高三数学第二学期数列多选题单元 易错题测试基础卷试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学第二学期数列多选题单元 易错题测试基础卷试题
一、数列多选题
1.各项均为正数的等比数列{}n a 的前n 项积为n T ,若11a >,公比1q ≠,则下列命题正确的是( )
A .若59T T =,则必有141T =
B .若59T T =,则必有7T 是n T 中最大的项
C .若67T T >,则必有78T T >
D .若67T T >,则必有56T T >
【答案】ABC 【分析】
根据题意,结合等比数列的通项公式、等差数列的前n 项和公式,以及等比数列的性质,逐项分析,即可求解. 【详解】
由等比数列{}n a 可知1
1n n a a q -=⋅,由等比数列{}n a 的前n 项积结合等差数列性质可知:
()
12
1
1212
11111
1
123n n n n n n n n a a q a q a q
a a T a a a q a q
--+++-=⋅⋅⋅==⋅=
对于A ,若59T T =,可得51093611a q a q =,即42611a q =,()
71491426
2
11141a q q T a ∴===,故
A 正确;
对于B ,若59T T =,可得4
26
1
1a q =,即132
1
1a q
=,又11a >,故1q <,又59T T =,可知
67891a a a a =,利用等比数列性质知78691a a a a ==,可知67891,1,1,1a a a a >><<,故7T 是n T 中最大的项,故B 正确;
对于C ,若67T T >,则61572111a q a q >,即611a q <,又10a >,则1q <,可得
768118
7
1T T a a q a q <=<=,故78T T >,故C 正确; 对于D ,若67T T >,则611a q <,566
5
1T a T a q ==,无法判断其与“1”的大小关系,故D 错误. 故选:ABC 【点睛】
关键点点睛:本题主要考查了等比数列的通项公式及等差数列前n 项和公式,以及等比数列的性质的应用,其中解答中熟记等比数列的通项公式和性质及等差数列的求和公式,准确运算是解答的关键,着重考查了学生的推理与运算能力,属于较难题.
2.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a >
B .数列1n a ⎧⎫
⎨⎬⎩⎭
是递增数列
C .0n
S <时,n 的最小值为13
D .数列n n S a ⎧⎫

⎬⎩⎭
中最小项为第7项 【答案】ACD 【分析】 由已知得()
()612112712+12+2
2
0a a a a S ==
>,又70a <,所以6>0a ,可判断A ;由已知
得出24
37
d -
<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又
()1112+3n a n d =-,可得出1n
a 在1,6n n N
上单调递增,
1
n
a 在7n n
N ,
上单调递增,可判断B ;由
()
313117
713+12
2
03213a a a S a ⨯=
=<=
,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】
由已知得311+212,122d a a a d ===-,()
()612112712+12+2
2
0a a a a S =
=
>,又
70a <,所以6>0a ,故A 正确;
由716167
1+612+40
+512+3>0+2+1124+7>0
a a d d a a d d a a a d d ==<⎧⎪
==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,
当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()11
12+3n a n d =-,所以[]1,6n ∈时,1>0n
a ,7n ≥时,1
0n a <,
所以1
n
a 在1,6n
n N
上单调递增,1
n
a 在7n
n N
,上单调递增,所
以数列1n a ⎧⎫
⎨⎬⎩⎭
不是递增数列,故B 不正确;
由于()
313117
713+12
2
03213a a a S a ⨯=
=<=
,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;
当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]
1,12n ∈时,>0n S ,13n ≥时,
0n S <,所以当[]7,12n ∈时,0n a <,>0n S ,
0n
n
S a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫
⎨⎬⎩⎭
中最小项为第7项,故D 正确; 【点睛】
本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.
3.如图,已知点E 是ABCD 的边AB 的中点,(
)*
n F n ∈N
为边BC 上的一列点,连接
n AF 交BD 于n G ,点()*n G n ∈N 满足()1223n n n n n G D a G A a G E +=⋅-+⋅,其中数列
{}n a 是首项为1的正项数列,n S 是数列{}n a 的前n 项和,则下列结论正确的是( )
A .313a =
B .数列{}3n a +是等比数列
C .43n a n =-
D .1
22n n S n +=--
【答案】AB 【分析】
化简得到()()12323n n n n n n G D a a G A a G B +=--⋅-+⋅,根据共线得到
1230n n a a +--=,即()1323n n a a ++=+,计算123n n a +=-,依次判断每个选项得到
答案. 【详解】
()()
11
2232
n n n n n n G D a G A a G A G B +=⋅-+⋅
+, 故()()12323n n n n n n G D a a G A a G B +=--⋅-+⋅,,n n G D G B 共线,故
1230n n a a +--=,
即()1323n n a a ++=+,11a =,故1342n n a -+=⨯,故1
23n n a +=-.
432313a =-=,A 正确;数列{}3n a +是等比数列,B 正确;
1
23n n a +=-,C 错误;2124323412
n
n n S n n +-=-=---,故D 错误.
故选:AB . 【点睛】
本题考查了向量运算,数列的通项公式,数列求和,意在考查学生的计算能力,转化能力和综合应用能力.
4.设n S 是等差数列{}n a 的前n 项和,且12a =,38a =则( ) A .512a = B .公差3d = C .()261n S n n =+ D .数列11n n a a +⎧
⎫⎨

⎩⎭
的前n 项和为64n
n + 【答案】BCD 【分析】
根据已知条件求出等差数列{}n a 的通项公式和前n 项和公式,即可判断选项A 、B 、
C ,
再利用裂项求和即可判断选项D. 【详解】
因为数列{}n a 是等差数列,则312228a a d d =+=+=,解得:3d =,故选项B 正确; 所以()21331n a n n =+-⨯=-,
对于选项A :535114a =⨯-=,故选项A 不正确;
对于选项C :()()
2222132612
n n S n n n ++-⨯⎡⎤⎣⎦=⨯=+,所以故选项C 正确; 对于选项D :
()()111111313233132n n a a n n n n +⎛⎫
==- ⎪-+-+⎝⎭
, 所以前n 项和为1111111
1132558811
3132n n ⎛⎫
-+-+-++
-
⎪-+⎝⎭
()611132322324
n n n n n ⎛⎫=-== ⎪
++⎝⎭+,故选项D 正确, 故选:BCD. 【点睛】
方法点睛:数列求和的方法
(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法
(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;
(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;
(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;
(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如
()()1n
n a f n =-类型,可采用两项合并求解.
5.下面是关于公差0d >的等差数列{}n a 的几个命题,其中正确的有( ) A .数列{}n a 递增
B .n S 为{}n a 的前n 项和,则数列n S n ⎧⎫

⎬⎩⎭
是递增的等差数列 C .若n a n =,n S 为{}n a 的前n 项和,且n S n c ⎧⎫

⎬+⎩⎭
为等差数列,则0c
D .若70a =,n S 为{}n a 的前n 项和,则方程0n S =有唯一的根13n = 【答案】ABD 【分析】
选项A. 由题意10n n a a d +-=>可判断;选项B.先求出
11
2
n S n a d n -=+⨯,根据1012n n S S d
n n +-=>+可判断;选项C. 若n a n =,则()12n n n S +=,则0c 或1c =时n S n c ⎧⎫⎨⎬+⎩⎭
为等差数列可判断;选项D.由1602n n S dn -⎛⎫=--= ⎪⎝⎭可判断. 【详解】
选项A. 由题意10n n a a d +-=>,则1n n a a +>,所以数列{}n a 递增,故A 正确. 选项B. ()112
n n n S na d -=+⨯,则11
2n S n a d n -=+
⨯ 所以
1012n n S S d n n +-=>+,则11n n S S n n +>+,所以数列n S n ⎧⎫
⎨⎬⎩⎭
是递增的等差数列. 故B 正确. 选项C. 若n a n =,则()12n n n S +=,则()()12n n n S n c n c =+++
当0c
时,
1
2+n S n c n =+为等差数列. 当1c =时,2
n S n c n
=+为等差数列.所以选项C 不正确.
选项D. 70a =,即7160a a d =+=,则16a d =- 又()()1111660222n n n n n n S na d dn d dn ---⎛
⎫=+
⨯=-+⨯=--= ⎪⎝
⎭ 由0,0d n >>,所以1
602
n --=,得13n =,故选项D 正确. 故选:ABD 【点睛】
关键点睛:本题考查等差数列的判定和单调性的单调,解答本题的关键是利用等差数列的
定义和前n 项和公式进行判断,求出162n n S dn -⎛⎫
=-+
⎪⎝⎭
,从而判断,属于中档题.
6.已知数列{}n a 的前n 项和为n S ,11a =
,且1n n S a λ-=(λ为常数).若数列{}n b 满足2
920n n a b n n -+-=,且1n n b b +<,则满足条件的n 的取值可以为( )
A .5
B .6
C .7
D .8
【答案】AB 【分析】
利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到
12n n
a ,进而得到n
b ;利用1
0n
n
b b 可得到关于n 的不等式,解不等式求得n 的
取值范围,根据n *∈N 求得结果. 【详解】
当1n =时,1111a S a λ==-,11λ∴-=,解得:2λ=
21n n S a ∴=-
当2n ≥且n *∈N 时,1121n n S a --=-
1
122n n n
n n a S S a a ,即:12n n a a -=
∴数列{}n a 是以1为首项,2为公比的等比数列,
12n n
a
2
920n n a b n n =-+-,21
920
2n n n n b --+-∴=
()()2
2211191209201128
0222
n n n n n
n n n n n n b b +--+++--+--+∴-=-=< 20n >,()()2
1128470n n n n ∴-+=--<,解得:47n <<
又n *∈N ,5n ∴=或6 故选:AB 【点睛】
关键点点睛:本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识,解决本题的关键点是能够得到n b 的通项公式,进而根据单调性可构造出关于n 的不等式,从而求得结果,考查学生计算能力,属于中档题.
7.设数列{}n a 的前n 项和为*
()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是
( )
A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列
B .若2
n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列
C .若()11n
n S =--,则{}n a 是等比数列
D .若{}n a 是等差数列,则n S ,2n n S S -,*
32()n n S S n N -∈也成等差数列
【答案】BCD 【分析】
利用等差等比数列的定义及性质对选项判断得解. 【详解】
选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:
2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;
选项C: ()11n
n S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,
12(1)n n a -∴=⨯-是等比数列,故对;
选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*
32()n n S S n N -∈是等差数
列,故对; 故选:BCD 【点睛】
熟练运用等差数列的定义、性质、前n 项和公式是解题关键.
8.已知首项为1的数列{}n a 的前n 项和为n S ,当n 为偶数时,11n n a a --=;当n 为奇数且1n >时,121n n a a --=.若4000m S >,则m 的值可以是( ) A .17 B .18
C .19
D .20
【答案】BCD 【分析】
由已知条件得出数列奇数项之间的递推关系,从而得数列21{3}k a -+是等比数列,由此可求得奇数项的表达式(也即得到偶数项的表达式),对2k S 可先求得其奇数项的和,再得偶数项的和,从而得2k S ,计算出与4000接近的和,184043S =,173021S =,从而可得结论. 【详解】
依题意,2211k k a a -=+,21221k k a a +=+,*k N ∈,所以2211k k a a -=+,
2122121212(1)123k k k k a a a a +--=+=++=+,∴()2121323k k a a +-+=+.
又134a +=,故数列{}213k a -+是以4为首项,2为公比的等比数列,所以
121423k k a --=⋅-,
故S 奇
()21321141232
(44242)43321k k k k k a a a k k -+-===
+⨯+
+⨯--+++-=---,
S 偶21232412()242k k k a a a k k a a a +-=+=++
+=+++--,故2k S S =奇+S 偶
3285k k +=--,
故12
1828454043S =--=,173021S =,故使得4000m S >的最小整数m 的值为18.
故选:BCD . 【点睛】
关键点点睛:本题考查数列的和的问题,解题关键是是由已知关系得出数列的奇数项满足的性质,求出奇数项的表达式(也可求出偶数项的表达式),而求和时,先考虑项数为偶数时的和,这样可分类求各:先求奇数项的和,再求偶数项的和,从而得所有项的和,利用这个和的表达式估计和n S 接近4000时的项数n ,从而得出结论.
9.斐波那契数列{}n a :1,1,2,3,5,8,13,21,34,…,又称黄金分割数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数
列”
,其通项公式1122n n
n a ⎡⎤⎛⎛-⎢⎥=- ⎢⎥⎝⎭⎝⎭⎣⎦
,是用无理数表示有理数的一个范例,该数列从第三项开始,每项等于其前相邻两项之和,即21n n n a a a ++=+,记该数列
{}n a 的前n 项和为n S ,则下列结论正确的是( )
A .10711S a =
B .2021201920182a a a =+
C .202120202019S S S =+
D .201920201S a =-
【答案】AB 【分析】
选项A 分别求出710S a ,可判断,选项B 由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+可判断,选项C ,由202112342021S a a a a a =++++
+,
202012S a a =+++2020a ,
两式错位相减可判断.选项D.由
()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-可判断.
【详解】
因为10143S =,711143a =,所以10711S a =,则A 正确;
由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+, 所以2021201920182a a a =+,所以B 正确; 因为202112342021S a a a a a =++++
+,202012S a a =+++2020a ,
两式错位相减可得202120201220192019101S S a a a S -=+++++=+,
所以2021202020191S S S =++,所以C 错误; 因为
()()()()()123324354652122
n n n n n S a a a a a a a a a a a a a a a a +++=+++
+=-+-+-+-++-=-21n a +=-,所以201920211S a =-,所以D 错误.
故选:AB. 【点睛】
关键点睛:本题考查数列的递推关系的应用,解答本题的关键是由
202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得
202120201220192019101S S a a a S -=+++++=+,以及由递推关系可得
()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-,属于中档题.
10.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )
A .数列{}n a 为等比数列
B .数列{}n S n +为等比数列
C .数列{}n a 中10511a =
D .数列{}2n S 的前n 项和为
2224n n n +---
【答案】BCD 【分析】 由已知可得
11222n n n n S n S n
S n S n
++++==++,结合等比数列的定义可判断B ;可得
2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公
式,可判断C ;
由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】
因为121n n S S n +=+-,所以
11222n n n n S n S n
S n S n
++++==++.
又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;
所以2n n S n +=,则2n
n S n =-.
当2n ≥时,1121n n n n a S S --=-=-,但11
121a -≠-,故A 错误;
由当2n ≥时,1
2
1n n a -=-可得91021511a =-=,故C 正确;
因为1
222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++-
()()()231
22
412122 (2)
212 (22412)
2n n n n n n n n n ++--⎡⎤=+++-+++=
-+=---⎢⎥-⎣
⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】
关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由
121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到
11222n n n n S n S n
S n S n
++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,
考查了推理运算能力,属于中档题,。

相关文档
最新文档