最新上海市各区2020届最新中考二模数学分类汇编:综合计算专题(含答案)(精校版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市各区2018届九年级中考二模数学试卷精选汇编 综合计算
宝山区、嘉定区
21.(本题满分10分,第(1)小题5分,第(2)小题5分)
如图4,在梯形ABCD 中,AD ∥BC ,︒=∠90BAD ,AD AC =. (1)如果BAC ∠︒=∠-10BCA ,求D ∠的度数; (2)若10=AC ,3
1
cot =
∠D ,求梯形ABCD 的面积.
21.解:(1)∵AD ∥BC
∴CAD BCA ∠=∠ …………………1分 ∵BAC ∠︒=∠-10BCA
∴BAC ∠︒=∠-10CAD …………………1分 ∵︒=∠90BAD
∴BAC ∠︒=∠+90CAD
∴︒=∠40CAD …………………1分 ∵AD AC =
∴D ACD ∠=∠ …………………1分 ∵︒=∠+∠+∠180CAD D ACD
∴︒=∠70D …………………1分
(2) 过点C 作AD CH ⊥,垂足为点H ,在Rt △CHD 中,3
1cot =∠D ∴3
1
cot ==
∠CH HD D …………………………1分 设x HD =,则x CH 3=,∵AD AC =,10=AC ∴x AH -=10 在Rt △CHA 中,22
2
AC CH
AH =+ ∴22210)3()10(=+-x x
∴2=x ,0=x (舍去)∴2=HD …………1分 ∴6=HC ,8=AH ,10=AD ………………1分 ∵︒=∠=∠90CHD BAD ∴AB ∥CH
图4
D
C
B A
图4
D
C
B
A
H
∵AD ∥BC ∴四边形ABCH 是平行四边形 ∴8==AH BC ………1分 ∴梯形ABCD 的面积546)810(2
1
)(21=⨯+=⨯+=
CH BC AD S ………1分 长宁区
21.(本题满分10分,第(1)小题4分,第(2)小题6分)
如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,
13
5
sin =
∠ABC . (1)求AB 的长;
(2)若AD =6.5,求DCB ∠的余切值.
21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E
又∵AB =AC ∴BC BE 2
1= ∵BC =24 ∴ BE =12 (1分)
在ABE Rt ∆中,︒
=∠90AEB ,13
5
sin ==∠AB AE ABC (1分)
设AE=5k,AB=13k ∵2
22BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F ∵AD=6.5,AB=13 ∴BD=AB+AD=19.5
∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //

BD
AB
BF BE DF AE =
= 又 ∵ AE =5,BE =12,AB =13, ∴18,2
15
==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分) 在DCF Rt ∆中,︒=∠90DFC ,5
4
2
156cot ===
∠DF CF DCB (1分) 崇明区
A
C
D
B
第21题图
21.(本题满分10分,第(1)、(2)小题满分各5分)
已知圆O 的直径12AB =,点C 是圆上一点,且30ABC ∠=︒,点P 是弦BC 上一动点, 过点P 作PD OP ⊥交圆O 于点D . (1)如图1,当PD AB ∥时,求PD 的长; (2)如图2,当BP 平分OPD ∠时,求PC 的长.
21.(本题满分10分,每小题5分)
(1)解:联结OD
∵直径12AB = ∴6OB OD == ……………………………………1分
∵PD OP ⊥ ∴90DPO =︒∠
∵PD AB ∥ ∴180DPO POB +=︒∠∠ ∴90POB =︒∠ ……1分 又∵30ABC =︒∠,6OB =
∴30OP OB tan =︒= ………………………………………………1分 ∵在Rt POD △中,222
PO PD OD += ……………………………1分
∴2
2
2
6PD +=
∴PD =……………………………………………………………1分 (2)过点O 作OH BC ⊥,垂足为H ∵OH BC ⊥
∴90OHB OHP ==︒∠∠ ∵30ABC =︒∠,6OB =
(第21题图1)
A
B
O
P
C
D (第21题图2)
O
A
B
D
P
C
∴1
32
OH OB =
=
,30BH OB cos =︒= ……………………2分 ∵在⊙O 中,OH BC ⊥
∴CH BH == ……………………………………………………1分 ∵BP 平分OPD ∠ ∴1
452
BPO DPO =
=︒∠∠ ∴453PH OH cot =︒= ……………………………………………1分
∴3PC CH PH =-= ………………………………………1分
奉贤区
21.(本题满分10分,每小题满分各5分)
已知:如图6,在△ABC 中,AB =13,AC=8,13
5
cos =∠BAC ,BD ⊥AC ,垂足为点D ,E 是BD 的中点,联结AE 并延长,交边BC 于点F . (1) 求EAD ∠的余切值; (2) 求BF
CF
的值. 21、(1)
56; (2)5
8
; 黄浦区
21.(本题满分10分)
如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =2
3
, AD ∶DB =1∶2.
(1)求△ABC 的面积;
图6
A
B
C
D E
F
(2)求CE ∶DE
.
21. 解:(1)由AB =AC =6,AH ⊥BC ,
得BC =2BH .—————————————————————————(2分) 在△ABH 中,AB =6,cosB =
2
3
,∠AHB =90°, 得BH =
2
643
⨯=,AH
=2分) 则BC =8,
所以△ABC 面积
=
1
82
⨯=——————————————(1分) (2)过D 作BC 的平行线交AH 于点F ,———————————————(1分)
由AD ∶DB =1∶2,得AD ∶AB =1∶3, 则
3
1
CE CH BH AB DE DF DF AD ====. ——————————————(4分)
金山区
21.(本题满分10分,每小题5分)
如图5,在矩形ABCD 中,E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂
足为F .
(1)求证:AF=BE ;
(2)如果BE ∶EC=2∶1,求∠CDF 的余切值.
21.解:(1)∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∠B =90°,
∴∠DAF=∠AEB ,……………………………………………………………………(1分)
A
B
C
D
F
E
图5
∵AE=BC ,DF ⊥AE ,∴AD=AE ,∠ AFD=∠EBA=90°,………………………(2分) ∴△ADF ≌△EAB ,∴AF =EB ,………………………………………………………(2分)
(2)设BE =2k ,EC =k ,则AD =BC =AE =3k ,AF =BE =2k ,…………………………(1分)
∵∠ADC =90°,∠AFD =90°,∴∠CDF +∠ADF =90°,∠DAF +∠ADF =90°, ∴∠CDF =∠DAF …………………………………………………………………(2分) 在Rt △ADF 中,∠AFD =90°,DF
=
∴cot ∠CDF =cot ∠DAF
=
5AF DF ==
.………………………………(2分) 静安区
21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)
已知:如图,边长为1的正方形ABCD 中,AC 、DB 交于点H .DE 平分∠ADB ,交AC 于点E .联结BE 并延长,交边AD 于点F . (1)求证:DC =EC ; (2)求△EAF 的面积.
21.(本题满分10分, 第(1)小题5分,第(2)小题5分)
解:(1)∵正方形ABCD ,
∴DC=BC=BA=AD , ∠BAD =∠ADC =∠DCB =∠CBA =90° AH=DH=CH=BH , AC ⊥BD ,
∴∠ADH =∠HDC =∠DCH =∠DAE = 45°. …………(2分) 又∵DE 平分∠AD B ∴∠ADE =∠EDH
第21题图
∵∠DAE +∠ADE =∠DEC , ∠EDH +∠HDC =∠EDC …………(1分) ∴∠EDC =∠DEC …………(1分) ∴DC =EC …………(1分) (2)∵正方形ABCD ,∴AD ∥BC , ∴△AFE ∽△CBE ∴
2
)(EC
AE S S CEB AEF =∆∆ ………………………………(1分) ∵AB=BC=DC=EC =1,AC =2,∴AE =12- …………………………(1分)
Rt △BHC 中, BH =
22BC =2
2, ∴在△BEC 中,BH ⊥EC , 42
22121=⨯⨯=
∆BEC S ……………………(2分) ∴
2)12(4
2
-=∆AEF S , ∴4
4
23)223(42-=-⨯=
∆AEF S …………(1分) 闵行区
21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)
已知一次函数24y x =-+的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内作直角三角形ABC ,
且∠BAC = 90o
,1tan 2
ABC ∠=.
(1)求点C 的坐标;
(2)在第一象限内有一点M (1,m ),且点M
C 位于直线AB 的同侧,使得ABC ABM S S ∆∆=2求点M 的坐标.
21.解:(1)令0y =,则240x -+=,解得:2x =,∴点A 坐标是(2,0).
令0x =,则4y =,∴点B 坐标是(0,4).………………………(1分) ∴AB ==1分) ∵90BAC ∠=,1
tan 2
ABC ∠=
,∴AC 过C 点作CD ⊥x 轴于点D ,易得OBA DAC ∆∆∽.…………………(1分)
(第21题图)
∴2AD =,1CD =,∴点C 坐标是(4,1).………………………(1分) (2
)11
522
ABC S AB AC ∆=
⋅=⨯.………………………………(1分) ∵2ABM ABC S S ∆∆=,∴5
2
ABM S ∆=
.……………………………………(1分) ∵(1M ,)m ,∴点M 在直线1x =上;
令直线1x =与线段AB 交于点E ,2ME m =-;……………………(1分) 分别过点A 、B 作直线1x =的垂线,垂足分别是点F 、G ,
∴AF +BG = OA = 2;……………………………………………………(1分)
∴111
()222
ABM BME AME S S S ME BG ME AF ME BG AF ∆∆=+=⋅+⋅=+
115
2222
ME OA ME =⋅=⨯⨯=…………………(1分) ∴52ME =,522m -=,92m =,∴(1M ,9
2
).……………………(1分)
普陀区
21.(本题满分10分)
如图7,在Rt △ABC 中,90C ∠=,点D 在边BC 上,DE ⊥AB ,点E 为垂足,7AB =,45DAB ∠=,
3
tan 4
B =
. (1)求DE 的长; (2)求CDA ∠的余弦值. 21.解:
(1)∵DE ⊥AB ,∴︒=∠90DEA
又∵45DAB ∠=,∴AE DE =. ······································································· (1分) 在Rt △DEB 中,︒=∠90DEB ,43tan =
B ,∴4
3
=BE DE . ······························· (1分)
设x DE 3=,那么x AE 3=,x BE 4=.
∵7AB =,∴743=+x x ,解得1=x . ······························································ (2分) ∴3=DE . ············································································································· (1分) (2) 在Rt △ADE 中,由勾股定理,得23=AD . ················································· (1分)
同理得5=BD . ······································································································ (1分)
A
B
C
D
E 图7
在Rt △ABC 中,由43tan =B ,可得54
cos =B .∴5
28=BC . ····················· (1分) ∴5
3
=
CD . ············································································································· (1分)
∴10
2
cos =
=
∠AD CD CDA . ················································································ (1分)
即CDA ∠
青浦区
21. (本题满分10分,第(1)、(2)小题,每小题5分)
如图5,在Rt △ABC 中,∠C =90°,AC=3,BC =4,∠ABC 的平分线交边AC 于点D ,延长BD 至点E ,且BD=2DE ,联结AE .
(1)求线段CD 的长; (2)求△ADE 的面积.
21.解:(1)过点D 作DH ⊥AB ,垂足为点H . ·································································· (1分)
∵BD 平分∠ABC ,∠C =90°,
∴DH = DC =x , ··································································································· (1分) 则AD =3-x .
∵∠C =90°,AC=3,BC =4,∴AB =5. ····························································· (1分) ∵sin ∠==
HD BC
BAC AD AB
, ∴
4
35
=-x x , ·
································································································· (1分) ∴43=x . ··········································································································· (1分)
(2)11410
52233
=⋅=⨯⨯=ABD S AB DH .····························································· (1分)
∵BD=2DE , ∴
2=
=ABD ADE
S BD
S
DE
, ····················································································· (3分) ∴1015
323
=
⨯=ADE
S
. ·
··················································································· (1分) 松江区
21.(本题满分10分, 每小题各5分)
E
D C A
图5
如图,已知△ABC 中,∠B =45°,1tan 2
C =, BC =6.
(1)求△ABC 面积;
(2)AC 的垂直平分线交AC 于点D ,交BC 于 点E. 求DE 的长.
21.(本题满分10分, 每小题各5分)
解:(1)过点A 作AH ⊥BC 于点H …………1分 在Rt ABC ∆中,∠B =45°
设AH =x ,则BH =x ………………………………1分 在Rt AHC ∆中,1
tan 2
AH C HC =
= ∴HC=2x ………………………………………………………1分 ∵BC =6
∴x+2x =6 得x =2
∴AH =2…………………………………………………………1分 ∴1
62
ABC S BC AH ∆=⋅⋅=……………………………………1分
(2)由(1)得AH =2,CH
=4
在Rt AHC
∆中,AC =…………………2分
∵DE 垂直平分AC ∴1
2
CD AC =
ED ⊥AC …………………………………………………1分 在Rt EDC ∆中,1
tan 2
ED C CD =
=……………………………1分 ∴DE =
………………………………………………1分 (第21题图)
D
A
C
徐汇区
21. 如图,在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =,AD 平分BAC ∠交BC 于点D .
(1)求tan DAB ∠;
(2)若⊙O 过A 、D 两点,且点O 在边AB 上,用
尺规作图的方法确定点O 的位置并求出的⊙O 半径.
(保留作图轨迹,不写作法)
杨浦区
21、(本题满分10分,第(1)小题满分3分,第(2)小题满分7分)
已知,如图5,在梯形ABCD 中,DC//AB, AD=BC, BD 平分∠ABC ,∠A =600
求:(1)求∠CDB 的度数
(2)当AD =2时,求对角线BD 的长和梯形ABCD 的面积。

相关文档
最新文档