别相等的两个三角形全等,可以简写成“边边边”或“SSS”.例1、如图,在四边形ABCD中,AB=CB,AD=CD.你能说明∠C=∠A吗? 试一试.例2、如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中.BE和DE是否相等? 若相等,请写出证明过程;若不相等,请说明理由.例3.如图,AB=CD ,AE=CF ,BO=DO ,EO=FO .求证:OC=OA .斜边、直角边斜边和一条直角边分别相等的两个直角三角形全等,可以简写成“斜边、直角边”或“HL ”。
全等三角形的判定方法

全等三角形的判定方法
1.两个三角形的三边分别相等。
2.两个三角形的两个角分别相等,且它们夹的两边也分别相等。
3.两个三角形的一个角相等,且两个角的夹的两边也分别相等。
4.两个三角形的两个角相等,且它们夹的两边分别相等。
5.两个三角形的一个角相等,且两个角的夹的两边分别相等。
6.两个三角形的两个边分别相等,且它们夹的角相等。
7.两个三角形的一边相等,且两个边的夹的角相等。
8.两个三角形的两边分别相等,且它们夹的一个角相等。
9.两个三角形的一边相等,且两个边的夹的一个角相等。
10.两个三角形的一角相等,且两个角的夹的一边也分别相等。
三角形全等的判定(6种题型)-2023年新八年级数学核心知识点与常见题型(浙教版)(解析版)

三角形全等的判定(6种题型)【知识梳理】一、全等三角形判定——“边边边”全等三角形判定——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .二、全等三角形判定——“边角边”1. 全等三角形判定——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.三、垂直平分线:1.定义:垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线,简称中垂线.2.性质定理:线段垂直平分线上的点到线段两端的距离相等四、全等三角形判定——“角边角”全等三角形判定——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .五、全等三角形判定——“角角边” 1.全等三角形判定——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.六、角平分线的性质定理:角平分线上的点到角两边的距离相等.【考点剖析】题型一、全等三角形的判定——“边边边”例1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边 ∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 用全等三角形的性质和判定.【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.【答案】证明:连接DC ,在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边 ∴△ACD≌△BDC(SSS )∴∠CAD =∠DBC (全等三角形对应角相等)【变式2】、如图,在△ABC 和△ADE 中,AB =AC ,AD =AE ,BD =CE ,求证:∠BAD =∠CAE.【答案与解析】证明:在△ABD 和△ACE 中,AB AC AD AE BD CE =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACE (SSS )∴∠BAD =∠CAE (全等三角形对应角相等).【总结升华】把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的判定和性质. 要证∠BAD =∠CAE ,先找出这两个角所在的三角形分别是△BDA 和△CAE ,然后证这两个三角形全等.题型二、全等三角形的判定——“边角边”例2、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .【思路点拨】由条件AB =AD ,AC =AE ,需要找夹角∠BAC 与∠DAE ,夹角可由等量代换证得相等.【答案与解析】证明: ∵∠1=∠2∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠DAE在△ABC 和△ADE 中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (SAS )∴BC =DE (全等三角形对应边相等)【总结升华】证明角等的方法之一:利用等式的性质,等量加等量,还是等量.【变式】如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE ≌△CBD (SAS )∴AE =CD ,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC =90°∴AE ⊥CD例3、如图,AD 是△ABC 的中线,求证:AB +AC >2AD .【思路点拨】延长AD 到点E ,使AD =DE ,连接CE .通过证全等将AB 转化到△CEA 中,同时也构造出了2AD .利用三角形两边之和大于第三边解决问题.【答案与解析】证明:如图,延长AD 到点E ,使AD =DE ,连接CE .在△ABD 和△ECD 中,AD DE ADB EDC BD CD ⎧⎪∠∠⎨⎪⎩===.∴△ABD ≌△ECD (SAS ).∴AB =CE .∵AC +CE >AE ,∴AC +AB >AE =2AD .即AC +AB >.【总结升华】证明边的大小关系主要有两个思路:(1)两点之间线段最短;(2)三角形的两边之和大于第三边.要证明AB +AC >2AD ,如果归到一个三角形中,边的大小关系就是显然的,因此需要转移线段,构造全等三角形是转化线段的重要手段.可利用旋转变换,把△ABD 绕点D 逆时针旋转180°得到△CED ,也就把AB 转化到△CEA 中,同时也构造出了2AD .若题目中有中线,倍长中线,利用旋转变换构造全等三角形是一种重要方法.例4、已知,如图:在△ABC 中,∠B =2∠C ,AD ⊥BC ,求证:AB =CD -BD .【思路点拨】在DC 上取一点E ,使BD =DE ,则△ABD ≌△AED ,所以AB =AE ,只要再证出EC =AE 即可.【答案与解析】证明:在DC 上取一点E ,使BD =DE∵ AD ⊥BC ,∴∠ADB =∠ADE在△ABD 和△AED 中,BD DE ADB=ADE AD AD ⎧⎪⎨⎪⎩=∠∠=∴△ABD ≌△AED (SAS ).∴AB =AE ,∠B =∠AED .又∵∠B =2∠C =∠AED =∠C +∠EAC .∴∠C =∠EAC .∴AE =EC .∴AB =AE =EC =CD —DE =CD —BD .【总结升华】此题采用截长或补短方法.上升到解题思想,就是利用翻折变换,构造的全等三角形,把条件集中在基本图形里面,从而使问题加以解决.如图,要证明AB =CD -BD ,把CD -BD 转化为一条线段,可利用翻折变换,把△ABD 沿AD 翻折,使线段BD 运动到DC 上,从而构造出CD -BD ,并且也把∠B 转化为∠AEB ,从而拉近了与∠C 的关系.【变式】已知,如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,并且AE =12(AB +AD ), 求证:∠B +∠D =180°. AE D CB【答案】证明:在线段AE 上,截取EF =EB ,连接FC ,∵CE ⊥AB ,∴∠CEB =∠CEF =90°在△CBE 和△CFE 中,CEB CEF EC =EC EB EF =⎧⎪∠=∠⎨⎪⎩∴△CBE 和△CFE (SAS )∴∠B =∠CFE∵AE =12(AB +AD ),∴2AE = AB +AD ∴AD =2AE -AB∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中(AF AD FAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩角平分线定义)∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°.题型三、全等三角形的判定——“角边角”例5、已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.【变式】(2022•长安区一模)已知:点B 、E 、C 、F 在一条直线上,AB ∥DE ,AC ∥DF ,BE =CF .求证:△ABC ≌△DEF .【分析】先利用平行线的性质得到∠B=∠DEF,∠ACB=∠F,再证明BC=EF,然后根据“ASA”可判断△ABC≌△DEF.【解答】证明:∵AB∥DE,∴∠B=∠DEF,∵AC∥DF,∴∠ACB=∠F,∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,{∠B=∠DEF BC=EF∠ACB=∠F,∴△ABC≌△DEF(ASA).5种判定方法是解决问题的关键.选用哪一种判定方法,取决于题目中的已知条件.例6、如图,G是线段AB上一点,AC和DG相交于点E.请先作出∠ABC的平分线BF,交AC于点F;然后证明:当AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.【思路点拨】通过已知条件证明∠DAC=∠C,∠CBF=∠ADG,则可证△DAE≌△BCF【答案与解析】证明:∵AD∥BC,∴∠DAC=∠C∵BF平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中⎪⎩⎪⎨⎧∠=∠=∠=∠C DAC BCAD CBF ADG ∴△DAE≌△BCF(ASA )∴DE=BF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.【变式】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA )∴PM =HN题型四、全等三角形的判定——“角角边”例7.(2021秋•苏州期末)如图,在四边形ABCD 中,E 是对角线AC 上一点,AD ∥BC ,∠ADC =∠ACD ,∠CED +∠B =180°.求证:△ADE ≌△CAB .【分析】由等角对等边可得AC=AD,再由平行线的性质可得∠DAE=∠ACB,由∠CED+∠B=180°,∠CED+∠AED=180°,得∠AED=∠B,从而利用AAS可判定△ADE≌△CAB.【解答】证明:∵∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠DAE=∠ACB,∵∠CED+∠B=180°,∠CED+∠AED=180°,∴∠AED=∠B,在△ADE与△CAB中,{∠DAE=∠ACB ∠AED=∠BAD=AC,∴△ADE≌△CAB(AAS).【点评】本题主要考查全等三角形的判定,解答的关键是由已知条件得出相应的角或边的关系.例8、已知:如图,AB⊥AE,AD⊥,∠E=∠B,DE=CB.求证:AD=AC.【思路点拨】要证AC=AD,就是证含有这两个线段的三角形△BAC≌△EAD.【答案与解析】证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°∴∠CAD+∠DAB=∠BAE+∠DAB ,即∠BAC=∠EAD在△BAC和△EAD中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等. 题型五:线段的垂直平分线 例9.(2023秋·浙江杭州·八年级校考开学考试)如图所示,在ABC 中,8AC =,5BC =,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则BCE 的周长为( )A .13B .18C .10.5D .21【答案】A 【分析】根据线段垂直平分线的性质得到AE BE =,再将BCE 的周长转化为AC BC +的长,即可求解.【详解】解:DE 是AB 的垂直平分线,∴AE BE =,∴BCE 的周长为BE EC BC AE EC BC AC BC ++=++=+,8AC =,5BC =,∴BCE 的周长为8513AC BC +=+=,故选:A .【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键.【变式1】(2022秋·浙江温州·八年级校考期中)如图,点D 是ABC 边AC 的中点,过点D 作AC 的垂线交BC 于点E ,已知6AC =,ABC 的周长为14,则ABE 的周长是( )A .6B .14C .8D .20【答案】C 【分析】由题意可知:ED 垂直平分AC ,故EA EC =,结合6AC =,ABC 的周长为14,即可得出答案.【详解】解:∵点D 是ABC 边AC 的中点, ED AC ⊥,∴ED 垂直平分AC ,∴EA EC =,∵6AC =,ABC 的周长为14,∴1468AB BC +=−=,∴8AB BC AB BE EC AB BE AE +=++=++=,∴ABE 的周长是8.故选:C .【点睛】此题考查了垂直平分线的性质和判定,掌握垂直平分线的性质和判定是解题的关键.【答案】C 【分析】根据垂直平分线的性质可知,到A ,B ,C 表示三个居民小区距离相等的点,是AC ,BC 两边垂直平分线的交点,由此即可求解.【详解】解:如图所示,分别作AC ,BC 两边垂直平分线MN ,PQ 交于点O ,连接OA,OB,OC,∵MN,PQ是AC,BC两边垂直平分线,==,∴OA OB OC∴点O是到三个小区的距离相等的点,即点O是AC,BC两边垂直平分线的交点,故选:C.【点睛】本题主要考查垂直平分线的性质,掌握垂直平分线的性质是解题的关键.八年级专题练习)如图,在ABC中,是ABC外的一点,且【分析】根据到线段两端距离相等的点在线段的垂直平分线上,即可证明A、D都在BC的垂直平分线上,由此即可证明结论.AB AC,【详解】证明:∵=∴点A在BC的垂直平分线上,BD CD,∵=∴点D在BC的垂直平分线上,∴A、D都在BC的垂直平分线上,∴AD垂直平分BC.【点睛】本题主要考查了线段垂直平分线的判定,熟知线段垂直平分线的判定条件是解题的关键.【变式】.(2022秋·浙江·八年级专题练习)如图,点E是△ABC的边AB的延长线上一点,∠BCE=∠A+∠ACB,求证:点E在BC的垂直平分线上.【分析】由三角形的外角性质得到∠EBC=∠A+∠ACB,结合已知推出∠BCE=∠EBC,得到BE=CE,即可得到结论.【详解】证明:∵∠BCE=∠A+∠ACB,∠EBC=∠A+∠ACB,∴∠BCE=∠EBC,∴BE=CE,∴点E在BC的垂直平分线上.【点睛】本题考查了三角形的外角性质,线段垂直平分线的判定,用到的知识点:到线段两端点的距离相等的点在线段的垂直平分线上.题型六:角平分线【答案】A【分析】根据角平分线上的点到两边的距离相等即可解答.【详解】根据题意要使集贸市场到三条公路的距离相等即集贸市场应建在三个角的角平分线的交点.故本题选A .【点睛】本题考查了角平分线的性质,熟记角平分线的性质是解答本题的关键. 的中点,ABC ,则BED 的面积为( 【答案】C【分析】作DF AC ⊥于F ,DM AB ⊥于点M ,根据角平分线的性质求出DM ,根据三角形的面积公式计算即可.【详解】解:作DF AC ⊥于F ,DM AB ⊥于点MAD 是ABC 的角平分线DF AC ⊥于F ,DM AB ⊥,112122AC DF AB DM ∴⋅+⋅=,112122AC DM AB DM ⋅+⋅=∴即:3421DM DM +=得3DM =8AB =, E 是AB 的中点,142BE AB ∴== 1143622BEDS BE DM ∴=⋅=⨯⨯= 故选:C .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键. 例12.(2022秋·浙江·八年级专题练习)已知:如图,90B C ∠=∠=,M 是BC 的中点,DM 平分ADC ∠.(1)若连接AM ,则AM 是否平分BAD ∠?请你证明你的结论;(2)线段DM 与AM 有怎样的位置关系?请说明理由.【答案】(1)AM 平分BAD ∠,证明见解析(2)DM AM ⊥,理由见解析【分析】(1)过点M 作ME AD ⊥,垂足为E ,证明ME MC MB ==即可得证.(2)利用两直线平行,同旁内角互补,证明1390∠+∠=.【详解】(1)AM 平分BAD ∠,理由为:证明:过点M 作ME AD ⊥,垂足为E ,∵DM 平分ADC ∠,∴12∠=∠,∵ME AD ⊥,MC CD ⊥∴MC ME =(角平分线上的点到角两边的距离相等),又∵MC MB =,∴ME MB =,∵MB AB ⊥,ME AD ⊥,∴AM 平分BAD ∠(到角的两边距离相等的点在这个角的平分线上).(2)DM AM ⊥,理由如下:∵90B C ∠=∠=,∴,DC CB AB CB ⊥⊥,∴DC AB ∥(垂直于同一条直线的两条直线平行),∴180DAB CDA ∠+∠=(两直线平行,同旁内角互补)又∵111,322CDA DAB ∠=∠∠=∠(角平分线定义) ∴2123180∠+∠=,∴1390∠+∠=,∴90AMD ∠=.即DM AM ⊥.【点睛】本题考查了角平分线的性质定理和判定定理,平行线的性质,熟练掌握以上的知识是解题的关键. 【变式1】(2023秋·浙江台州·八年级统考期末)如图 90B C ∠=∠=︒,E 为BC 上一点,AE 平分BAD ∠,DE 平分CDA ∠.(1)求AED ∠的度数;(2)求证:E 是BC 的中点.【答案】(1)90︒(2)见解析.【分析】(1)利用已知条件可以得到180BAD CDA ∠+∠=︒,想要求AED ∠的度数,只需要根据三角形内角和定理和角平分线的性质即可得到结论.(2)过点E 做EF AD ⊥,根据角平分线上的点到角的两边距离相等即可得结论.【详解】(1)解:∵90B C ∠=∠=︒,∴DC AB ∥,∴180BAD CDA ∠+∠=︒,∵AE 平分BAD ∠,DE 平分CDA ∠, ∴12EAD BAD ∠=∠,12EDA CDA ∠=∠, ∴1()902EAD EDA BAD CDA ∠+∠=∠+∠=︒,∴180()90AED EAD EDA ∠=︒−∠+∠=︒;(2)证明:过点E 作EF AD ⊥于点F ,∵AE 平分BAD ∠,90B Ð=°,EF AD ⊥,∴EF EB =.∵DE 平分CDA ∠,90C ∠=︒,EF AD ⊥,∴EF EC =.∴EB EC =,即E 是BC 的中点.【点睛】本题考查了平行线的判定与性质,以及角平分线上的点到角两边距离相等的性质,熟记性质和定理并做出辅助线是解题的关键.【变式2】.(2022秋·浙江杭州·八年级校考期中)如图,在ABC 外作两个大小不同的等腰直角三角形,其中90DAB CAE ∠=∠=︒,AB AD =,AC AE =.连接DC 、BE 交于F 点.(1)求证:DAC BAE ≌△△; (2)直线DC 、BE 是否互相垂直,试说明理由;(3)求证:AF 平分DFE ∠.【答案】(1)见解析(2)DC BE ⊥,理由见解析(3)见解析【分析】(1)由题意可得AD AB =,AC AE =,由90DAB CAE ∠=∠=︒,可得到DAC BAE ∠=∠,从而可证DAC BAE ≌△△;(2)由(1)可得ACD AEB ∠=∠,再利用直角三角形的性质及等量代换即可得到结论;(3)作AM DC ⊥于M ,AN BE ⊥于N ,利用全等三角形的面积相等及角平分线的判定即可证得结论.【详解】(1)证明:∵90DAB CAE ∠=∠=︒,∴DAB BAC CAE BAC ∠+∠=∠+∠,即DAC BAE ∠=∠,又∵AD AB =,AC AE =,∴()SAS DAC BAE ≌△△;(2)解:DC BE ⊥,理由如下;∵DAC BAE ≌△△, ∴ACD AEB ∠=∠,∵90AEB AOE ∠+∠= ,AOE FOC ∠=∠,∴90FOC ACD ∠+∠=,∴90EFC ∠=,∴DC BE ⊥;(3)证明:作AM DC ⊥于M ,AN BE ⊥于N ,∵DAC BAE ≌△△, ∴DAC BAE S S ∆∆=,DC BE =, ∴1122DC AM BE AN ⋅=⋅,∴AM AN =,∴AF 平分DFE ∠.【点睛】本题主要考查全等三角形的判定和性质,及直角三角形的性质,角平分线的判定,熟练掌握判定和性质是解决本题的关键.【变式3】(2023春·浙江金华·八年级浙江省义乌市后宅中学校考阶段练习)已知:OP 平分MON ∠,点A ,B 分别在边OM ,ON 上,且180OAP OBP ∠∠+=︒.(1)如图1,当90OAP ∠=︒时,求证:OA OB =;(2)如图2,当90OAP ∠<︒时,作PC OM ⊥于点C .求证:①PA PB =;②请直接写出OA ,OB ,AC 之间的数量关系 .【答案】(1)见解析(2)①见解析;②2OA OB AC −=【分析】(1)证明()AAS OPA OPB ≌,即可得证;(2)①作PD ON ⊥于点D ,证明()AAS PAC PBD ≌,即可得证; ②证明()AAS OCP ODP ≌,得出OD =,根据AC BD =,即可得证.【详解】(1)证明:180OAP OBP ∠∠+=︒,且90OAP ∠=︒,90OAP OBP ∠∠∴==︒,OP 平分MON ∠,POA POB ∠∠∴=,OP OP =,()AAS OPA OPB ∴≌,OA OB ∴=;(2)证明:①如图2,作PD ON ⊥于点D ,PC OM ⊥于点C ,PC PD ∴=,90PCA PDB OCP ∠∠∠===︒,180OAP OBP ∠∠+=︒,180DBP OBP ∠∠+=︒,OAP DBP ∠∠∴=,在PAC 和PBD 中,CAP DBP PCA PDBPC PD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AAS PAC PBD ∴≌, PA PB ∴=;②结论:2OA OB AC −=.理由:在OCP 和ODP 中,OCP ODP COP DOP OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS OCP ODP ∴≌,OC OD ∴=,OA AC OB BD ∴−=+,AC BD =,2OA OB AC BD AC ∴−=+=.故答案为:2OA OB AC −=.【点睛】本题考查了角平分线的性质,全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键.【过关检测】一、单选题 1.(2022秋·浙江·八年级专题练习)如图,在ABC 中,90A ∠=︒,点D 是边AC 上一点,3DA =,若点D 到BC 的距离为3,则下列关于点D 的位置描述正确的是( )A .点D 是AC 的中点B .点D 是B ∠平分线与AC 的交点 C .点D 是BC 垂直平分线与AC 的交点D .点D 与点B 的距离为5【答案】B 【分析】作DE BC ⊥于E ,连接BD ,利用角平分线的判定定理可证明BD 是ABC ∠的角平分线,即可作答.【详解】解:如图所示:作DE BC ⊥于E ,连接BD ,∵3DA =,点D 到BC 的距离为3,∴=AD DE ,∵90A ∠=︒,∴DA BA ⊥,∵DE BC ⊥,∴BD 是ABC ∠的角平分线,即点D 是ABC ∠的角平分线与AC 的交点,故B 项正确;其余选项,利用现有条件均无法得出,故选:B .【点睛】本题主要考查了角平分线的判定定理,作出辅助线,证明BD 是ABC ∠的角平分线,是解答本题的关键. 2.(2023·浙江·九年级专题练习)如图,已知BF DE =,AB ∥DC ,要使ABF CDE ≅△△,添加的条件可以是( )A.BE DF =B .AF CE =C .AB CD = D .B D ∠=∠【答案】C 【分析】根据AB ∥DC ,可得B D ∠=∠,又BF DE =,所以添加AB CD =,根据SAS 可证ABF CDE ≅△△.【详解】解:应添加AB DC =,理由如下:AB ∥DC ,B D ∴∠=∠.在ABF △和CDE 中,AB CD B DBF DE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABF CDE ∴≅,故选:C .【点睛】本题主要考查了平行线的性质以及全等三角形的判定,熟练掌握全等三角形的判定是解题的关键.3.(2023·浙江金华·统考二模)如图,ABC 和DEF 中,AB DE ∥,A D ∠=∠,点B ,E ,C ,F 共线,添加一个条件,不能判断ABC DEF ≌△△的是( )A .AB DE =B .ACB F ∠=∠C .BE CF =D .AC DF =【答案】B 【分析】根据AB DE ∥可得B DEF ∠=∠,加上A D ∠=∠,可知ABC 和DEF 中两组对角相等,因此一组对边相等时,即可判断ABC DEF ≌△△. 【详解】解:AB DE ∥,∴B DEF ∠=∠, 又A D ∠=∠,∴ABC 和DEF 中两组对角相等,当AB DE =时,根据ASA 可证ABC DEF ≌△△,故A 选项不合题意; 当ACB F ∠=∠时,ABC 和DEF 中,三组对角相等,不能判断ABC DEF ≌△△,故B 选项符合题意; 当BE CF =时,BC EF =,根据AAS 可证ABC DEF ≌△△,故C 选项不合题意; 当AC DF =时,根据AAS 可证ABC DEF ≌△△,故D 选项不合题意; 故选B .【点睛】本题考查添加条件使三角形全等,解题的关键是熟练掌握全等三角形的各种判定方法..ABC 的三条中线的交点.ABC 三边的垂直平分线的交点.ABC 三条角平分线的交点.ABC 三条高所在直线的交点【答案】C【分析】角平分线上的点到角的两边的距离相等,由此可解.【详解】解:要使凉亭到草坪三条边的距离相等,∴凉亭应在ABC 三条角平分线的交点处.故选C .【点睛】本题考查了角平分线的性质,解题的关键是注意区分三角形中线的交点、高的交点、垂直平分线的交点以及角平分线的交点之间的区别. 5.(2020秋·浙江·八年级期末)如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F ,若7ABC S =△,2DE =,4AB =,则AC 的长为( )A .3B .4C .5D .6【答案】A 【分析】先根据角平分线的性质得到2DF DE ==,再利用三角形面积公式得到11242722AC ⨯⨯+⨯⨯=,然后解关于AC 的方程即可.【详解】解:∵AD 是BAC ∠的平分线,DE AB ⊥,DF AC ⊥,2DE =,∴2DF DE ==,∵7ABC S =△,4AB =,又∵ABD ACD ABC S S S +=△△△,∴111124272222AB DE DF AC AC ⋅+⋅=⨯⨯+⨯⨯=,∴3AC =.故选:A .【点睛】本题考查角平分线的性质:角的平分线上的点到角的两边的距离相等.理解和掌握角平分线的性质是解题的关键.本题也考查了三角形的面积及等积变换.6.(2022秋·浙江·八年级专题练习)如图,用B C ∠=∠,12∠=∠,直接判定ABD ACD ≌△△的理由是( )A .AASB .SSSC .ASAD .SAS【答案】A 【分析】根据三角形全等的判定方法判定即可.【详解】解:在ABD △和ACD 中,12B CAD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AAS ABD ACD ≌,故A 正确. 故选:A .【点睛】本题主要考查三角形全等的判定,解题的关键是掌握证明全等三角形的几种证明方法:AAS 、ASA 、SSS 、SAS 、HL .A .2B .【答案】C 【分析】由FC AB ∥,得F ADE ∠=∠,FCE A ∠=∠,即可根据全等三角形的判定定理“AAS”证明CFE ADE ≅,则4CF AD AB BD ==−=.【详解】解:FC AB ∥,F ADE ∴∠=∠,FCE A ∠=∠,在CFE 和ADE V 中,F ADE FCE AFE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS CFE ADE ∴≅, CF AD ∴=,5AB =,1BD =,514AD AB BD ∴=−=−=,4CF ∴=,CF ∴的长度为4.故选:C .【点睛】此题重点考查平行线的性质、全等三角形的判定与性质等知识,正确地找到全等三角形的对应边和对应角并且证明CFE ADE ≅是解题的关键.A .SSS【答案】B 【分析】根据已知条件两边,及两边的夹角是对顶角解答.【详解】解:在AOB 和COD △中,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩,()AOB COD SAS ∴≌. 故选:B .【点睛】本题考查了全等三角形的应用,准确识图判断出两组对应边的夹角是对顶角是解题的关键. 9.(2022秋·浙江嘉兴·九年级校考期中)在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放在ABC 的( )A .三边垂直平分线的交点B .三杂中线的交点C .三条角平分线的交点D .三条高所在直线的交点【答案】A【分析】根据题意可知,当木凳所在位置到A 、B 、C 三个顶点的距离相等时,游戏公平,再由线段垂直平分线的性质即可求解.【详解】解:由题意可得:当木凳所在位置到A 、B 、C 三个顶点的距离相等时,游戏公平,∵线段垂直平分线上的点到线段两端的距离相等,∴木凳应放的最适当的位置是在ABC 的三边垂直平分线的交点,故选:A .【点睛】本题考查线段垂直平分线的性质的应用,掌握线段垂直平分线的性质是解题的关键. )可说明ABC 与△ 【答案】A 【分析】先根据垂直的定义可得90ACB ADB ∠=∠=︒,再根据角平分线的定义可得CAB DAB ∠=∠,然后根据AAS 定理即可得.【详解】解:,BC AC BD AD ⊥⊥,90ACB ADB ∴∠=∠=︒,AB 平分CAD ∠,CAB DAB ∴∠=∠,在ABC 和ABD △中,90ACB ADB CAB DABAB AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()AAS ABC ABD ∴≌,故选:A . 【点睛】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定方法是解题关键.二、填空题【答案】CA FD =,B E ∠=∠,A D ∠=∠,AB DE ∥等【分析】可选择CA FD =添加条件后,能用SAS 进行全等的判;也可选择B E ∠=∠添加条件后,能用ASA 进行全等的判定;也可选择A D ∠=∠添加条件后,能用AAS 进行全等的判定;也可选择AB DE ∥添加条件后,能用ASA 进行全等的判定即可;【详解】解:添加CA FD =,∵12∠=∠,BC EF =,∴()SAS ABC DEF ≌△△,故答案为:CA FD =;或者添加B E ∠=∠,∵BC EF =,12∠=∠,∴()ASA ABC DEF ≌△△,故答案为:B E ∠=∠;或者添加A D ∠=∠,∵12∠=∠,BC EF =,∴()AAS ABC DEF ≌△△,故答案为:A D ∠=∠;或者添加AB DE ∥,∵AB DE ∥,∴B E ∠=∠,∵12∠=∠,BC EF =,∴()AAS ABC DEF ≌△△,故答案为:AB DE ∥.【点睛】本题考查了全等三角形的判定,解答本题关键是掌握全等三角形的判定定理,本题答案不唯一.【答案】AB DC =【分析】添加条件AB DC =,利用SAS 证明ABC DCB △≌△即可.【详解】解:添加条件AB DC =,理由如下:在ABC 和DCB △中,AB DC ABC DCBBC CB =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABC DCB △≌△, 故答案为:AB DC =.【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定定理是解题的关键,全等三角形的判定定理有SSS SAS AAS ASA HL ,,,,. 13.(2023秋·浙江湖州·八年级统考期末)如图,已知AC DB =,要使得ABC DCB ≅,根据“SSS”的判定方法,需要再添加的一个条件是_______.【答案】ABDC =【分析】要使ABC DCB ≅,由于BC 是公共边,若补充一组边相等,则可用SSS 判定其全等.【详解】解:添加AB DC =.在ABC 和DCB △中AB DC BC CB AC BD =⎧⎪=⎨⎪=⎩, ∴()ABC DCB SSS ≅△△, 故答案为:AB DC =.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择添加的条件是正确解答本题的关键.14.(2022秋·浙江丽水·八年级统考期末)如图,在ABC 中,CD 是边AB 上的高,BE 平分ABC ∠,交CD 于点E ,6BC =,若BCE 的面积为9,则DE 的长为______.【答案】3【分析】过E 作EF BC ⊥于F ,根据角平分线性质求出EF DE =,根据三角形面积公式求出即可.【详解】解:过E 作EF BC ⊥于F ,CD 是AB 边上的高,BE 平分ABC ∠,交CD 于点E ,DE EF ∴=,192BCE S BC EF =⋅=,1692EF ∴⨯⨯=,3EF DE ∴==,故答案为:3.【点睛】本题考查了角平分线性质的应用,能根据角平分线性质求出3EF DE ==是解此题的关键,注意:在角的内部,角平分线上的点到角的两边的距离相等. 八年级期末)如图,在ABC 中, 【答案】4【分析】根据线段垂直平分线的性质得到2AD BD ==,则4CD AC AD =−=.【详解】解:∵AB 的垂直平分线交AB 于点E ,交AC 于点D ,∴2AD BD ==,∵6AC =,∴4CD AC AD =−=,故答案为:4.【点睛】本题主要考查了线段垂直平分线的性质,熟知线段垂直平分线上的点到线段两端的距离相等是解题的关键. 16.(2022秋·浙江温州·八年级校联考期中)如图,在ABC 中,DE 是AC 的中垂线,分别交AC ,AB 于点D ,E .已知BCE 的周长为9,4BC =,则AB 的长为______.【答案】5【分析】先利用三角形周长得到5CE BE +=,再根据线段垂直平分线的性质得到EC EA =,然后利用等线段代换得到AB 的长.【详解】解:∵BCE 的周长为9,9CE BE BC ∴++=,又4BC =,5CE BE ∴+=,又DE 是AC 的中垂线,EC EA ∴=,5AB AE BE CE BE ∴=+=+=;故答案为:5.【点睛】本题考查了垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.17.(2023秋·浙江杭州·八年级校考开学考试)如图,已知12∠=∠,要说明ABC BAD ≌,(1)若以“SAS ”为依据,则需添加一个条件是__________;(2)若以“ASA ”为依据,则需添加一个条件是__________.【答案】 BC AD = BAC ABD ∠=∠【分析】(1)根据SAS 可添加一组角相等,故可判定全等;(2)根据ASA 可添加一组角相等,故可判定全等;【详解】解:(1)已知一组角相等和一个公共边,以“SAS ”为依据,则需添加一组角,即BC AD =故答案为:BC AD =;(2)已知一组角相等,和一个公共边,以“ASA ”为依据,则需添加一组角,即BAC ABD ∠=∠. 故答案为:BAC ABD ∠=∠.【点睛】本题主要考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL 、、、、.添加时注意:AAA SSA 、不能判定两个三角形全等. 18.(2019秋·浙江嘉兴·八年级校考阶段练习)如图,点B 、E 、C 、F 在一条直线上,AB ∥DE ,AB=DE ,BE=CF ,AC=6,则DF=________【答案】6.【分析】根据题中条件由SAS 可得△ABC ≌△DEF ,根据全等三角形的性质可得AC=DF=6.【详解】∵AB ∥DE ,∴∠B=∠DEF∵BE=CF ,∴BC=EF ,在△ABC 和△DEF 中,AB DE B DEFBC EF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),∴AC=DF=6.考点:全等三角形的判定与性质.。
三角形全等的五种判定方法及如何构造三角形全等

全等三角形综合复习1. 全等三角形的概念及性质;2. 三角形全等的判定;3. 角平分线的性质及判定。
知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSSHL AAS SAS ASA AAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边 例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。
求证:ACF BDE ∆≅∆。
知识点二:构造全等三角形例 2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。
求证:21C ∠=∠+∠。
例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。
F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。
求证:AE CF =。
知识点三:常见辅助线的作法1. 连接四边形的对角线例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。
解题后的思考:连接四边形的对角线,是构造全等三角形的常用方法。
2. 作垂线,利用角平分线的知识例5.如图,,AP CP分别是ABC∆外角MAC∠和NCA∠的平分线,它们交于点P。
求证:BP为MBN∠的平分线。
解题后的思考:题目已知中有角平分线的条件,或者有要证明角平分线的结论时,常过角平分线上的一点向角的两边作垂线,利用角平分线的性质或判定来解答问题。
3. “截长补短”构造全等三角形例 6.如图,在ABC∆中,AB AC>,12∠=∠,P为AD上任意一点。
求证:AB AC PB PC->-。
12_2三角形全等的判定(第5课时)

教 学 设 计 二次备课一、知识梳理问题1 请同学们回答以下问题:(1)判定两个三角形全等的方法有哪些?(2)判定两个直角三角形全等的方法有哪些?(3)在三角形全等的判定方法中,至少要几个条件?二、证题思路建构问题2 已知:如图,(1)当AB =DC 时, 再添一个条件证明△ABC ≌△DCB , 这个条件能够是 .(2)当∠A =∠D 时, 再添一个条件证明△ABC ≌ △DCB ,这个条件能够是 .分析在△ABC 和△DCB 中,已经具备了什么条件?(1)若要以“SAS ”为依据,还缺条件 ____;(2)若要以“ASA ”为依据,还缺条件____;(3)若要以“AAS ”为依据,还缺条件____;(4)若要以“SSS ”为依据,还缺条件____.三、证明两个三角形全等的基本思路(1)已知两边;(2)已知一边一角;(3)已知两角.四、典型例题例1 已知:如图,(1)若AB =DC ,∠A =∠D ,你能证明哪两个三角形全等?(2)若AB =DC ,∠A =∠D =90°,你能证明哪两个三 角形全等?五、展开变式,实行探究 AB CD EABC D E变式1 已知:如图,∠ABC =∠DCB ,BD 、CA 分别是∠ABC 、∠DCB 的平分线,求证:AB = DC . 变式2 已知:如图,AB =DC ,AC =DB .求证:EA =ED . 变式3 已知:如图,AB =DC ,AC =BD .求证:EA =ED . 变式4 如图,延长BA 、CD 交于点P :(1)若PA =PD ,PB =PC .求证:BE =CE ;(2)若PA =PD ,∠B =∠C .求证: BE =CE ;(3)若PA =PD ,∠BAC =∠BDC .求证: BE =CE .六、证两三角形全等的方法(1)先确定要证哪两个三角形全等;(2)在图中标出相等的边和角(公共边、公共角以及 对顶角都是隐含条件);(3)分析已知条件,欠缺条件,选择判断方法.七、布置作业A B C DEA B CDE PD。
三角形全等的判定方法(5种)例题+练习(全面)

三角形全等的判定方法(5种)例题+练习(全面)本文讲述了全等三角形的判定方法,重点是边角边和角边角。
边角边指两边及其夹角分别相等的两个三角形全等,可以简写成“SAS”。
需要注意的是,必须是两边及其夹角,不能是两边和其中一边的对角。
例如,在图中的△ABC和△ABD中,虽然有一个角和两边相等,但是这两个三角形不全等。
但是在例1中,如果AC=AD,且∠CAB=∠DAB,则可以证明△ACB≌△ADB。
在例2中,如果AD∥BC,且∠ABC=∠DCB,AB=DC,AE=DF,则可以证明BF=CE。
角边角是指两角及其夹边分别相等的两个三角形全等,可以简写成“ASA”。
例如,在例2中,如果AD平分∠BAC,且∠ABD=∠ACD,则可以直接判定△ABD≌△ACD。
在例3中,如果在Rt△ABC中,BC=2cm,CD⊥AB,且EC=BC,EF=5cm,则可以求出AE的长度。
除了边角边和角边角外,还有三种判定全等三角形的条件。
在例5中,如果在△ABC和△DEF中,AB=DE,BC=EF,且有一个角相等,则可以证明△ABC≌△DEF。
在例6中,如果AB∥DE,AB=DE,BF=CE,则可以证明△ABC≌△DEF。
在例7和例8中,分别是通过角平分线和垂线的判定方法来证明两个三角形全等。
总之,掌握全等三角形的判定方法对于解决几何问题非常重要。
1.如图所示,在三角形ABC中,已知AB=DC,∠ABC=∠DCB。
根据角角边相等可知,∠ACB=∠DCB。
又因为AB=DC,所以BC=AC。
因此,根据SSS(边边边)相等可知,△ABC≌△DCB。
同时,∠ACB=∠DCB,AC=BC=DC。
2.如图所示,在三角形ABD和ABF中,已知AD=AE,∠1=∠2,BD=CE。
根据角角边相等可知,∠ABD=∠BCE。
又因为AD=CE,所以BD=BE。
因此,根据SAS(边角边)相等可知,△ABD≌△BCE。
同时,∠ABD=∠BCE,AD=CE=BE。
备考2021年九年级中考数学复习满分突破训练:全等三角形的性质与判定(五)(含答案)

备考2021年九年级中考数学复习满分突破训练:全等三角形的性质与判定(五)1.如图,在正方形ABCD中,点E,F分别是CD,AD的中点,BE与CF相交于点P.(1)求证:BE⊥CF.(2)若AB=a.①求CP和AP的长(用含a的代数式表示).②连结DP,直接写出∠DPF的度数.2.已知四边形ABCD,连接BD,∠ADB=∠CBD,AD=BC.(1)求证AB∥CD;(2)点O为BD的中点,直线EF经过点O,分别交直线CD、AB于点E、F,连接BE,若AB=BF,请直接写出与△ABD面积相等的三角形.(△ABD除外)3.如图,△BEF和△AGE是等腰直角三角形.(1)探究FG和AB的数量关系并证明;(2)延长FG和AB交于点C,利用图2补全图形,求∠ACF的度数.4.在△ABM中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AM=3,MC=2,AB=3,求△ABC中AB边上的高.(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED 并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.5.在△ABC中,∠C=90°,AC>BC,D是AB的中点,E为直线AC上一动点,连接DE,过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当点E是线段AC的中点时,AE=2,BF=1,求EF的长;(2)当点E在线段CA的延长线上时,依题意补全图形2,用等式表示AE,EF,BF之间的数量关系,并证明.6.如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?7.如图,△ABC为等腰直角三角形,∠ACB=90°,D,E分别是AC、AB的中点,P为直线DE上的一点,PQ⊥PC交直线AB于Q.(1)如图1,当P在ED延长线上时,求证:EC+EQ=EP;(2)当P在射线DE上时,请直接写出EC,EQ,EP三条线段之间的数量关系.8.如图,△ABC为等边三角形,点D,点E分别在BA,AB的延长线上,AD=BE.(1)求证:CD=CE;(2)若EF平分∠DEC交CD,CA于点F,点G,∠ACD=∠CEF,求证:EF=AC+AD.9.已知OM是∠AOB的平分线,点P是射线OM上一点,点C、D分别在射线OA、OB上,连接PC、PD.(1)如图①,当PC⊥OA,PD⊥OB时,则PC与PD的数量关系是.(2)如图②,点C、D在射线OA、OB上滑动,且∠AOB=90°,当PC⊥PD时,PC与PD 在(1)中的数量关系还成立吗?说明理由.10.如图,△ABC是等腰三角形,∠BAC=90°,BE是∠ABC的角平分线,DE⊥BC于点D.(1)请写出图中所有的等腰三角形(△ABC除外);(2)请你判断AD与BE是否垂直?并说明理由;(3)如果BC=10cm,求AB+AE的长.参考答案1.解:(1)证明:在△CDF和△BCE中,,∴△CDF≌△BCE(SAS),∴∠CEB=∠CFD,∵∠DCF+∠CFD=90°,∴∠DCF+∠CEB=90°,∴∠EPC=90°,∴BE⊥CF;(2)①如图1,延长CF交BA延长线于点M,在△CFD和△MFA中,,∴△CFD≌△MFA(ASA),∴CD=MA=AB=a,∵BP⊥CF,∴AP为Rt△MPB斜边BM上的中线,是斜边的一半,即AP=BM=×2a=a;∵CP⊥BE,∴CP×BE=CE×BC=,∵BE===a,∴CP==a.②如图2,连接DP,EF,∵点E,F分别是CD,AD的中点,∴DE=CD,DF=AD,∵正方形ABCD中,AD=DC,∠D=90°,∴DE=DF,∴∠DEF=∠DFE=45°,∵∠D=∠EPF=90°,∴D、F、P、E四点共圆,∴∠DPF=∠DEF=45°.2.(1)证明:∵DB=BD,∠ADB=∠CBD,AD=CB,∴△ADB≌△CBD(SAS),∴∠ABD=∠CDB,∴AB∥CD;(2)解:∵AB∥CD,∴∠F=∠OED,∠OBF=∠ODE,∵O为BD的中点,∴BO=DO,∴△BOF≌△DOE(AAS),∴BF=DE,∵△ADB≌△CBD,∴AB=CD,S△ADB =S△CBD,∵AB=BF,∴AB=CD=BF=DE,∴S△ADB =S△BFE=S△BCD=S△BDE.3.解:(1)FG=AB,理由如下:∵△BEF和△AGE是等腰直角三角形,∴EF=EB,EA=EG,∠FEB=∠AEG=90°,∴∠FEB﹣∠BEG=∠AEG﹣∠BEG,即∠FEG=∠BEA,在△FEG和△BEA中,,∴△FEG≌△BEA(SAS),∴FG=AB;(2)如图,即为补全的图形,由(1)知△FEG≌△BEA,∴∠EFG=∠EBA,∵△BEF是等腰直角三角形,∴∠EFB=∠EBF=45°,∴∠CFB+∠CBF=∠CFB+∠EBF+∠CBE=∠EFB+∠EBF=90°,∴∠FCB=90°,∴∠ACF=90°.4.解:(1)∵∠ABM=45°,AM⊥BM,∴AM=BM=AB cos45°=3,∵MC=2,∴BC=5,∴AC=,∴△ABC中AB边上的高=;(2)延长EF到点G,使得FG=EF,连接BG.,∴△BMD≌△AMC(SAS),∴AC=BD,又∵CE=AC,∴BD=CE,,∴△BFG≌△CFE(SAS),∴BG=CE,∠G=∠E,∴BD=CE=BG,∴∠BDG=∠G=∠E.5.解:(1)∵D是AB的中点,E是线段AC的中点,∴DE∥BC,DE=BC,∵∠ACB=90°,∴∠DEC=90°,∵DF⊥DE,∴∠EDF=90°,∴四边形CEDF是矩形,∴DE=CF=BC,∴CF=BF=1,∵CE=AE=2,∴EF===;(2)AE2+BF2=EF2.证明:过点B作BM∥AC,与ED的延长线交于点M,连接MF,则∠AED=∠BMD,∠CBM=∠ACB=90°,∵D点是AB的中点,∴AD=BD,在△ADE和△BDM中,,∴△ADE≌△BDM(AAS),∴AE=BM,DE=DM,∵DF⊥DE,∴EF=MF,∵BM2+BF2=MF2,∴AE2+BF2=EF2.6.解:(1)①△BPD与△CQP全等,理由如下:∵AB=AC=18cm,AD=2BD,∴AD=12cm,BD=6cm,∠B=∠C,∵经过2s后,BP=4cm,CQ=4cm,∴BP=CQ,CP=6cm=BD,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS),②∵点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵△BPD与△CQP全等,∠B=∠C,∴BP=PC=BC=5cm,BD=CQ=6cm,∴t=,∴点Q的运动速度==cm/s,∴当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等;(2)设经过x秒,点P与点Q第一次相遇,由题意可得:x﹣2x=36,解得:x=90,∴90﹣()×3=21(s),∴经过90s点P与点Q第一次相遇在线段AB上相遇.7.证明:(1)过点P作PH⊥PE,交直线AB于H,∵D,E分别是AC、AB的中点,∴DE∥BC,∵△ABC为等腰直角三角形,∠ACB=90°,∴AC⊥DE,∠CAB=∠B=∠BCE=45°,∴AC∥HP,∴∠H=∠CAB=45°,∠PEC=∠BCE=45°,∴∠H=∠PEC,△HPE为等腰直角三角形,∴HP=EP,HE=EP,∵∠HPQ+∠EPQ=∠EPC+∠EPQ=90°,∴∠HPQ=∠EPC,∴△HPQ≌△EPC(ASA),∴CE=QH,∵EH=QH+EQ,∴CE+EQ=EP;(2)EP+CE=EQ.证明:过点P作PG⊥DE交直线AB于G,连接CP,∵D,E分别是AC、AB的中点,∴DE∥BC,∵△ABC为等腰直角三角形,∠ACB=90°,∴AC⊥DE,∠CAB=∠ABC=∠BCE=∠CED=∠AED=∠PEG=45°,∴AC∥HP,∴∠PGE=∠CAB=45°,∠PEG=∠BCE=45°,∴∠PGE=∠PEG,∠PEC=∠PGQ=135°,∴△GPE为等腰直角三角形,∴GP=EP,GE=EP,∵∠GPQ+∠CPG=∠EPC+∠CPG=90°,∴∠GPQ=∠EPC,∴△GPQ≌△EPC(ASA),∴CE=QG,∵EG+QG=EQ,∴EP+CE=EQ.8.证明:(1)∵△ABC为等边三角形,∴∠BAC=∠ABC=∠ACB=60°,AB=BC=AC,∴∠DAC=∠EBC=120°,∵AD=BE,∴△ACD≌△BCE(SAS),∴CD=CE;(2)∵△ACD≌△BCE∴∠ACD=∠BCE,AD=BE,∵BF平分∠DEC,∴∠DEF=∠CEF,∵∠ACD=∠CEF,∴∠ACD=∠CEF=∠ACD=∠BCE,∵∠EGC=∠AEG+∠BAC=∠AEG+60°,∠ECG=∠BCE+∠ACB=∠BCE+60°,∴∠EGC=∠ECG,∴EC=EG,∵∠EGC=∠AEG+∠BAC=∠AEG+60°=∠EFC+∠ACD,∴∠BAC=∠EFC,即∠EAG=∠EFC,∴△EFC≌△EAG(ASA),∴EF=AE,∵AE=AB+BE=AC+AD,∴EF=AC+AD.9.解:(1)PC=PD,理由:∵OM是∠AOB的平分线,∴PC=PD(角平分线上点到角两边的距离相等),故答案为:PC=PD;(2)证明:过点P点作PE⊥OA于E,PF⊥OB于F,如图,∴∠PEC=∠PFD=90°,∵OM是∠AOB的平分线,∴PE=PF,∵∠AOB=90°,∠CPD=90°,∴∠PCE+∠PDO=360°﹣90°﹣90°=180°,而∠PDO+∠PDF=180°,∴∠PCE=∠PDF,在△PCE和△PDF中,∴△PCE≌△PDF(AAS),∴PC=PD.10.解:(1)∵△ABC是等腰三角形,∠BAC=90°,∴∠C=45°,∵DE⊥BC,∴CD=DE,∴△EDC是等腰三角形,∵BE是∠ABC的角平分线,DE⊥BC于点D,∠BAC=90°,∴EA=ED,∴△ADE是等腰三角形,∵BE=BE,∴Rt△BAE≌Rt△DBE(HL),∴BA=BD,∴△ABD是等腰三角形,故图中的等腰三角形有:△ABD,△ADE,△EDC;(2)AD与BE垂直.证明:由BE为∠ABC的平分线,知∠ABE=∠DBE,∠BAE=∠BDE=90°,BE=BE,∴△ABE沿BE折叠,一定与△DBE重合.∴A、D是对称点,∴AD⊥BE.(3)∵BE是∠ABC的平分线,DE⊥BC,EA⊥AB,∴AE=DE,在Rt△ABE和Rt△DBE中,∴Rt△ABE≌Rt△DBE(HL),∴AB=BD,又△ABC是等腰直角三角形,∠BAC=90°,∴∠C=45°,又ED⊥BC,∴△DCE为等腰直角三角形,∴DE=DC,即AB+AE=BD+DC=BC=10.。
八年级数学上册第13章全等三角形13.2三角形全等的判定5边边边说课稿华东师大版

《13。
2。
5 边边边》说课稿一、教材分析:(一)本节内容在全书和章节的地位本节内容选自华师版初中数学八年级上册第13章,本课是探索三角形全等条件的第4课时,是在学习了全等三角形的概念,全等三角形的性质后展开的。
对于全等三角形的研究,实际是平面几何对封闭的两个图形关系研究的第一步,它是两个三角形间最简单、最常见的关系,它不仅是下节课探索三角形全等其它条件的基础,还是证明线段相等、角相等的重要依据,同时也为今后探索直角三角形全等的条件以及三角形相似的条件提供很好的模式和方法。
因此,本节课的知识具有承前启后的作用,占有相当重要的地位。
(二)三维教学目标1.知识与能力目标本节课主要给学生讲解全等三角形的“SSS"判定公理,同时理解三角形的稳定性,能用三角形全等解决一些现实问题,熟悉掌握“SSS"|的判定方法,能够自主探索,动手操作,在过程中体会到自主学习索取知识的乐趣,从而启发学生学习数学的方式,为下节课打下基础。
2.过程与方法目标通过分解三角形的各个边和角,两个三角形做对比,用问题分解法求解,探索全等三角形的全等条件,经历认知探知过程,体会挖掘知识的过程。
通过两个三角形边与角的对比发现全等三角形的判定条件“SSS”,锻炼学生分析问题,解决问题的能力。
3.情感态度与价值观培养学生勇于探索、团结协作的精神,积累数学活动的经验。
(三)重点与难点1.教学难点认识三角形全等的发现过程以及边边边的辨析.能够对运用三角形判定公理“SSS”解决三角形全等问题,对三角形其他定理的拓展与思考,了解三角形的稳定性.2.教学重点利用性质和判定,关键是学会准确地找出两个全等三角形中的对应边与对应角. 准确理解“SSS"三角形判定的公理,规范书写全等三角形的证明;二、教法与学情分析1.教法分析数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生知其然,而且还要使学生知其所以然。
5全等三角形的判定(SAS,ASA)

第8题
11.已知如图,AE=AC,AB=AD,∠EAB=∠CAD,试说明:∠B=∠D
12.已知:如图,AB=DC ,AD=BC , O是BD中点,过O的直线分别与DA、BC的延长线交于E、F.
求证:OE=OF
二.拓展提高
13.如图,线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC,说明∠A=∠C.
【变式】已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.
【随堂测试】
1、(2014•陕西)如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,使DB=BC,过点D作EF⊥AC,分别交AC于点E,CB的延长线于点F,求证:AB=BF.
2、(2014•内江)如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.
C.只能证明△AOB≌△COB
D.能证明△AOB≌△COD和△AOD≌△COB
2.已知△ABC的六个元素,下面甲、乙、丙三个三角形中和△ABC全等的图形是( )
A.甲和乙B.乙和丙C.只有乙D.只有丙
3.如图,已知MB=ND,∠MBA=∠NDC,下列不能判定△ABM≌△CDN的条件是( )
A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN
知识点二:全等三角形的判定(ASA)
全等三角形判定3——“角边角”
两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).
注:如图,如果∠A=∠ ,AB= ,∠B=∠ ,则△ABC≌△ .
【例2.1】已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.
D.一个锐角和锐角所对的直角边对应相等
三角形全等的判定

三角形全等的判定+性质+辅助线技巧三角形全等的判定+性质+辅助线技巧在初中三角形问题集中体现在“全等”和“相似”两大问题上,非常考验大家的解题能力、思维能力、耐性与定力。
有时证不出来,急不可耐、恨它恨的牙痒痒。
豆姐这次整理了全等三角形判定、性质,最重要的是后面附上了所有证明全等三角形,包括添加各种辅助线的方法,认真看完这篇文章,保证关于三角形全等所有的题型你都会做!一、三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。
2.有两边及其夹角对应相等的两个三角形全等(SAS)。
3.有两角及其夹边对应相等的两个三角形全等(ASA)。
4.有两角及一角的对边对应相等的两个三角形全等(AAS)。
5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。
二、全等三角形的性质①全等三角形的对应边相等;全等三角形的对应角相等。
②全等三角形的周长、面积相等。
③全等三角形的对应边上的高对应相等。
④全等三角形的对应角的角平分线相等。
⑤全等三角形的对应边上的中线相等。
三、找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
三角形全等的证明至少需要三个条件(包含两个要素:边和角),其中必须有边的条件。
缺个角的条件:缺条边的条件:四、构造辅助线的常用方法1.关于角平分线的辅助线当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。
角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。
关于角平分线常用的辅助线方法:(1)截取构全等如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。
全等三角形的判定【题目与答案】

全等三角形的判定一、5种判定方法1、SSS(边边边)2、SAS(边角边)3、ASA(角边角)4、AAS(角角边)5、HL(直角三角形专用)二、注意事项【思考】①要证明两个三角形全等,条件中必须要有“边”吗?至少要有几条边?②要证明两个三角形全等,条件中必须要有“角”吗?至少要有几个角?③使用“两边一角”证明两个三角形全等时,对“角”有什么特殊要求?④使用“两角一边”证明两个三角形全等时,对“边”有什么特殊要求?⑤证明两个直角三角形全等,只能使用“HL”来判断吗?1、判定两个三角形是否全等,必须要有边!2、用“两边一角”来判定三角形全等,必须是夹角!3、虽然直角三角形可以用“HL”来判断(也应该优先考虑),但不意味着只能用“HL”来判断,直角三角形虽然是特殊三角形,但是本质上依然是三角形,所以适用于所有三角形的前面4种方法依然适用于直角三角形!三、如何由已知条件寻找所需条件已知条件可判定方法寻找条件两边对应相等(SS)SSS或SAS第三边或两边的夹角对应相等角的另一边对应相等或边的另一邻角对一边及其邻角对应相等(SA)SAS、ASA、AAS应相等或边的对角相等一边及其对角对应相等(SA)AAS另一个角对应相等两角对应相等(AA)ASA、AAS两角的夹边或其中一角的对边对应相等四、隐含条件1、对顶角一定是对应角;2、公共角一定是对应角;3、直角一定是对应角;4、公共边一定是对应边.真题精炼1、(17-18学年汇文月考)如图,沿直线AD折叠,△ACD与△ABD重合,若∠B=58°,则∠CAD=度.2、(17-18学年求真月考)如图所示,由∠D=∠C,∠BAD=∠ABC推得△ABD≌△BAC,所用的判定定理的简称是()A.AAS B.ASA C.SAS D.SSS3、(17-18学年汇文月考)如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件.4、(17-18学年南师江宁月考)如图,12∠=∠,要使ABD△,需添加的一个条件△≌ACD是__________(只添一个条件即可).5、(17-18学年汇文月考)如图,已知B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.6、(17-18学年鼓楼区期末)如图,点B、E、C、F在同一条直线上,AB∥DE,AB=DE,要用SAS证明△ABC≌△DEF,可以添加的条件是()A.∠A=∠D B.AC∥DF C.BE=CF D.AC=DF7、(17-18学年求真月考)如图,已知AB=AC,AD=AE,若要得到“△ABD≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是()A.BD=CE B.∠ABD=∠ACEC.∠BAD=∠CAE D.∠BAC=∠DAE8、(17-18学年汇文月考)下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角D.已知三边9、(17-18学年栖霞区期中)根据下列已知条件,能够画出唯一△ABC的是()A.AB=5,BC=6,∠A=70°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8,D.∠A=40°,∠B=50°,∠C=90°10、(16-17学年钟英期末)在△ABC中,∠ABC=30°,AB边长为4,AC边的长度可以在1、2、3、4、5中取值,满足这些条件的互不全等的三角形的个数是()A.3个B.4个C.5个D.6个11、(17-18学年南师江宁月考)在下列各组条件中,不能说明ABC △≌DEF △的是().A .AB DE =,B E ∠=∠,C F ∠=∠B .AC DF =,BC EF =,AD ∠=∠C .AB DE =,A D ∠=∠,B E∠=∠D .AB DE =,BC EF =,AC DF=12、(16-17学年致远期中)如图,小明不小心把一块三角形的玻璃摔成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带第__________块去配,这是因为这两块玻璃全等,其全等的依据是__________.可以用字母简写)13、(17-18学年溧水区期末)如图,一个三角形被纸板挡住了一部分,我们还能够画出一个与它完全重合的三角形,其原理是判定两个三角形全等的基本事实或定理,本题中用到的基本事实或定理是()A .ASAB .SASC .SSSD .HL14、(17-18学年南师江宁月考)请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出A O B AOB '''∠=∠的依据是().A .SASB .ASAC .AASD .SSS15、(17-18学年汇文月考)如图,点A 、E 、F 、D 在同一直线上,若AB ∥CD ,AB =CD ,AE =FD ,则图中的全等三角形有()A .1对B .2对C .3对D .4对16、(17-18学年联合体期末)如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A、1组B、2组C、3组D、4组17、(16-17学年南外期中)以下四个命题:①有两边和其中一边上的高线对应相等的两个三角形全等;②有两边和第三边上的高线对应相等的两个三角形全等;③有两角和其中一角的角平分线对应相等的两个三角形全等;④两角和第三个角的角平分线对应相等的两个三角形全等.其中真命题有().A.1个B.2个C.3个D.4个18、(17-18学年汇文月考)如图,在∠AOB的两边截取OA=OB,OC=OD,连接AD,BC 交于点P,则下列结论中①△AOD≌△BOC,②△APC≌△BPD,③点P在∠AOB的平分线上.正确的是;(填序号)19、(17-18学年汇文月考)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE 的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm20、(17-18学年栖霞区期中)规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB =A 1B 1,AD =A 1D 1,∠A =∠A 1,∠B =∠B 1,∠C =∠C 1;②AB =A 1B 1,AD =A 1D 1,∠A =∠A 1,∠B =∠B 1,∠D =∠D 1;③AB =A 1B 1,AD =A 1D 1,∠B =∠B 1,∠C =∠C 1,∠D =∠D 1;④AB =A 1B 1,CD =C 1D 1,∠A =∠A 1,∠B =∠B 1,∠C =∠C 1.其中能判定四边形ABCD 和四边形A 1B 1C 1D 1全等有()个A .1B .2C .3D .421、(17-18学年求真月考)如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为4,则BE =()A .1B .2C .3D .4AB C DA 1B 1C 1D122、(16-17学年致远期中)已知:如图,AB AD =,C E ∠=∠,BAE DAC ∠=∠.求证:ABC △≌ADE △.23、(17-18学年南师新城月考)已知:如图,AC =AE ,∠1=∠2,AB =AD .求证:BC =DE .24、(17-18学年建邺区期中)如图,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,AC =BD .求证BC =AD .25、(17-18学年汇文月考)如图,在△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 交于F .(1)求证:△ABD ≌△ACE .(2)求证:AF 平分∠BAC .BCDA26、(17-18学年汇文月考)(阅读理解题)如图所示,CE⊥AB于点E,BD⊥AC于点D,BD,CE交于点O,且AO平分∠BAC.(1)图中有多少对全等三角形?请一一列举出来(不必说明理由);(2)小明说:欲证BE=CD,可先证明△AOE≌△AOD得到AE=AD,再证明△ADB≌△AEC 得到AB=AC,然后利用等式的性质得到BE=CD,请问他的说法正确吗?如果正确,请按照他的说法写出推导过程,如果不正确,请说明理由;(3)要得到BE=CD,你还有其他思路吗?若有,请写出推理过程.27、(16-17学年南外期中)我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD 和四边形A B C D ''''中,AB A B ''=,BC B C ''=,B B '∠=,C C '∠=∠,现在只需补充一个条件,就可得四边形ABCD ≌四边形A B C D ''''.下列四个条件:①A A '∠=∠;②D D '∠=∠;③''AD A D =;④CD C D ''=(1)其中,符合要求的条件是__________.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD ≌四边形A B C D ''''.全等三角形的判定真题精炼【答案】1、(17-18学年汇文月考)如图,沿直线AD 折叠,△ACD 与△ABD 重合,若∠B =58°,则∠CAD =32度.【解析】解:由题意得:∠B =∠C ,∠ADB =∠ADC =90°,∴∠CAD =90°﹣∠C =32°.故答案为:32.2、(17-18学年求真月考)如图所示,由∠D =∠C ,∠BAD =∠ABC 推得△ABD ≌△BAC ,所用的判定定理的简称是(A )A .AASB .ASAC .SASD .SSS3、(17-18学年汇文月考)如图,△ABC 中,AD ⊥BC 于D ,要使△ABD ≌△ACD ,若根据“HL ”判定,还需要加条件AB=AC.【注意】此题绝对不可以写“BD=CD ”,因为要使用“HL ”,就必须要有“一条直角边、一条斜边”——题目中AD 作为公共边,同时也是“直角边”,所以要找的必须是“斜边”!4、(17-18学年南师江宁月考)如图,12∠=∠,要使ABD △≌ACD △,需添加的一个条件是__________(只添一个条件即可).【答案】BD CD =(或B C ∠=∠,或BAD CAD ∠=∠)【解析】由12∠=∠易得ADC ADB ∠=∠,又知AD AD =,①可添加条件BD CD =⇒由SAS 判定全等;②可添加条件B C ∠=∠或BAD CAD ∠=∠⇒由AAS 判定全等.5、(17-18学年汇文月考)如图,已知B 、E 、F 、C 在同一直线上,BE =CF ,AF =DE ,则添加条件∠AFB =∠DEC 或AB =DC,可以判断△ABF ≌△DCE .【解析】由BE =CF 易得BF=CE 已知两边——BF=CE 和AF =DE要想证明两个三角形全等,只需要再加一组对应边(SSS )或一组对应角(SAS ,必须是夹角)!6、(17-18学年鼓楼区期末)如图,点B 、E 、C 、F 在同一条直线上,AB ∥DE ,AB =DE ,要用SAS 证明△ABC ≌△DEF ,可以添加的条件是(C )A.∠A =∠DB .AC ∥DFC .BE =CFD .AC =DF【解析】∵AB //DE ∴∠ABC =∠DEF∴要想使用SAS 来证明△ABC ≌△DEF 就必须保证BC =EF但是题目的4个选项中却没有BC =EF !但是,因为EC 是BC 、EF 的公共部分,所以只需要保证BE =CF 即可!7、(17-18学年求真月考)如图,已知AB=AC,AD=AE,若要得到“△ABD≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是(B)A.BD=CE B.∠ABD=∠ACEC.∠BAD=∠CAE D.∠BAC=∠DAE【解析】已知“AB=AC,AD=AE”——已知两边,要想保证两个三角形全等 要么再找一条边,要么再找一个角(必须是夹角)!8、(17-18学年汇文月考)下列各条件中,不能作出唯一三角形的是(C)A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角D.已知三边【提示】用“两边一角”来判断时,必须是夹角!9、(17-18学年栖霞区期中)根据下列已知条件,能够画出唯一△ABC的是(C)A.AB=5,BC=6,∠A=70°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8,D.∠A=40°,∠B=50°,∠C=90°10、(16-17学年钟英期末)在△ABC中,∠ABC=30°,AB边长为4,AC边的长度可以在1、2、3、4、5中取值,满足这些条件的互不全等的三角形的个数是(C)A.3个B.4个C.5个D.6个【解析】∵点A与l上的各点连线中,垂线段最短——AD=2(直角三角形中,30°角所对的直角边等于斜边的一半),所以AC最小为2.11、(17-18学年南师江宁月考)在下列各组条件中,不能说明ABC △≌DEF △的是(B ).A .AB DE =,B E ∠=∠,C F ∠=∠B .AC DF =,BC EF =,AD ∠=∠C .AB DE =,A D ∠=∠,B E∠=∠D .AB DE =,BC EF =,AC DF=【解析】A 、C 、D 分别为AAS ,ASA ,SSS ;B 为SSA 不可判定全等.12、(16-17学年致远期中)如图,小明不小心把一块三角形的玻璃摔成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带第__________块去配,这是因为这两块玻璃全等,其全等的依据是__________.可以用字母简写)【答案】③,ASA【解析】因为第③块中有完整的两个角及其夹边,利用ASA 可证三角形全等,故应带第③块.13、(17-18学年溧水区期末)如图,一个三角形被纸板挡住了一部分,我们还能够画出一个与它完全重合的三角形,其原理是判定两个三角形全等的基本事实或定理,本题中用到的基本事实或定理是(A)A .ASAB .SASC .SSSD .HL14、(17-18学年南师江宁月考)请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出A O B AOB '''∠=∠的依据是(D).A .SASB .ASAC .AASD .SSS【解析】由作法易得OD O D ''=,OC O C ''=,CD C D ''=,依据SSS 可判定COD △≌C O D '''△,再由全等三角形对应角相等得到COD C O D '''∠=∠,即AOB A O B '''∠=∠.15、(17-18学年汇文月考)如图,点A、E、F、D在同一直线上,若AB∥CD,AB=CD,AE=FD,则图中的全等三角形有(C)A.1对B.2对C.3对D.4对16、(17-18学年联合体期末)如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有(C)A、1组B、2组C、3组D、4组【解析】此题的难度不在于会不会判断,而是能不能快速找全4种组合情况.从4个条件中选3个条件出来,如何才能保证把所有情况都找全——“任选三个条件”的另一层含义也就是“任意不选1个条件”:①不选AB=DE⇒选BC=EF,∠B=∠E,∠C=∠F⇒ASA②不选BC=EF⇒选AB=DE,∠B=∠E,∠C=∠F⇒AAS③不选∠B=∠E⇒选AB=DE,BC=EF,∠C=∠F⇒角不是夹角,错!④不选∠C=∠F⇒选AB=DE,BC=EF,∠B=∠E⇒SAS17、(16-17学年南外期中)以下四个命题:①有两边和其中一边上的高线对应相等的两个三角形全等;②有两边和第三边上的高线对应相等的两个三角形全等;③有两角和其中一角的角平分线对应相等的两个三角形全等;④两角和第三个角的角平分线对应相等的两个三角形全等.其中真命题有(B).A.1个B.2个C.3个D.4个【解析】务必注意“高”的特殊性——高可以在三角形内部、可以在三角形边上也可以在三角形外部!①错误,反例(要否定一个命题,只需要举出一个反例)如下:AC=A’C’,BC=B’C’,AD=A’D’②错误,反例如下:AB=A’B’,AC=A’C’,AD=A’D’③④是正确的.18、(17-18学年汇文月考)如图,在∠AOB的两边截取OA=OB,OC=OD,连接AD,BC 交于点P,则下列结论中①△AOD≌△BOC,②△APC≌△BPD,③点P在∠AOB的平分线上.正确的是①②③;(填序号)【解析】解:∵OA=OB,OC=OD,∠O为公共角,∴△AOD≌△BOC,∴∠A=∠B,又∠APC=∠BPD,∴∠ACP=∠BDP,OA﹣OC=OB﹣OD,即AC=BD,∴△APC≌△BPD,∴AP =BP ,连接OP ,即可得△AOP ≌△BOP ,得出∠AOP =∠BOP ,∴点P 在∠AOB 的平分线上.故题中结论都正确.故答案为:①②③.19、(17-18学年汇文月考)如图,在△ABC 中,∠ABC =45°,AC =8cm ,F 是高AD 和BE 的交点,则BF 的长是(C)A .4cmB .6cmC .8cmD .9cm【解析】∵AD ⊥BC ∴∠ADB =90°∵∠ABC =45°∴∠BAD =∠ABC =45°∴AD =BD在Rt △ADC 中,∠DAC +∠C =90°在Rt △BEC 中,∠DBF +∠C =90°∴∠DAC =∠DBF 在△FBD 和△CAD 中,⎪⎩⎪⎨⎧=︒=∠=∠∠=∠AD BD CDA FDB CAD FBD 90∴△FBD ≌△CAD (AAS )∴BF =AC =8cm20、(17-18学年栖霞区期中)规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB =A 1B 1,AD =A 1D 1,∠A =∠A 1,∠B =∠B 1,∠C =∠C 1;②AB =A 1B 1,AD =A 1D 1,∠A =∠A 1,∠B =∠B 1,∠D =∠D 1;③AB =A 1B 1,AD =A 1D 1,∠B =∠B 1,∠C =∠C 1,∠D =∠D 1;④AB =A 1B 1,CD =C 1D 1,∠A =∠A 1,∠B =∠B 1,∠C =∠C 1.其中能判定四边形ABCD 和四边形A 1B 1C 1D 1全等有(C)个A .1B .2C .3D .4【解析】(1)除三角形之外,其他多边形要想全等,就必须同时满足“所有的边对应相等和所有的角对应相等”;(2)题目给的4组条件,看似给的都是3组对应角相等,但是根据四边形内角和为360°,所以其实告诉的是4组对应角相等,所以我们只需要再保证4组对应边对应相等即可;(3)我们在课本上只学习了三角形全等的判定条件,没有学习四边形全等的判定条件——这其实意味着我们要想办法把四边形“转化”为我们熟悉的三角形!怎么办?连接对角线,分别证明对角线两侧的两组三角形对应全等即可!(4)能够保证两个四边形全等是①②③.21、(17-18学年求真月考)如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为4,则BE =(B)A .1B .2C .3D .4AB C DA 1B 1C 1D1【解析】解:如图,过B 点作BF ⊥CD ,与DC 的延长线交于F 点,∵∠ABC =∠CDA =90°,BE ⊥AD ,∴四边形EDFB 是矩形,∠EBF =90°,∴∠ABE =∠CBF ,∵在△BCF 和△BAE中,∴△BCF ≌△BAE (ASA ),∴BE =BF ,∴四边形EDFB 是正方形,∴S 四边形ABCD =S 正方形BEDF =4,∴BE ==2.22、(16-17学年致远期中)已知:如图,AB AD =,C E ∠=∠,BAE DAC ∠=∠.求证:ABC △≌ADE △.【答案】见解析【解析】证明:∵BAE DAC ∠=∠,∴BAE CAE DAC CAE ∠-∠=∠-∠,即BAC DAE ∠=∠,在ABC △和ADE △中,BAC DAE C EAB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABC △≌(AAS)ADE △.23、(17-18学年南师新城月考)已知:如图,AC =AE ,∠1=∠2,AB =AD .求证:BC =DE .【解析】∵∠1=∠2∴∠1+∠EAB =∠2+∠EAB ,即∠CAB =∠EAD在△CAB 和△EAD 中,⎪⎩⎪⎨⎧=∠=∠=DA BA EAD CAB EA CA △CAB ≌△EAD (SAS )∴BC =DE24、(17-18学年建邺区期中)如图,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,AC =BD .求证BC =AD .【证明】∵AC ⊥BC ,BD ⊥AD ,∴∠C =∠D =90°.在Rt △ABC 和Rt △BAD中,=BA ,=BD .∴Rt △ABC ≌Rt △BAD (HL ).∴BC =AD .B CD A25、(17-18学年汇文月考)如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE交于F.(1)求证:△ABD≌△ACE.(2)求证:AF平分∠BAC.【解析】证明:(1)∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS).(2)∵△ABD≌△ACE,∴AE=AD,在Rt△AEF和Rt△ADF中,,∴Rt△AEF≌Rt△ADF(HL),∴∠EAF=∠DAF,∴AF平分∠BAC.26、(17-18学年汇文月考)(阅读理解题)如图所示,CE⊥AB于点E,BD⊥AC于点D,BD,CE交于点O,且AO平分∠BAC.(1)图中有多少对全等三角形?请一一列举出来(不必说明理由);(2)小明说:欲证BE=CD,可先证明△AOE≌△AOD得到AE=AD,再证明△ADB≌△AEC 得到AB=AC,然后利用等式的性质得到BE=CD,请问他的说法正确吗?如果正确,请按照他的说法写出推导过程,如果不正确,请说明理由;(3)要得到BE=CD,你还有其他思路吗?若有,请写出推理过程.【解析】解:(1)图中有4对全等三角形,有△ADB≌△AEC,△ADO≌△AEO,△AOB≌△AOC,△EOB≌△DOC.(2)正确,理由是:∵AO平分∠BAC,∴∠EAO=∠DAO,∵CE⊥AB,BD⊥AC,∴∠AEO=∠ADO=90°,∴在△AEO和△ADO中∴△AEO≌△ADO(AAS),∴AE=AD,在△ADB和△AEC中∴△ADB≌△AEC(ASA),∴AB=AC,∵AE=AD,∴BE=CD.(3)有,理由是:∵AO 平分∠BAC ,OE ⊥AB ,OD ⊥AC ,∴OE =OD ,∠BEO =∠CDO =90°,在△BEO 和△CDO中∴△BEO ≌△CDO (ASA ),∴BE =CD .27、(16-17学年南外期中)我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD 和四边形A B C D ''''中,AB A B ''=,BC B C ''=,B B '∠=,C C '∠=∠,现在只需补充一个条件,就可得四边形ABCD ≌四边形A B C D ''''.下列四个条件:①A A '∠=∠;②D D '∠=∠;③''AD A D =;④CD C D ''=(1)其中,符合要求的条件是__________.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD ≌四边形A B C D ''''.【解析】(1)①②④(2)选④证明:连接AC 、A C '',在ABC △和A B C '''△中,AB A B B B BC B C ⎧''=⎪⎪'∠=∠⎨⎪''=⎪⎩,∴ABC △≌(SAS)A B C '''△,∴AC A C ''=,ACB A C B '''∠=∠,∵BCD B C D '''∠=∠,∴BCD ACB B C D A C B ''''''∠-∠=∠-∠,∴ACD A C D '''∠=∠.在ACD △和A C D '''△中,AC A C ACD A C D CD C D ⎧''=⎪⎪'''∠=∠⎨⎪''=⎪⎩,∴ACD △≌A C D '''△,∴D D '∠=∠,DAC D A C '''∠=∠,DA D A ''=,∴BAC DAC B A C D A C ''''''∠+∠=∠+∠,即BAD B A D '''∠=∠,∴四边形ABCD 和四边形A B C D ''''中,AB A B ''=,BC B C ''=,AD A D ''=,DC D C ''=,B B '∠=∠,BCD B C D '''∠=∠,D D '∠=∠,BAD B A D '''∠=∠,∴四边形ABCD ≌四边形A B C D ''''.。
三角形全等的判定方法(5种)例题+练习(全面)

教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1 边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”. 注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在∆ABC和∆ABD中,∠A=∠A,AB=AB,BC=BD,显然这两个三角形不全等. 例1 如图,AC=AD,∠CAB=∠DAB,求证:∆ACB≌∆ADB.例2 如图,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF求证:BF=CE.例3.(1)如图①,根据“SAS”,如果BD=CE, = ,那么即可判定△BDC≌△CEB;(2) 如图②,已知BC=EC,∠BCE=ACD,要使△ABC≌△DEC,则应添加的一个条件为例4.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌,理由是;△ABE≌,理由是.例5.如图,在△ABC和△DEF中,如果AB=DE,BC=EF,只要找出∠ =∠或∥,就可得到△ABC≌△DEF.例6.如图,已知AB∥DE,AB=DE,BF=CE,求证:△ABC≌△DEF.例7.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E例8.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在△ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E,F,连接CE,BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是:.(不添加辅助线)例2.如图,已知AD平分∠BAC,且∠ABD=∠ACD,则由“AAS”可直接判定△≌△.例3.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,那么AE= cm.例4.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.例5.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证:BC=DC.例6.如图,在△ABC中,D是BC边上的点 (不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE.请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1) 你添加的条件是:;(2) 证明:例7.如图,A在DE上,F在AB上,且BC=DC,∠1=∠2=∠3,则DE的长等于 ( ) A.DC B.BCC.AB D.AE+AC【基础训练】1.如图,已知AB=DC,∠ABC=∠DCB,则有△ABC≌_______,理由是_______;且有∠ACB=_______,AC=_______.2.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌_______,理由是_______;△ABF≌_______,理由是_______.3.如图,在△ABC和△BAD中,因为AB=BA,∠ABC=∠BAD,_______=_______,根据“SAS”可以得到△ABC≌△BAD.4.如图,要用“SAS”证△ABC≌△ADE,若AB=AD,AC=AE,则还需条件( ).A.∠B=∠D B∠C=∠EC.∠1=∠2 D.∠3=∠45.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).A.60°B.50°C.45°D.30°6.如图,如果AE=CF,AD∥BC,AD=CB,那么△ADF和ACBE全等吗?请说明理由.7.如图,已知AD与BC相交于点O,∠CAB=∠DBA,AC=BD.求证:(1)∠C=∠D;(2)△AOC≌△BOD.8.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.9.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.10.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.A BC DEF角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS ”. 例1、如图,在△ABC 中,∠ABC =45°,H 是高AD 和高BE 的交点,试说明BH =AC .例2、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm . 求BE 的长.例3、如图, 在△ABC 中, AC ⊥BC, CE ⊥AB 于E, AF 平分∠CAB 交CE 于点F, 过F 作FD ∥BC 交AB 于点D. 求证:AC =AD.例4、如图, 在ABC中, ∠A=90°, BD平分B, DE⊥BC于E, 且BE=EC,(1)求∠ABC与∠C的度数;(2)求证:BC=2AB.边边边三边分别相等的两个三角形全等,可以简写成“边边边”或“SSS”.例1、如图,在四边形ABCD中,AB=CB,AD=CD.你能说明∠C=∠A吗? 试一试.例2、如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中.BE和DE是否相等? 若相等,请写出证明过程;若不相等,请说明理由.例3.如图,AB=CD ,AE=CF ,BO=DO ,EO=FO .求证:OC=OA .斜边、直角边斜边和一条直角边分别相等的两个直角三角形全等,可以简写成“斜边、直角边”或“HL ”。
全等三角形及判定练习题

一.知识点:1.能够完全重合的两个三角形叫做全等三角形含义:形状一样,大小相等.2.符号:“≌〞3.对应〔边、角、顶点〕:重合的边、重合的角,重合的顶点4.全等三角形的性质:⑴全等三角形的对应边相等. ⑵全等三角形的对应角相等. ⑶全等三角形的周长、面积相等.二、根底习题1如图,ABC ∆≌ADE ∆,︒=∠30EAC ,求BAD ∠的度数.2、如图,ABC ∆≌DEF ∆,且A 、D 、B 、E 在同一条直线上,试找出图中互相平行的线段,并说明理由.3、如图,ABE ∆≌ACD ∆,21∠=∠,C B ∠=∠.求证:CAE BAD ∠=∠4.如图,ABC ∆≌EFC ∆,B 、C 、E 在同一条直线上,且cm BC 3=,cm CE 4=,︒=∠52EFC . 求AF 的长和A ∠的度数.5.如图,长方形ABCD 沿AE 折叠,使得点D 落在BC 边上的点F 处,且︒=∠50BAF .求DAE ∠的度数.6、如图,点A 、E 、B 、F 在同一条直线上,ABC ∆≌FED ∆.⑴判断AC 与DF 的位置关系,并说明理由;⑵判断AE 与BF 的数量关系,并说明理由.一.全等三角形的判定1“边边边〞或“SSS 〞几何符号语言:在ABC ∆和DEF ∆中∵⎪⎩⎪⎨⎧===DF AC EF BC DE AB∴ABC ∆≌DEF ∆〔SSS 〕二、根底习题1如图,点B 、E 、C 、F 在同一直线上,CF BE =,DE AB =,DF AC =.求证:D EGC ∠=∠2、如图,点A 、C 、F 、D 在同一直线上,DC AF =,DE AB =,EF BC =求证:DE AB //3、如图,在四边形ABCD 中,CD AB =,BC AD =.求证:①CD AB //;②BC AD //.4、如图,AC 与BD 交于点O ,CB AD =,E 、F 是BD 上两点,且CF AE =,BF DE =. 求证:⑴B D ∠=∠;⑵CF AE //全等三角形〔3〕一.全等三角形的判定2:“边角边〞或“SAS 〞几何符号语言:在ABC ∆和DEF ∆中∵⎪⎩⎪⎨⎧=∠=∠=EF BC E B DE AB∴ABC ∆≌DEF ∆〔SAS 〕二、根底习题1、如图,D 是ABC ∆中边BC 的中点,ACD ABD ∠=∠,且AC AB =.求证:⑴ABD ∆≌ACD ∆ ⑵EC EB =2、点A 、D 、F 、B 在同一直线上,BF AD =,且BC AE //.求证:⑴AEF ∆≌BCD ∆ ⑵CD EF //3、 如图,DE CD ⊥于D ,DB AB ⊥于B ,BE CD =,DE AB =.求证:AE CE ⊥4、 如图,ABC ∆和ECD ∆都是等边三角形,连接BE 、AD 交于O .求证:⑴BE AD = ⑵︒=∠60AOB全等三角形〔4〕一.全等三角形的判定3:“角边角〞或“ASA 〞“角角边〞或“AAS 〞几何符号语言:在ABC ∆和DEF ∆中∵⎪⎩⎪⎨⎧∠=∠=∠=∠E B DE AB D A∴ABC ∆≌DEF ∆〔ASA 〕或:在ABC ∆和DEF ∆中∵⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC E B D A∴ABC ∆≌DEF ∆〔AAS 〕二、根底习题1.B A AB ''=,A A '∠=∠,B B '∠=∠,那么ABC ∆≌C B A '''∆的根据是〔 〕A .SASB .SSAC .ASAD .AAS2.ABC ∆和DEF ∆中,DE AB =,E B ∠=∠,要使ABC ∆≌DEF ∆ ,那么以下补充的条件中错误的选项是〔 〕A .DF AC =B .EF BC = C .D A ∠=∠ D .F C ∠=∠3.如图,AD 平分BAC ∠,AC AB =,那么图中全等三角形的对数是〔 〕A .2对B .3对C .4对D .5对4.如图,CD AB //,欲证明AOB ∆≌COD ∆,可补充条件________.〔填写一个适合的条件即可〕5.如图,AC AB ⊥,CD BD ⊥,21∠=∠,欲得到CE BE =,•可先利用_______,证明ABC ∆≌DCB ∆,得到______=______,再根据___________•证明________•≌________,即可得到CE BE =.6.如图,AC 平分DAB ∠和DCB ∠,欲证明AED AEB ∠=∠,•可先利用___________,证明ABC ∆≌ADC ∆,得到______=_______,再根据________,证明______≌________,即可得到AED AEB ∠=∠.7.如图,AE AC =,E C ∠=∠,21∠=∠.求证:ABC ∆≌ADE ∆.8.如图,CE BD =,21∠=∠,那么AC AB =,你知道这是为什么吗?全等三角形〔5〕一.全等三角形的判定5:斜边和一条直角边对应相等的两个直角三角形全等. 简写为“斜边、直角边〞或“HL 〞几何符号语言:∵︒=∠=∠90F C∴在ABC Rt ∆和DEF Rt ∆中∵⎩⎨⎧==DF AC DE AB ∴ABC ∆≌DEF ∆ 二、根底习题1.如图,AC AB =,BC AD ⊥于D .求证:AD 平分BAC ∠,CD BD =2.如图,AC AB =,AF AE =,EC AE ⊥于E ,FB AF ⊥于F .求证:21∠=∠3.在ABC ∆中,︒=∠90BAC ,AC AB =,AE 是过点A 的一条直线,且AE BD ⊥于D ,AE CE ⊥于E . ⑴当直线AE 处于如图1的位置时,猜测BD 、DE 、CE 之间的数量关系,并证明. ⑵请你在图2选择与⑴不同位置进展操作,并猜测⑴中的结论是否还成立?加以证明; ⑶归纳⑴、⑵,请你用简洁的语言表达BD 、DE 、CE 之间的数量关系.4.如图,在ABC ∆和DEF ∆中,B 、E 、C 、F 在同一直线上,下面有四个条件,请你从中选三个作为题设,余下的一个作为结论,写出一个正确..的命题,并加以证明. ①DE AB =,②DF AC =,③DEF ABC ∠=∠,④CF BE =.5.如图,OB OA =,OD OC =,︒=∠=∠90COD AOB .猜测线段AC 、BD 的关系,并说明理由.。
全等三角形5(Hl)

Rt △(五) 直角三角形(Rt △)的判定方法:斜边和一条直角边对应相等的两个三角形全等,简称(HL ) 符号语言表示:如上图,在Rt △ABC 和Rt △A ′B ′C ′中∵⎩⎨⎧==B''A AB C''A AC ∴Rt △ABC ≌ Rt △A ′B ′C ′注:Rt △全等的判定不是只有HL ,前面学过的SSS ,SAS ,ASA ,AAS 都可以用。
例1:如图,OA PC ⊥于C ,OB PD ⊥于D ,且PD PC =。
求证:DPO CPO ∠=∠例2:已知:∠BAC =∠CDB=90。
,AC=DB, 求证:AB=DC.补例:已知:A C ⊥BC ,AD ⊥BD ,AD=BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F ,求证:CE=DF 。
练习:1. 已知,如图,△ABC 中,AB=AC ,AD 是角平分线,BE=CF ,则下列说法 正确的有几个 ( ) (1)AD 平分∠EDF ;(2)△EBD ≌△FCD ;(3)BD=CD ;(4)AD ⊥BC . (A )1个 (B )2个 (C )3个 (D )4个2.下列命题中正确的有( )①两直角边对应相等的两直角三角形全等; ②两锐角对应相等的两直角三角形全等; ③斜边和一条直角边对应相等的两直角三角形全等;④一锐角和斜边对应相等的两直角三角形全等. A .2个 B .3个 C .4个 D .1个3.如图,ABC ∆和EDF ∆中,︒=∠=∠90D B ,E A ∠=∠,点B 、F 、C 、D 在同一条直线上,再增加一个条件,不能判定ABC ∆≌EDF ∆的是( )A .ED AB = B .EF AC = C .EF AC //D .DC BF =4.如图,AC AB =,AC BD ⊥于D ,AB CE ⊥于E ,图中全等三角形的组数是( ) A .2 B .3 C .4 D .55. 如图,在△ABC 和△ABD 中,∠C=∠D=90°,若利用“AAS ”证明△ABC ≌△ABD ,则需要加条件 _______或 ; 若利用“HL ”证明△ABC ≌△ABD ,则需要加条件 或 .第3题 第4题 第5题6. 如图,在△ABC 中,已知D 是BC 中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,DE =DF . 求证:AB=AC7. 已知:如图,AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC =DC 。
五种判断全等角的解读

五种判断全等角的解读
全等角是指两个角的度数完全相等。
在几何学中,判定两个角是否全等是非常
重要的,因为它们的相等性决定了图形的形状和性质。
下面将介绍五种判断全等角的方法。
1. 角度相等法:如果两个角的度数相等,则它们是全等角。
通过测量两个角的
角度,可以判断它们是否全等。
2. 边对边法:如果两个角的相邻边分别相等,并且对应边也相等,则这两个角
是全等角。
根据边对应原理,如果两个角的边分别相等,并且对应边也相等,那么这两个角是全等的。
3. 角-边-角法:如果两个角的边和夹角分别相等,则这两个角是全等角。
根据
三角形的全等性质,如果两个角的一条边和夹角分别相等,则这两个角是全等的。
4. 对顶角法:如果两个角是两个全等三角形的对顶角,则这两个角是全等角。
根据全等三角形的性质,如果两个角是两个全等三角形的对顶角,则这两个角是全等的。
5. 对称性质法:如果两个角是对称图形中对称位置上的角,则这两个角是全等角。
根据对称性质,如果两个角是对称图形中对称位置上的角,则这两个角是全等的。
通过以上五种方法,我们可以准确地判断两个角是否全等。
掌握这些方法对于
解决几何问题和证明几何定理非常重要,它们能够帮助我们理解和分析图形的性质,进而推导出更多的结论。
在应用这些方法时,需要仔细观察和测量图形的各个部分,运用相应的判断条件,从而得出正确的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 5 周第1课时总第15课时时间
备课人:审核:准核:班级:学生姓名:课题全等三角形判定5
教学目标
1、经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;
2、掌握直角三角形全等的条件,并能运用其解决一些实际问题。
3、在探索直角三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单推理。
教学重点运用直角三角形全等的条件解决一些实际问题。
教学难点熟练运用直角三角形全等的条件解决一些实际问题。
Ⅰ.想一想,填一填:
1、判定两个三角形全等常用的方法:、、、
2、如图,Rt△ABC中,直角边是、,
斜边是
3、如图,AB⊥BE于C,DE⊥BE于E,
(1)若∠A=∠D,AB=DE,
则△ABC与△DEF (填“全等”或“不
全等”)
根据(用简写法)
(2)若∠A=∠D,BC=EF,
则△ABC与△DEF (填“全等”或“不
全等”)
根据(用简写法)
(3)若AB=DE,BC=EF,
则△ABC与△DEF (填“全等”或“不全等”)
根据(用简写法)
(4)若AB=DE,BC=EF,AC=DF
则△ABC与△DEF (填“全等”或“不全等”)
根据(用简写法)
Ⅱ.探究学习
(一)探索新知:
1.阅读教材P101-P102并作出三角形(动手操作):
2、与教材中的三角形比较,是否重合?
3、从中你发现
了什么?
斜边与一直角边对应相等的两个直角三角形全等.(HL)
(二)自学检测:
1.如图,△ABC中,AB=AC,AD是高,
则△ADB与△ADC (填“全等”或“不全等”)
根据(用简写法)
2.如图,CE⊥AB,DF⊥AB,垂足分别为E、F,
(1)若AC//DB,且AC=DB,则△ACE≌△BDF,
根据
(2)若AC//DB,且AE=BF,则△ACE≌△BDF,根据
(3)若AE=BF,且CE=DF,则△ACE≌△BDF,根据
第 5 周 第1课时 总第15课时 时间 备课人: 审核: 准核: 班 级: 学生姓名:
(4)若AC=BD ,AE=BF ,CE=DF 。
则△ACE ≌△BDF ,根据
(5) 若AC=BD ,CE=DF (或AE=BF ),则△ACE ≌△BDF ,根据
3、判断两个直角三角形全等的方法不正确的有( )
(A ) 两条直角边对应相等 (B )斜边和一锐角对应相等
(C )斜边和一条直角边对应相等 (D )两个锐角对应相等
4、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,
AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由
答:
理由:∵ AF ⊥BC ,DE ⊥BC (已知)
∴ ∠AFB=∠DEC= °(垂直的定义)
在Rt △ 和Rt △ 中 ⎩⎨⎧==_________
______________________ ∴ ≌ ( )
∴∠ = ∠ ( )
∴ (内错角相等,两直线平行)
(三)、例题: 阅读教材例题: P102例7
(四)小组合作学习:
判断题:
(1)一个锐角和这个锐角的对边对应相等的两个直角三角形全等。
( )
(2)一个锐角和锐角相邻的一直角边对应相等的两个直角三角形全等( )
(3)一个锐角与一斜边对应相等的两个直角三角形全等( )
(4)两直角边对应相等的两个直角三角形全等( )
(5)两边对应相等的两个直角三角形全等( )
(6)两锐角对应相等的两个直角三角形全等( )
(7)一个锐角与一边对应相等的两个直角三角形全等( )
(8)一直角边和斜边上的高对应相等的两个直角三角形全等( )
Ⅲ.评价反思 概括总结
六种判定三角形全等的方法:
1.全等三角形的定义 2.边边边(SSS ) 边角边(SAS ) 角边角(ASA ) 角角边(AAS )3.HL (仅用在直角三角形中)
Ⅳ.作业。