托克逊县一中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

托克逊县一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 将函数()sin 2y x ϕ=+(0ϕ>)的图象沿x 轴向左平移8
π
个单位后,得到一个偶函数的图象,则ϕ的最小值为( ) (A )
43π ( B ) 83π (C ) 4
π (D ) 8
π
2. 设命题p :,则
p 为( )
A .
B .
C .
D .
3. 一个几何体的三视图如图所示,则该几何体的体积是( ) A .64 B .72 C .80 D .
112
【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力.
4. 已知函数(5)2()e
22()2x
f x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩
,则(2016)f -=( ) A .2
e B .e C .1 D .
1
e
【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.
5. 如果a >b ,那么下列不等式中正确的是( ) A .
B .|a|>|b|
C .a 2>b 2
D .a 3>b 3
6. 若圆心坐标为()2,1-的圆在直线10x y --=上截得的弦长为 ) A .()()2
2
210x y -++= B .()()2
2
214x y -++= C .()()2
2
218x y -++= D .()()2
2
2116x y -++= 7. 三个数a=0.52,b=log 20.5,c=20.5之间的大小关系是( ) A .b <a <c B .a <c <b C .a <b <c D .b <c <a
8. 将y=cos (2x+φ)的图象沿x 轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为( )
A .
B .﹣
C .﹣
D .
9. 已知函数f (x )的定义域为[a ,b],函数y=f (x )的图象如下图所示,则函数f (|x|)的图象是( )
A .
B .
C .
D .
10.是z 的共轭复数,若z+=2,(z ﹣)i=2(i 为虚数单位),则z=( ) A .1+i B .﹣1﹣i
C .﹣1+i
D .1﹣i
11.已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )
A .16cm
B .
C .
D .26cm
12.随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( ) A .1 B .2
C .3
D .4
二、填空题
13.已知各项都不相等的等差数列{}n a ,满足223n n a a =-,且2
6121a a a =∙,则数列12n n S -⎧⎫

⎬⎩⎭
项中 的最大值为_________.
14.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= .
15.设函数
,其中[x]表示不超过x 的最大整数.若方程f (x )=ax 有三个不同
的实数根,则实数a 的取值范围是 .
16.已知随机变量ξ﹣N (2,σ2),若P (ξ>4)=0.4,则P (ξ>0)= .
17.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则b
a
的值为 ▲ .
18.已知奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f (1﹣m )+f (1﹣2m )<0的实数m 的取值范围是 .
三、解答题
19.(本小题满分12分)已知过抛物线2
:2(0)C y px p =>的焦点,斜率为11A x y (,) 和22B x y (,)(12x x <)两点,且9
2
AB =
. (I )求该抛物线C 的方程;
(II )如图所示,设O 为坐标原点,取C 上不同于O 的点S ,以OS 为直径作圆与C 相交另外一点R , 求该圆面积的最小值时点S 的坐标.
20.在直角坐标系xOy 中,圆
C 的参数方程
(φ为参数).以O 为极点,
x 轴的非负半轴为极
轴建立极坐标系.
(Ⅰ)求圆C 的极坐标方程; (Ⅱ)直线l 的极坐标方程是ρ(sin θ+)=3
,射线OM :θ=与圆C 的交点为O ,P ,与直线l
的交点为Q ,求线段PQ 的长.
21.已知函数f (x )=lg (2016+x ),g (x )=lg (2016﹣x ) (1)判断函数f (x )﹣g (x )的奇偶性,并予以证明. (2)求使f (x )﹣g (x )<0成立x 的集合.
22.求同时满足下列两个条件的所有复数z :
①z+
是实数,且1<z+
≤6;
②z 的实部和虚部都是整数.
23.已知函数322()1f x x ax a x =+--,0a >. (1)当2a =时,求函数()f x 的单调区间;
(2)若关于的不等式()0f x ≤在[1,)+∞上有解,求实数的取值范围.
24.已知全集U=R ,集合A={x|x 2﹣4x ﹣5≤0},B={x|x <4},C={x|x ≥a}.
(Ⅰ)求A ∩(∁U B ); (Ⅱ)若A ⊆C ,求a 的取值范围.
托克逊县一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】B
【解析】将函数()()sin 20y x ϕϕ=+>的图象沿
x 轴向左平移
8
π
个单位后,得到一个偶函数
sin 2sin 28
4
[()]()y x x π
π
ϕϕ=+
+=+
+的图象,可得
42
ππ
ϕ+=
,求得ϕ的最小值为 4
π
,故选B .
2. 【答案】A
【解析】【知识点】全称量词与存在性量词 【试题解析】因为特称命题的否定是全称命题,p 为:。

故答案为:A 3. 【答案】C. 【



4. 【答案】B
【解析】(2016)(2016)(54031)(1)f f f f e -==⨯+==,故选B . 5. 【答案】D
【解析】解:若a >0>b ,则
,故A 错误;
若a >0>b 且a ,b 互为相反数,则|a|=|b|,故B 错误; 若a >0>b 且a ,b 互为相反数,则a 2>b 2,故C 错误; 函数y=x 3在R 上为增函数,若a >b ,则a 3>b 3,故D 正确; 故选:D
【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.
6. 【答案】B 【解析】

点:圆的方程.1111]
7.【答案】A
【解析】解:∵a=0.52=0.25,
b=log20.5<log21=0,
c=20.5>20=1,
∴b<a<c.
故选:A.
【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.
8.【答案】D
【解析】解:将y=cos(2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数y=cos=cos(2x+φ﹣
)的图象,
∴φ﹣=kπ+,即φ=kπ+,k∈Z,则φ的一个可能值为,
故选:D.
9.【答案】B
【解析】解:∵y=f(|x|)是偶函数,
∴y=f(|x|)的图象是由y=f(x)把x>0的图象保留,
x<0部分的图象关于y轴对称而得到的.
故选B.
【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f(x)的图象和函数f(|x|)的图象之间的关系,函数y=f(x)的图象和函数|f(x)|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题.
10.【答案】D
【解析】解:由于,(z﹣)i=2,可得z﹣=﹣2i ①
又z+=2 ②
由①②解得z=1﹣i
故选D.
11.【答案】D
【解析】
考点:多面体的表面上最短距离问题.
【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题.
12.【答案】C
【解析】解:随机变量x1~N(2,1),图象关于x=2对称,x2~N(4,1),图象关于x=4对称,
因为P(x1<3)=P(x2≥a),
所以3﹣2=4﹣a,
所以a=3,
故选:C.
【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.
二、填空题
13.【答案】
【解析】
考点:1.等差数列的通项公式;2.等差数列的前项和.
【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及
1,,,,
n n
a a d n S五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公式在解题中起到变量代换作用,而
1
,a d是等差数列的两个基本量,用它们表示已知和未知是常用方法. 14.【答案】35.
【解析】解:∵2a n=a n﹣1+a n+1,(n∈N*,n>1),
∴数列{a n}为等差数列,
又a2+a8=6,∴2a5=6,解得:a5=3,
又a4a6=(a5﹣d)(a5+d)=9﹣d2=8,
∴d2=1,解得:d=1或d=﹣1(舍去)
∴a n=a5+(n﹣5)×1=3+(n﹣5)=n﹣2.
∴a1=﹣1,
∴S10=10a1+=35.
故答案为:35.
【点评】本题考查数列的求和,判断出数列{a n}为等差数列,并求得a n=2n﹣1是关键,考查理解与运算能力,属于中档题.
15.【答案】(﹣1,﹣]∪[,).
【解析】解:当﹣2≤x<﹣1时,[x]=﹣2,此时f(x)=x﹣[x]=x+2.
当﹣1≤x<0时,[x]=﹣1,此时f(x)=x﹣[x]=x+1.
当0≤x<1时,﹣1≤x﹣1<0,此时f(x)=f(x﹣1)=x﹣1+1=x.
当1≤x<2时,0≤x﹣1<1,此时f(x)=f(x﹣1)=x﹣1.
当2≤x<3时,1≤x﹣1<2,此时f(x)=f(x﹣1)=x﹣1﹣1=x﹣2.
当3≤x<4时,2≤x﹣1<3,此时f(x)=f(x﹣1)=x﹣1﹣2=x﹣3.
设g(x)=ax,则g(x)过定点(0,0),
坐标系中作出函数y=f(x)和g(x)的图象如图:
当g(x)经过点A(﹣2,1),D(4,1)时有3个不同的交点,当经过点B(﹣1,1),C(3,1)时,有2个不同的交点,
则OA的斜率k=,OB的斜率k=﹣1,OC的斜率k=,OD的斜率k=,
故满足条件的斜率k的取值范围是或,
故答案为:(﹣1,﹣]∪[,)
【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想.
16.【答案】0.6.
【解析】解:随机变量ξ服从正态分布N(2,σ2),
∴曲线关于x=2对称,
∴P(ξ>0)=P(ξ<4)=1﹣P(ξ>4)=0.6,
故答案为:0.6.
【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.
17.【答案】
1 2

点:函数极值
【方法点睛】函数极值问题的常见类型及解题策略
(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.
(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.
(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.
18.【答案】[﹣,].
【解析】解:∵函数奇函数f(x)的定义域为[﹣2,2],且在定义域上单调递减,
∴不等式f(1﹣m)+f(1﹣2m)<0等价为f(1﹣m)<﹣f(1﹣2m)=f(2m﹣1),
即,即,得﹣≤m≤,
故答案为:[﹣,]
【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键.注意定义域的限制.
三、解答题
19.【答案】
【解析】【命题意图】本题考查抛物线标准方程、抛物线定义、直线和抛物线位置关系等基础知识,意在考查转化与化归和综合分析问题、解决问题的能力.

为12y y ≠,20y ≠,化简得12216y y y ⎛⎫=-+
⎪⎝⎭
,所以221222256323264y y y =++≥=, 当且仅当2
222
256y y =
即2
2y =16,24y =?时等号成立. 圆的直径OS
=
因为21y ≥64,所以当21y =64即1y =±8
时,min OS =S 的坐标为
168±(,). 20.【答案】
【解析】解:(I )圆C
的参数方程
(φ为参数).消去参数可得:(x ﹣1)2+y 2
=1.
把x=ρcos θ,y=ρsin θ代入化简得:ρ=2cos θ,即为此圆的极坐标方程. (II )如图所示,由直线l 的极坐标方程是ρ(sin θ
+)
=3
,射线OM :θ
=

可得普通方程:直线
l ,射线
OM .
联立
,解得
,即
Q

联立
,解得
或.

P .

|PQ|=
=2.
【点评】本题考查了极坐标化为普通方程、曲线交点与方程联立得到的方程组的解的关系、两点间的距离公式等基础知识与基本方法,属于中档题.
21.【答案】
【解析】解:(1)设h(x)=f(x)﹣g(x)=lg(2016+x)﹣lg(2016﹣x),h(x)的定义域为(﹣2016,2016);
h(﹣x)=lg(2016﹣x)﹣lg(2016+x)=﹣h(x);
∴f(x)﹣g(x)为奇函数;
(2)由f(x)﹣g(x)<0得,f(x)<g(x);
即lg(2016+x)<lg(2016﹣x);
∴;
解得﹣2016<x<0;
∴使f(x)﹣g(x)<0成立x的集合为(﹣2016,0).
【点评】考查奇函数的定义及判断方法和过程,对数的真数需大于0,以及对数函数的单调性.
22.【答案】
【解析】解:设z+=t,则z2﹣tz+10=0.∵1<t≤6,∴△=t2﹣40<0,
解方程得z=±i.
又∵z的实部和虚部都是整数,∴t=2或t=6,
故满足条件的复数共4个:z=1±3i 或z=3±i.
23.【答案】(1)()f x 的单调递增区间是(),2-∞-和2,3⎛⎫
+∞ ⎪⎝⎭
,单调递减区间为2(2,)3-;(2)[1,)+∞.
【解析】
试题分析:(1) 2a =时,利用导数与单调性的关系,对函数求导,并与零作比较可得函数的单调区间;(2) 对函数求导,对参数分类讨论,利用函数的单调性求函数的最小值,使最小值小于或等于零,可得的取值范围.
试题解析:(1)当2a =时,32()241f x x x x =+--, 所以2'()344(32)(2)f x x x x x =+-=-+, 由'()0f x >,得2
3
x >
或2x <-, 所以函数()f x 的单调递减区间为2(2,)3
-.
(2)要使()0f x ≤在[1,)+∞上有解,只要()f x 在区间[1,)+∞上的最小值小于等于0. 因为2
2
'()32(3)()f x x ax a x a x a =+-=-+, 令'()0f x =,得103
a
x =
>,20x a =-<.1
考点:导数与函数的单调性;分类讨论思想.
24.【答案】
【解析】解:(Ⅰ)∵全集U=R,B={x|x<4},
∴∁U B={x|x≥4},
又∵A={x|x2﹣4x﹣5≤0}={x|﹣1≤x≤5},
∴A∩(∁U B)={x|4≤x≤5};
(Ⅱ)∵A={x|﹣1≤x≤5},C={x|x≥a},且A⊆C,
∴a的范围为a≤﹣1.
【点评】此题考查了交、并、补集的混合运算,以及集合的包含关系判断及应用,熟练掌握各自的定义是解本题的关键.。

相关文档
最新文档