中考数学探索性训练题 人教新课标版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学探索题训练
1、我们平常用的数是十进制数,如2639=2×103
+6×102
+3×101
+9×100
,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。
在电子数字计算机中用的是二进制,只要两个数码:0和1。
如二进制中101=1×22
+0×21
+1×2
等于十进制的数5,10111=1×24
+0×23
+1×22
+1×21
+1×20
等于十进制中的数23,那么二进制中的1101等于十进制的数 。
2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12
;1+3=4=22
;1+3+5=9=32
;1+3+5+7=16=42
;
1+3+5+7+9=25=52
;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是 。
3、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:
A 、
618 B 、638 C 、65
8 D 、678
4、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.
5、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子用了 块石子。
6、如下图是用棋子摆成的“上”字:
第一个“上”字 第二个“上”字 第三个“上”字
如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上” 字分别需用 和 枚棋子;(2)第n 个“上”字需用 枚棋子。
7、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有____颗.
8、为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c
按上述规定,将明文“maths”译成密文后是()
A.wkdrc B.wkhtc C.eqdjc D.eqhjc
9、下面是按照一定规律画出的一列“树型”图:
经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出个“树枝”。
10、观察下面的点阵图和相应的等式,探究其中的规律:
(1)在④和⑤后面的横线上分别写出相应的等式;
(2)通过猜想写出与第n个点阵相对应的等式_____________________。
11、用边长为1cm的小正方形搭成如下的塔状图形,则第n次所搭图形的周长是_______________cm(用含n 的代数式表示)。
12、如图,都是由边长为1的正方体叠成的图形。
例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位。
依此规律。
则第(5)个图形的表面积个平方单位。
13、图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是( ) A 25 B 66 C 91 D 120
14、如图是由大小相同的小立方体木块叠入而成的几何体,图⑴中有1个立方体,图⑵中有4个立方体,图⑶中 有9个立方体,…… 按这样的规律叠放下去,
第8个图中小立方体个数是 .
15、图1是棱长为a 的小正方体,图2、图3由这样的小正方体摆放而成.按照这样的方法继续摆放,由上而下 分别叫第一层、第二层、…、第n 层,第n 层的小正方体的个数为s .解答下列问题:
(1)按照要求填表:
(2)写出当n =10时,s= .
16、如图用火柴摆去系列图案,按这种方式摆下去,当每边摆10根时(即10 n )时,需要的火柴棒总数为 根;
17、用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三
角形需7支火柴棒,照这样的规律下去,搭n个三角形需要S支火柴棒,那么用n的式子表示S的式子是
_______ (n为正整数).
18、如图所示,用同样规格的黑、白两色正方形瓷砖铺设矩形地面,请观察下图:则第n个图形中需用黑色瓷砖
____ 块.(用含n的代数式表示)
19、如图,用同样规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:
当黑色瓷砖为20块时,白色瓷砖为块;当白色瓷砖为n2(n为正整数)块时,黑色瓷砖为块.
20、观察下列由棱长为1的小立方体摆成的图形,寻找规律:如图1中:共有1 个小立方体,其中1个看得见,0个
看不见;如图2中:共有8个小立方体,其中7个看得见,1个看不见;如图3中:共有27个小立方体,其中有19个看得见,8个看不见;……,则第6个图中,看不见的小立方体有个。
21、下面的图形是由边长为l的正方形按照某种规律排列而组成的.
(1)观察图形,填写下表:
(2)推测第n个图形中,正方形的个数为________,周长为______________(都用含n的代数式表示).
22、观察下图,我们可以发现:图⑴中有1个正方形;图⑵中有5个正方形,图⑶中共有14个正方形,按照这种规律继续下去,图⑹中共有_______个正方形。
23、某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面
积的一半,以下图中设计不合要求
....的是( )
24、如下图中的四个正方形的边长均相等,其中阴影部分面积最大的图形是( )
25、如图,在方格纸中有四个图形<1>、<2>、<3>、<4>,其中面积相等的图形是()
A. <1>和<2>
B. <2>和<3>
C. <2>和<4>
D. <1>和<4>
26、某体育馆用大小相同的长方形木块镶嵌地面,第1次铺2块,如图1;第2次把第1次铺的完全围起来,如图2;第3次把第2次铺的完全围起来,如图3;…依此方法,第n次铺完后,用字母n表示第n次镶嵌所使用的木块块数为 . (n为正整数)
27、用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:
⑴第4个图案中有白色地面砖块;
⑵第n个图案中有白色地面砖块。
28、分析如下图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.
29、将一圆形纸片对折后再对折,得到图2,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是
( )
30.如图(1),小强拿一张正方形的纸,沿虚线对折一次得图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线剪去一个角,再打开后的形状是()
(A)(B)(C)(D)
31、用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的
正五边形ABCDE,其中∠BAC=度.
32、如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD等于()
A.108° B.144° C.126° D.129°
33、如图,把一个正方形三次对折后沿虚线剪下则得到的图形是()
A B C D
34、某校教具制作车间有等腰三角形、正方形、平行四边形的塑料若干,数学兴趣小组的同学利用其中7块恰好拼成
一个矩形(如图1),后来又用它们拼出了XYZ等字母模型(如图2、图3、图4),每个塑料板保持图1的标号不变,请你参与:(1)将图2中每块塑料板对应的标号填上去;(2)图3中,点画出了标号7的塑料板位置,请你适当画线,找出其他6块塑料板,并填上标号;(3)在图4中,找出7块塑料板,并填上标号。
图1 图2 图3 图4
35、将一张长方形的纸对折,如图5所示可得到一条折痕(图中虚线). 继续对折,对折时每次折痕与上次的折痕保
持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到条折痕 .如果对折n次,可以得到 _____________条折痕。
36、观察图形:图中是边长为1,2,3 …的正方形:当边长n=1时,正方形被分成2个大小相等的小等腰直角三角形;当边长n=2时,正方形被分成8个大小相等的小等腰直角三角形;当边长n=3时,正方形被分成18个大小相等的小等腰直角三角形;以此类推:当边长为n时,正方形被分成大小相等的小等腰直角三角形的个数是。
37、水平放置的正方体的六个面分别用“前面、后面、上面、
下面、左面、右面”表示.如右图,是一个正方体的平面展开图,
若图中的“似”表示正方体的前面, “锦”表示右面,
“程”表示下面.则“祝”、“你”、
“前”分别表示正方体的___________________.
38、如图是一块长方形ABCD的场地,长AB=102m,
宽AD=51m,从A、B两处入口的中路宽都为1m,
两小路汇合处路宽为2m,其余部分种植草坪,则
草坪面积为()
(A)5050m2(B)4900m2(C)5000m2(D)4998m2
39、读一读,想一想,做一做:
国际象棋、中国象棋和围棋号称为世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方格棋盘,图中的“皇后Q”能控制图中虚线所经过的每一个小方格.
①在如图乙的小方格棋盘中有一“皇后Q”,她所在的位置可用“(2,3)”来表示,请说明“皇后Q”所在的位置“(2,3)”的意义,并用这种表示法分别写出棋盘中不能被该“皇后Q”所控制的四个位置.
②如图丙也是一个4×4的小方格棋盘,请在这个棋盘中放入四个“皇后Q”,使这四个“皇后Q”之间互不受对方控制(在图丙中的某四个小方格中标出字母Q即可).
40.如图,小陈从O点出发,前进5米后向右转20O,
再前进5米后又向右转20O,……,这样一直走下去,
他第一次回到出发点O时一共走了()
A.60米 B.100米 C.90米 D.120米
41. 14.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.
42.如图,网格中的每个四边形都是菱形.如果格点三角形ABC 的面积为S ,按照如图所示方式得到的格点三角形A 1B 1C 1的面积是7S ,格点三角形A 2B 2C 2的面积是19S ,那么格点三角形A 3B 3C 3的面积为 . 43.如图,图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为
1
2
的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的2
1
)后,得图③,④,…,记第n (n ≥3) 块纸板的周长为P n ,则P n -P n-1= ▲ .
44.正整数按图8的规律排列.请写出第20行,第21列的数字 .
45.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y kx b =+(k
>0)和x 轴上,已知点B 1(1,1),B 2(3,2), 则B n 的坐标是______________.
46.如图所示的运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,……第2009次输出的结果为___________.
47.如图,边长为1的菱形ABCD 中,︒=∠60DAB .连结对角线AC ,以AC 为边作第二个菱形11D ACC ,使
︒=∠601AC D ;连结1AC ,再以1AC 为边作第三个菱形221D C AC ,使 ︒=∠6012AC D ;……,按此规律所作
的第n 个菱形的边长为 .
48.如图所示,已知:点(00)A ,,B ,(01)C ,
在ABC △内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个11AA B △,第2个122B A B △,第3个233B A B △,…,则第n 个等边三角形的边长等于 .
49.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .
50.观察下面的一列单项式:x ,2
2x -,34x ,4
8x -,…根据你发现的规律,第7个单项式为 ;第n 个单项式为
51.观察下列一组数:21
,43,65,8
7,…… ,它们是按一定规律排列的. 那么这一组数的第k 个数是 . 52.观察下列图形(每幅图中最小..的三角形都是全等的),请写出第n 个图中最小..的三角形的个数有 个.
53.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.
54.电子跳蚤游戏盘是如图所示的△ABC ,AB =6,AC =7,BC =8.如果跳蚤开始时在BC 边的P 0处,BP 0=2.跳蚤第一
步从P 0跳到AC 边的P 1(第1次落点)处,且CP 1=CP 0;第二步从P 1跳到AB 边的P 2(第2次落点)处,且AP 2=AP 1;第三步从P 2跳到BC 边的P 3(第3次落点)处,且BP 3=BP 2;……;跳蚤按上述规则一直跳下去,第n 次落点为P n (n 为正整数),则点P 2007与P 2010之间的距离为() A .1 B .2 C .3 D .4
55.如图,圆圈内分别标有0,1,2,3,4,…,11这12个数字。
电子跳蚤每跳一次,可以从一个圆圈跳到相邻的圆圈,现在,一只电子跳蚤从标有数字“0”的圆圈开始,按逆时针方向跳了2010次后,落在一个圆圈中,该圆圈所标
的数字是 。
56.如图,△ABC 的面积为1,分别取AC 、BC 两边的中点A 1、B 1,则四边形A 1ABB 1的面积为3
4
,再分别取A 1C 、B 1C 的中点A 2、B 2,A 2C 、B 2C 的中点A 3、B 3,依次取下去….利用这一图形,能直观地计算出
3 4+3 42+3 43+…+3
4
n =________. 57.用棋子按下列方式摆图形,依照此规律,第n 个图形比第(n-1)个图形多_____枚棋子. 58.观察下列各式:
()1121230123⨯=
⨯⨯-⨯⨯ ()1
232341233⨯=⨯⨯-⨯⨯ ()1
343452343
⨯=⨯⨯-⨯⨯ ……
计算:3×(1×2+2×3+3×4+…+99×100)=
A .97×98×99
B .98×99×100
C .99×100×101
D .100×101×102
59、观察等式:①4219⨯=-,②64125⨯=-,③86149⨯=-…按照这种规律写出第n 个等式: . 60.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是 A .38
B .52
C .66
D .7
61.如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;...,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( ) . A. 669 B. 670 C.671 D. 672
62.如图,直线
y ,点1A 坐标为(1,0),过点1A 作x 的垂线交直线于点1B B ,以原点O 为圆心,1OB 长为半
径画弧交x 轴于点2A ;再过点2A x 的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,
按此做法进行下去,点5A 的坐标为( , )。
63.如图,一种电子游戏,电子屏幕上有一正六边形ABCDEF ,点P 沿直线AB 从右向左移动,当出现点P 与正六边形六个顶点中的至少两个顶点距离相等时,就会发出警报,则直线AB 上会发出警报的点P 有( ) A .3个 B .4个 C .5个 D .6个
64.在直线l 上依次摆放着七个正方形(如图9所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=_________.
65.如图,已知Rt △ABC 中,∠ACB=90°,AC=3, BC= 4,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,
垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直做下去,得到了一组线段CA 1,A 1C 1,
12C A ,…,则
=5
45
5A C C A . 66、我们平常用的数是十进制数,如2639=2×103
+6×102
+3×101
+9×100
,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。
在电子数字计算机中用的是二进制,只要两个数码:0和1。
如二进制中101=1×22
+0×21
+1×2
等于十进制的数5,10111=1×24
+0×23
+1×22
+1×21
+1×20
等于十进制中的数23,那么二进制中的1101等于十进制的数 。
67、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:
A 、
618 B 、638 C 、65
8 D 、678
68.如右图,点O (0,0),B(0,1)是正方形OBB 1C 的两个顶点,以对角线OB 1为一边作正方形OB 1B 2C 1, 再以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 2,……,依次下去.则点B 6的坐标 是________________.
69. 二次函数2
23
y x =
的图象如图12所示,点0A 位于坐标原点, 点1A ,2A ,3A ,…, 2008A 在y 轴的正半轴上,点1B ,2B ,3B ,…, 2008B 在二次函数2
23
y x =位于第一象限的图象上, 若△011A B A ,△122A B A ,△233ABA ,
…,△200720082008A B A 都为等边三角形,则△200920092008A B A 的边长= .
70.细心观察图,认真分析各点,然后回答问题:(本题共8分)
2
22112,OA S =
+=;
2
23213,OA S =+==2
24314,OA S =
+= ……
(1)请用含n (n 是正整数)的等式表示上述变化规律; (2)推算出10OA 的长;
(3)求出222212310S S S S +++⋅⋅⋅+的值。
71.如图9,()1
11P ,x y ,()222P ,x y ,……()P ,n n n x y 在函数()4
0y x x =>的图像上,11POA ∆,212P A A ∆,
323P A A ∆,……1P A A n n n -∆都是等腰直角三角形,斜边1OA 、12A A 、23A A ,……1A A n n -都在x 轴上
⑴求1P 的坐标 ⑵求
12310y y y y ++++的值
72. 我们知道:1+3=4,1+3+5=9,1+3+5+7=16,…
观察下面的一列数:-1,2,-3,4,-5,6…, 将这些数排成如右形式,根据其规律猜想: 第20行第3个数是 .
73.用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子( )
A .4n 枚
B .(4n -4)枚
C .(4n +4)枚
D .n 2
枚
74、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有_______颗. 75、下面是按照一定规律画出的一列“树型”图:
经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出 个“树枝”。
76、观察下面的点阵图和相应的等式,探究其中的规律:
(1)在④和⑤后面的横线上分别写出相应的等式;
(2)通过猜想写出与第n 个点阵相对应的等式_____________________。
77.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________.
78.阅读下列材料:
1×2 =
31
(1×2×3-0×1×2), 2×3 = 3
1
(2×3×4-1×2×3),
3×4 =
3
1
(3×4×5-2×3×4), 由以上三个等式相加,可得 1×2+2×3+3×4=
3
1
×3×4×5 = 20. 读完以上材料,请你计算下列各题:
(1) 1×2+2×3+3×4+···+10×11(写出过程); (2) 1×2+2×3+3×4+···+n ×(n +1) = _________; (3) 1×2×3+2×3×4+3×4×5+···+7×8×9 = _________.。