浏阳市二中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浏阳市二中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知f (x )=4+a x ﹣1的图象恒过定点P ,则点P 的坐标是( ) A .(1,5) B .(1,4) C .(0,4) D .(4,0)
2. 已知a ∈R ,复数z=(a ﹣2i )(1+i )(i 为虚数单位)在复平面内对应的点为M ,则“a=0”是“点M 在第四象限”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
3. (文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )
A .向左平移1个单位
B .向右平移1个单位
C .向上平移1个单位
D .向下平移1个单位
4. 设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则,类比这个结论可
知:四面体S ﹣ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S ﹣ABC 的体积为V ,
则r=( )
A .
B .
C .
D .
5. 函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( ) A . C . D .时,函数f (x )的最大值与最小值的和为( ) A .a+3 B .6 C .2
D .3﹣a
6. 过抛物线y=x 2上的点
的切线的倾斜角( )
A .30°
B .45°
C .60°
D .135°
7. 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖
的人数不能少于2人,那么下列说法中错误的是( )
A .最多可以购买4份一等奖奖品
B .最多可以购买16份二等奖奖品
C .购买奖品至少要花费100元
D .共有20种不同的购买奖品方案
8. 集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,
N ,P 的关系( )
A .M P N =⊆
B .N P M =⊆
C .M N P =⊆
D .M P N == 9. 已知向量与的夹角为60°,||=2,||=6,则2﹣在方向上的投影为( ) A .1
B .2
C .3
D .4
10.已知,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log z z -=,则( )
A .x y z <<
B .z x y <<
C .z y z <<
D .y x z << 11.抛物线y=﹣8x 2的准线方程是( ) A .
y=
B .y=2
C .
x=
D .y=﹣2
12.已知实数y x ,满足不等式组⎪⎩
⎪
⎨⎧≤-≥+≤-5342y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则
实数m 的取值范围是( )
A .1-<m
B .10<<m
C .1>m
D .1≥m
【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.
二、填空题
13.命题p :∀x ∈R
,函数
的否定为 .
14.已知三次函数f (x )=ax 3+bx 2+cx+d
的图象如图所示,则
= .
15.集合A={x|﹣1<x <3},B={x|x <1},则A ∩B= .
16.已知函数f (x )=x m 过点(2
,),则m= .
17.已知数列的前项和是
, 则数列的通项__________
18.若函数f (x )=x 2﹣2x (x ∈[2,4]),则f (x )的最小值是 .
三、解答题
19.如图,在底面是矩形的四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=2,BC=2,E 是PD 的中点. (1)求证:平面PDC ⊥平面PAD ;
(2)求二面角E ﹣AC ﹣D 所成平面角的余弦值.
20.(本题满分12分)在ABC ∆中,已知角,,A B C 所对的边分别是,,a b c ,边7
2
c =
,且
tan tan tan A B A B += ABC ∆的面积为2
ABC S ∆=
,求a b +的值.
21.甲、乙两位同学参加数学竞赛培训,在培训期间他们参加5次预赛,成绩如下: 甲:78 76 74 90 82 乙:90 70 75 85 80
(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?说明理由.
22.(本小题满分13分)
在四棱锥P ABCD -中,底面ABCD 是梯形,//AB DC ,2
ABD π
∠=
,AD =22AB DC ==,F
为PA 的中点.
(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;
(Ⅱ)若PA PB PD ===P BDF -的体积.
23.某农户建造一座占地面积为36m 2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x 不得超过7m ,墙高为2m ,鸡舍正面的造价为40元/m 2
,鸡舍侧面的造价为20元/m 2
,地面及其他费用合计为
1800元.
(1)把鸡舍总造价y 表示成x 的函数,并写出该函数的定义域. (2)当侧面的长度为多少时,总造价最低?最低总造价是多少?
24.如图,在四棱锥中,等边
所在的平面与正方形
所在的平面互相垂直,
为
的
中点,为的中点,且
A
B
C
D
P
F
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在线段上是否存在点,使线段与所在平面成角.若存在,求出的长,若不存在,请说明理由.
浏阳市二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】A
【解析】解:令x﹣1=0,解得x=1,代入f(x)=4+a x﹣1得,f(1)=5,
则函数f(x)过定点(1,5).
故选A.
2.【答案】A
【解析】解:若a=0,则z=﹣2i(1+i)=2﹣2i,点M在第四象限,是充分条件,
若点M在第四象限,则z=(a+2)+(a﹣2)i,推出﹣2<a<2,推不出a=0,不是必要条件;
故选:A.
【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题.
3.【答案】C
【解析】
试题分析:()2222
log2log2log1log
==+=+,故向上平移个单位.
g x x x x
考点:图象平移.
4.【答案】C
【解析】解:设四面体的内切球的球心为O,
则球心O到四个面的距离都是R,
所以四面体的体积等于以O为顶点,
分别以四个面为底面的4个三棱锥体积的和.
则四面体的体积为
∴R=
故选C.
【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).
5.【答案】A
【解析】A. C. D.恰有11个零点,可得5π≤ω•<6π,
求得10≤ω<12,
故选:A.
6.【答案】B
【解析】解:y=x2的导数为y′=2x,
在点的切线的斜率为k=2×=1,
设所求切线的倾斜角为α(0°≤α<180°),
由k=tanα=1,
解得α=45°.
故选:B.
【点评】本题考查导数的运用:求切线的斜率,考查直线的倾斜角的求法,考查运算能力,属于基础题.
7.【答案】D
【解析】【知识点】线性规划
【试题解析】设购买一、二等奖奖品份数分别为x,y,
则根据题意有:,作可行域为:
A(2,6),B(4,12),C(2,16).在可行域内的整数点有:(2,6),(2,7),…….(2,16),(3,9),(3,10),……..(3,14),(4,12),共11+6+1=18个。
其中,x 最大为4,y 最大为16.
最少要购买2份一等奖奖品,6份二等奖奖品,所以最少要花费100元。
所以A 、B 、C 正确,D 错误。
故答案为:D 8. 【答案】A 【解析】
试题分析:通过列举可知{}{}2,6,0,2,4,6M P N ==±±=±±± ,所以M P N =⊆. 考点:两个集合相等、子集.1 9. 【答案】A
【解析】解:∵向量与的夹角为60°,||=2,||=6, ∴(2﹣)•=2
﹣
=2×22﹣6×2×cos60°=2,
∴2﹣在方向上的投影为=
.
故选:A .
【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目.
10.【答案】A
【解析】
考
点:对数函数,指数函数性质. 11.【答案】A
【解析】解:整理抛物线方程得x 2
=﹣y ,∴p=
∵抛物线方程开口向下,
∴准线方程是y=,
故选:A .
【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.
12.【答案】C
【解析】画出可行域如图所示,)3,1(A ,要使目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则需直线l 过点A 时截距最大,即z 最大,此时1>l k 即可.
二、填空题
13.【答案】 ∃x 0∈R ,函数f (x 0)=2cos 2x 0+sin2x 0>3 .
【解析】解:全称命题的否定是特称命题,即为∃x
∈R,函数f(x0)=2cos2x0+sin2x0>3,
故答案为:∃x
∈R,函数f(x0)=2cos2x0+sin2x0>3,
14.【答案】﹣5.
【解析】解:求导得:f′(x)=3ax2+2bx+c,结合图象可得
x=﹣1,2为导函数的零点,即f′(﹣1)=f′(2)=0,
故,解得
故==﹣5
故答案为:﹣5
15.【答案】{x|﹣1<x<1}.
【解析】解:∵A={x|﹣1<x<3},B={x|x<1},
∴A∩B={x|﹣1<x<1},
故答案为:{x|﹣1<x<1}
【点评】本题主要考查集合的基本运算,比较基础.
16.【答案】﹣1.
【解析】解:将(2,)代入函数f(x)得:=2m,
解得:m=﹣1;
故答案为:﹣1.
【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题.
17.【答案】
【解析】
当时,
当时,,
两式相减得:
令得,所以
答案:
18.【答案】0.
【解析】解:f(x))=x2﹣2x=(x﹣1)2﹣1,
其图象开口向上,对称抽为:x=1,
所以函数f(x)在[2,4]上单调递增,
所以f(x)的最小值为:f(2)=22﹣2×2=0.
故答案为:0.
【点评】本题考查二次函数在闭区间上的最值问题,一般运用数形结合思想进行处理.
三、解答题
19.【答案】
【解析】解:(1)∵PA⊥平面ABCD,CD⊆平面ABCD,∴PA⊥CD
∵AD⊥CD,PA、AD是平面PAD内的相交直线,∴CD⊥平面PAD
∵CD⊆平面PDC,
∴平面PDC⊥平面PAD;
(2)取AD中点O,连接EO,
∵△PAD中,EO是中位线,∴EO∥PA
∵PA⊥平面ABCD,∴EO⊥平面ABCD,
∵AC⊆平面ABCD,∴EO⊥AC
过O作OF⊥AC于F,连接EF,则
∵EO、OF是平面OEF内的相交直线,
∴AC⊥平面OEF,所以EF⊥AC
∴∠EFO就是二面角E﹣AC﹣D的平面角
由PA=2,得EO=1,
在Rt△ADC中,设AC边上的高为h,则AD×DC=AC×h,得h=
∵O 是AD 的中点,∴OF=×=
∵EO=1,∴Rt △EOF 中,EF==
∴cos ∠EFO=
=
【点评】本题给出特殊的四棱锥,叫我们证明面面垂直并求二面角的余弦值,着重考查了平面与平面所成角的求法和线面垂直的判定与性质等知识,属于中档题.
20.【答案】112
. 【解析】
试
题解析:由tan tan 3tan 3A B A B += 可得
tan tan 31tan tan A B
A B
+=- tan()3A B +=-∴tan()3C π-=-tan 3C -=-tan 3C =∵(0,)C π∈,∴3
C π
=
.
又ABC ∆的面积为332ABC S ∆=
133sin 22ab C =,即1333
222
ab ⨯=,∴6ab =.
又由余弦定理可得222
2cos c a b ab C =+-,∴2227()2cos 23
a b ab π=+-,
∴22227()()32
a b ab a b ab =+-=+-,∴2
121()4a b +=,∵0a b +>,∴11
2
a b +=.1 考点:解三角形问题.
【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到两角和与两角差的正切函数公式、三角形的面积、正弦定理和余弦定理,以及特殊角的三角函数值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,其中熟练掌握基本公式和灵活运用公式是解答本题的关键,属于中档试题. 21.【答案】
【解析】解:(Ⅰ)用茎叶图表示如下:
(Ⅱ)
=
,
=
=80,
= [(74﹣80)2+(76﹣80)2+(78﹣80)2+(82﹣80)2+(90﹣80)2]=32,
= [(70﹣80)2+(75﹣80)2+(80﹣80)2+(85﹣80)2+(90﹣80)2]=50,
∵
=
,
,
∴在平均数一样的条件下,甲的水平更为稳定,应该派甲去.
22.【答案】(本小题满分13分)
解:(Ⅰ)当E 为PB 的中点时,//CE 平面PAD . (1分) 连结EF 、EC ,那么//EF AB ,1
2
EF AB =. ∵//DC AB ,1
2
DC AB =
,∴//EF DC ,EF DC =,∴//EC FD . (3分) 又∵CE ⊄平面PAD , FD ⊂平面PAD ,∴//CE 平面PAD . (5分)
(Ⅱ)设O 为AD 的中点,连结OP 、OB ,∵PA PD =,∴OP AD ⊥, 在直角三角形ABD 中,1
2
OB AD OA =
=, 又∵PA PB =,∴PAO PBO ∆≅∆,∴POA POB ∠=∠,∴OP OB ⊥,
∴OP ⊥平面ABD . (10分)
2
PO===
,2
BD==
∴三棱锥P BDF
-的体积1112
22
2233
P BDF P ABD
V V
--
==⨯⨯⨯=.(13分)
23.【答案】
【解析】解:(1
)…
=…
定义域是(0,7]…
(2
)∵,…
当且仅当即x=6时取=…
∴y≥80×12+1800=2760…
答:当侧面长度x=6时,总造价最低为2760元.…
24.【答案】
【解析】【知识点】空间的角利用直线方向向量与平面法向量解决计算问题垂直
【试题解析】(Ⅰ)是等边三角形,为
的中点,
平面平面
,是交线,平面
平面.
(Ⅱ)取的中点,底面
是正方形,
,两两垂直.分别以的方向为轴、轴、轴的正方向建立空间直角坐标系,
则
,
,,
设平面的法向量为
,
,
A
C
D
P
O
E
F
,,
平面的法向量即为平面的法向量.
由图形可知所求二面角为锐角,
(Ⅲ)设在线段上存在点,,
使线段与所在平面成角,
平面的法向量为,,
,解得,适合
在线段上存在点,当线段时,与所在平面成角.。