费县实验中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

费县实验中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1.在平行四边形ABCD中,AC为一条对角线,=(2,4),=(1,3),则等于()A.(2,4)B.(3,5)C.(﹣3,﹣5)D.(﹣2,﹣4)
2.已知函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.若数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),则{a n}的前28项之和S28=()
A.7B.14C.28D.56
3.抛物线x=﹣4y2的准线方程为()
A.y=1B.y=C.x=1D.x=
4.设等差数列{a n}的前n项和为S n,已知S4=﹣2,S5=0,则S6=()
A.0B.1C.2D.3
5.设F1,F2是双曲线的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于
()
A.B.C.24D.48
6.已知函数f(x)=3cos(2x﹣),则下列结论正确的是()
A.导函数为
B.函数f(x)的图象关于直线对称
C.函数f(x)在区间(﹣,)上是增函数
D.函数f(x)的图象可由函数y=3co s2x的图象向右平移个单位长度得到
7.过直线3x﹣2y+3=0与x+y﹣4=0的交点,与直线2x+y﹣1=0平行的直线方程为()
A.2x+y﹣5=0B.2x﹣y+1=0C.x+2y﹣7=0D.x﹣2y+5=0
8.已知命题“p:∃x>0,lnx<x”,则¬p为()
A.∃x≤0,lnx≥x B.∀x>0,lnx≥x C.∃x≤0,lnx<x D.∀x>0,lnx<x
9.设集合A={x|x<a},B={x|x<3},则“a<3”是“A⊆B”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
10.已知f(x)=4+a x﹣1的图象恒过定点P,则点P的坐标是()
A.(1,5)B.(1,4)C.(0,4)D.(4,0)
11.是首项,公差的等差数列,如果,则序号等于()
A.667B.668C.669D.670
12.执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是()
A.k>7B.k>6C.k>5D.k>4
二、填空题
13.f(x)=x(x﹣c)2在x=2处有极大值,则常数c的值为

14.已知集合,若3∈M,5∉M,则实数a的取值范围是 .
14.如图所示,在三棱锥C﹣ABD中,E、F分别是AC和BD的中点,若CD=2AB=4,EF⊥AB,则EF与CD 所成的角是 .
15.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为()
A .
B .
C .
D .
16.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .
17.对于映射f :A →B ,若A 中的不同元素有不同的象,且B 中的每一个元素都有原象,则称f :A →B 为一一映射,若存在对应关系Φ,使A 到B 成为一一映射,则称A 到B 具有相同的势,给出下列命题:①A 是奇数集,B 是偶数集,则A 和B 具有相同的势;
②A 是平面直角坐标系内所有点形成的集合,B 是复数集,则A 和B 不具有相同的势;③若区间A=(﹣1,1),B=R ,则A 和B 具有相同的势.
其中正确命题的序号是 . 
18.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数的零点在区间
()ln 4f x x x =+-内,则正整数的值为________.()1k k +,k 三、解答题
19.已知函数f (x )=4x ﹣a •2x+1+a+1,a ∈R .(1)当a=1时,解方程f (x )﹣1=0;
(2)当0<x <1时,f (x )<0恒成立,求a 的取值范围;(3)若函数f (x )有零点,求实数a 的取值范围. 
20.某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].(1)求图中a 的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分.
21.已知斜率为1的直线l 经过抛物线y 2=2px (p >0)的焦点F ,且与抛物线相交于A ,B 两点,|AB|=4.(I )求p 的值;
(II )若经过点D (﹣2,﹣1),斜率为k 的直线m 与抛物线有两个不同的公共点,求k 的取值范围.
22.(本小题满分13分)
在四棱锥中,底面是直角梯形,,,,.
P ABCD -ABCD //AB DC 2
ABC π
∠=AD =33AB DC ==(Ⅰ)在棱上确定一点,使得平面;PB E //CE PAD
(Ⅱ)若,,求直线与平面所成角的大小.
PA PD ==
PB PC =PA PBC
A B C
D
P
23.已知椭圆+=1(a>b>0)的离心率为,且a2=2b.
(1)求椭圆的方程;
(2)直线l:x﹣y+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,说明理由.
24.某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房.第一年建新住房am2,第二年到第四年,每年建设的新住房比前一年增长100%,从第五年起,每年建设的新住房都比前一年减少am2;已知旧住房总面积为32am2,每年拆除的数量相同.
(Ⅰ)若10年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m2?(Ⅱ),求前n(1≤n≤10且n∈N)年新建住房总面积S n
费县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】C
【解析】解:∵,
∴==(﹣3,﹣5).
故选:C.
【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力.
2.【答案】C
【解析】解:∵函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.
∴函数f(x)关于直线x=1对称,
∵数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),
∴a6+a23=2.
则{a n}的前28项之和S28==14(a6+a23)=28.
故选:C.
【点评】本题考查了等差数列的通项公式性质及其前n项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.
3.【答案】D
【解析】解:抛物线x=﹣4y2即为
y2=﹣x,
可得准线方程为x=.
故选:D.
4.【答案】D
【解析】解:设等差数列{a n}的公差为d,
则S4=4a1+d=﹣2,S5=5a1+d=0,
联立解得,
∴S6=6a1+d=3
故选:D
【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题. 
5.【答案】C
【解析】解:F1(﹣5,0),F2(5,0),|F1F2|=10,
∵3|PF1|=4|PF2|,∴设|PF2|=x,则,
由双曲线的性质知,解得x=6.
∴|PF1|=8,|PF2|=6,
∴∠F1PF2=90°,
∴△PF1F2的面积=.
故选C.
【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用. 
6.【答案】B
【解析】解:对于A,函数f′(x)=﹣3sin(2x﹣)•2=﹣6sin(2x﹣),A错误;
对于B,当x=时,f()=3cos(2×﹣)=﹣3取得最小值,
所以函数f(x)的图象关于直线对称,B正确;
对于C,当x∈(﹣,)时,2x﹣∈(﹣,),
函数f(x)=3cos(2x﹣)不是单调函数,C错误;
对于D,函数y=3co s2x的图象向右平移个单位长度,
得到函数y=3co s2(x﹣)=3co s(2x﹣)的图象,
这不是函数f(x)的图象,D错误.
故选:B.
【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.
7.【答案】A
【解析】解:联立,得x=1,y=3,
∴交点为(1,3),
过直线3x﹣2y+3=0与x+y﹣4=0的交点,
与直线2x+y﹣1=0平行的直线方程为:2x+y+c=0,
把点(1,3)代入,得:2+3+c=0,
解得c=﹣5,
∴直线方程是:2x+y﹣5=0,
故选:A.
8.【答案】B
【解析】解:因为特称命题的否定是全称命题,所以,命题“p:∃x>0,lnx<x”,则¬p为∀x>0,lnx≥x.
故选:B.
【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.
9.【答案】A
【解析】解:若A⊆B,则a≤3,
则“a<3”是“A⊆B”的充分不必要条件,
故选:A
【点评】本题主要考查充分条件和必要条件的判断,根据集合关系是解决本题的关键.
10.【答案】A
【解析】解:令x﹣1=0,解得x=1,代入f(x)=4+a x﹣1得,f(1)=5,
则函数f(x)过定点(1,5).
故选A.
11.【答案】C
【解析】
由已知,由得,故选C
答案:C
12.【答案】C
【解析】解:程序在运行过程中各变量值变化如下表:
K S 是否继续循环
循环前1 0
第一圈2 2 是
第二圈3 7 是
第三圈4 18 是
第四圈5 41 是
第五圈6 88 否
故退出循环的条件应为k>5?
故答案选C.
【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.
二、填空题
13.【答案】 6 .
【解析】解:f(x)=x3﹣2cx2+c2x,f′(x)=3x2﹣4cx+c2,
f′(2)=0⇒c=2或c=6.若c=2,f′(x)=3x2﹣8x+4,
令f′(x)>0⇒x<或x>2,f′(x)<0⇒<x<2,
故函数在(﹣∝,)及(2,+∞)上单调递增,在(,2)上单调递减,
∴x=2是极小值点.故c=2不合题意,c=6.
故答案为6
【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式.
14.【答案】 30° .
【解析】解:取AD的中点G,连接EG,GF则EG DC=2,GF AB=1,
故∠GEF即为EF与CD所成的角.
又∵FE⊥AB∴FE⊥GF∴在Rt△EFG中EG=2,GF=1故∠GEF=30°.
故答案为:30°
【点评】此题的关键是作出AD的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了.
15.【答案】
【解析】解:法1:取A1C1的中点D,连接DM,
则DM∥C1B1,
在在直三棱柱中,∠ACB=90°,
∴DM⊥平面AA1C1C,
则∠MAD是AM与平面AA1C1C所的成角,
则DM=,AD===,
则tan∠MAD=.
法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,
则∵AC=BC=1,侧棱AA1=,M为A1B1的中点,
∴=(﹣,,﹣),=(0,﹣1,0)为平面AA1C1C的一个法向量
设AM与平面AA1C1C所成角为θ,
则sinθ=||=
则tanθ=
故选:A
【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键.
16.【答案】:.
【解析】解:∵•=cosα﹣sinα=,
∴1﹣sin2α=,得sin2α=,
∵α为锐角,cosα﹣sinα=⇒α∈(0,),从而cos2α取正值,
∴cos2α==,
∵α为锐角,sin(α+)>0,
∴sin(α+)===
=.
故答案为:.
17.【答案】 ①③ .
【解析】解:根据一一映射的定义,集合A={奇数}→B={偶数},不妨给出对应法则加1.则A→B是一一映射,故①正确;
对②设Z点的坐标(a,b),则Z点对应复数a+bi,a、b∈R,复合一一映射的定义,故②不正确;
对③,给出对应法则y=tan x,对于A,B两集合可形成f:A→B的一一映射,则A、B具有相同的势;∴③正确.
故选:①③
【点评】本题借助考查命题的真假判断,考查一一映射的定义,属于基础题型,考查考生对新定义题的理解与应用能力.
18.【答案】2
【解析】
三、解答题
19.【答案】
【解析】解:(1)a=1时,f(x)=4x﹣22x+2,
f(x)﹣1=(2x)2﹣2•(2x)+1=(2x﹣1)2=0,
∴2x=1,解得:x=0;
(2)4x﹣a•(2x+1﹣1)+1>0在(0,1)恒成立,
a•(2•2x﹣1)<4x+1,
∵2x+1>1,
∴a>,
令2x=t∈(1,2),g(t)=,
则g′(t)===0,
t=t0,∴g(t)在(1,t0)递减,在(t0,2)递增,
而g(1)=2,g(2)=,
∴a≥2;
(3)若函数f(x)有零点,
则a=有交点,
由(2)令g(t)=0,解得:t=,
故a≥.
【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数零点问题,是一道中档题.20.【答案】
【解析】解:(1)依题意,
根据频率分布直方图中各个小矩形的面积和等于1得,
10(2a+0.02+0.03+0.04)=1,
解得a=0.005.
∴图中a的值0.005.
(2)这100名学生语文成绩的平均分为:
55×0.05+65×0.4+75×0.3+85×0.2+95×0.05
=73(分),
【点评】本题考查频率分布估计总体分布,解题的关键是理解频率分布直方图,熟练掌握频率分布直方图的性质,且能根据所给的数据建立恰当的方程求解
21.【答案】
【解析】解:(I)由题意可知,抛物线y2=2px(p>0)的焦点坐标为,准线方程为.
所以,直线l的方程为…
由消y并整理,得…
设A(x1,y1),B(x2,y2)
则x1+x2=3p,
又|AB|=|AF|+|BF|=x1+x2+p=4,
所以,3p+p=4,所以p=1…
(II)由(I)可知,抛物线的方程为y2=2x.
由题意,直线m的方程为y=kx+(2k﹣1).…
由方程组
(1)
可得ky 2﹣2y+4k ﹣2=0(2)…当k=0时,由方程(2),得y=﹣1.
把y=﹣1代入y 2=2x ,得.
这时.直线m 与抛物线只有一个公共点
.…当k ≠0时,方程(2)得判别式为△=4﹣4k (4k ﹣2).
由△>0,即4﹣4k (4k ﹣2)>0,亦即4k 2﹣2k ﹣1<0.解得
.于是,当且k ≠0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这时,直线m 与抛物线有两个不同的公共点,…
因此,所求m 的取值范围是.…
【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.
22.【答案】
【解析】解: (Ⅰ)当时,平面.13
PE PB =
//CE PAD 设为上一点,且,连结、、,F PA 13
PF PA =EF DF EC 那么,.//EF AB 13
EF AB =∵,,∴,,∴.//DC AB 13
DC AB =//EF DC EF DC =//EC FD 又∵平面, 平面,∴平面. (5分)CE ⊄PAD FD ⊂PAD //CE PAD (Ⅱ)设、分别为、的中点,连结、、,
O G AD BC OP OG PG ∵,∴,易知,∴平面,∴.
PB PC =PG BC ⊥OG BC ⊥BC ⊥POG BC OP ⊥又∵,∴,∴平面. (8分)
PA PD =OP AD ⊥OP ⊥ABCD 建立空间直角坐标系(如图),其中轴,轴,则有,,O xyz -x //BC y //AB (1,1,0)A -(1,2,0)B
.由知. (9分)(1,2,0)C -2PO ===(0,0,2)P 设平面的法向量为,,PBC (,,)n x y z =(1,2,2)PB =-(2,0,0)
CB =u r
则 即,取.00n PB n CB ⎧⋅=⎪⎨⋅=⎪⎩ 22020x y z x +-=⎧⎨=⎩(0,1,1)n = 设直线与平面所成角为,,则,PA PBC θ(1,1,2)AP =-u u u
r ||sin |cos ,|||||AP n AP n AP n θ⋅=<>==⋅ ∴,∴直线与平面所成角为. (13分)

θ=PB PAD 3π
A
23.【答案】
【解析】解:(1)由题意得e=
=,a 2=2b ,a 2﹣b 2=c 2,解得a=,b=c=1
故椭圆的方程为x 2+
=1;(2)设A (x 1,y 1),B (x 2,y 2),
线段AB 的中点为M (x 0,y 0).联立直线y=x+m 与椭圆的方程得,
即3x 2
+2mx+m 2﹣2=0,
△=(2m )2﹣4×3×(m 2﹣2)>0,即m 2<3,
x 1+x 2=﹣
,所以x 0=
=﹣,y 0=x 0+m=,即M (﹣
,).又因为M 点在圆x 2+y 2=5上,可得(﹣)2+()2=5,
解得m=±3与m 2<3矛盾.
故实数m 不存在.
【点评】本题考查椭圆的方程的求法,注意运用离心率公式,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,考查存在性问题的解法,属于中档题.
24.【答案】
【解析】解:(I)10年后新建住房总面积为a+2a+4a+8a+7a+6a+5a+4a+3a+2a=42a.
设每年拆除的旧住房为xm2,则42a+(32a﹣10x)=2×32a,
解得x=a,即每年拆除的旧住房面积是am2
(Ⅱ)设第n年新建住房面积为a,则a n=
所以当1≤n≤4时,S n=(2n﹣1)a;
当5≤n≤10时,S n=a+2a+4a+8a+7a+6a+(12﹣n)a=

【点评】本小题主要考查函数模型的选择与应用,属于基础题.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.。

相关文档
最新文档