高中物理必修3物理 全册全单元精选测试卷复习练习(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理必修3物理全册全单元精选测试卷复习练习(Word版含答案)
一、必修第3册静电场及其应用解答题易错题培优(难)
1.如图所示,在光滑绝缘水平面上,质量为m的均匀绝缘棒AB长为L、带有正电,电量为Q且均匀分布.在水平面上O点右侧有匀强电场,场强大小为E,其方向为水平向左,BO距离为x0,若棒在水平向右的大小为QE/4的恒力作用下由静止开始运动.求:
(1)棒的B端进入电场L/8时的加速度大小和方向;
(2)棒在运动过程中的最大动能.
(3)棒的最大电势能.(设O点处电势为零)
【答案】(1)/8
qE m ,向右(2)
()
48
qE L
x+(3)0
(2)
6
qE x L
+
【解析】
【分析】
【详解】
(1)根据牛顿第二定律,得
48
QE L QE
ma
L
-⋅=解得
8
QE
a
m
=,方向向右.
(2)设当棒进入电场x时,其动能达到最大,则此时棒受力平衡,有
4
QE QE
x
L
⋅
=
解得
1
4
x L
=
由动能定理得:
()
00
44
()()
42442448 K o
QE QE
L
QE QE L QE L
E W x x x x x
====
+⨯
∑+-+-+
⨯
(3)棒减速到零时,棒可能全部进入电场,也可能不能全部进入电场,设恰能全部进入电场,
则有:()
42
QE QE
x L L
+-=,
得 x0=L;()
42
QE QEL
L L
ε+
==
当x0<L,棒不能全部进入电场,设进入电场x
根据动能定理得()
00
42
xQE
QE L
x x x
+
+--
=
解之得:20
8L L Lx x ++=
则2
008 ()4F L L Lx QE W x ε+++==
当x 0>L ,棒能全部进入电场,设进入电场x ()()0
042
QE QE
x x L QE x L +---= 得:023
x L
x += 则()()000242 4436
QE x L x L QE QE x x ε+++⋅=
==
2.如图所示,均可视为质点的三个物体A 、B 、C 在倾角为30°的光滑绝缘斜面上,A 绝缘,A 与B 紧靠在一起,C 紧靠在固定挡板上,质量分别为m A =0.43kg ,m B =0.20kg ,m C =0.50kg ,其中A 不带电,B 、C 的电荷量分别为q B =+2×10-5C 、q C =+7×10-5C 且保持不变,开始时三个物体均能保持静止。
现给A 施加一平行于斜面向上的力F ,使A 做加速度a=2.0m/s 2的匀加速直线运动,经过时间t ,力F 变为恒力,已知静电力常量为k=9.0×109N·m 2/C 2,g 取10m/s 2。
求: (1)开始时BC 间的距离L ; (2)F 从变力到恒力需要的时间t 。
【答案】(1)2.0m ;(2)1.0s 【解析】 【分析】 【详解】
(1)A 、B 、C 静止时,以AB 为研究对象,受力分析有
2
sin30o B C
A B q q m m g k
L +=() 代入数据解得
L =2.0m
(2)AB 分离时两者之间弹力恰好为零,此后F 变为恒力,对B 用牛顿第二定律得
2
sin30B B B C
m g m a q q k
l ︒=- 解得
3.0m l =
由匀加速运动规律得
212
l L at -=
解得
1.0s t =
3.如图所示,一条长为l 的细线,上端固定,下端拴一质量为m 的带电小球.将它置于一匀强电场中,电场强度大小为E ,方向水平向右.已知当细线离开竖直位置的偏角为α时,小球处于平衡状态.
(1)小球带何种电荷并求出小球所带电荷量;
(2)若将小球拉到水平位置后放开手,求小球从水平位置摆到悬点正下方位置的过程中,电场力对小球所做的功.
【答案】(1)正,tan /mg E α (2)tan mgl α 【解析】 【详解】
(1)小球所受电场力的方向与场强方向一致,则带正电荷; 由平衡可知:
Eq =mgtanα
得:
mgtan q E
α
=
(2)小球从水平位置摆到悬点正下方位置的过程中,电场力做负功,大小为
W =Eql = mgltanα
4.如图所示,∆abc 处在真空中,边长分别为ab =5cm ,bc =3cm ,ca =4cm .两个带电小球固定在a 、b 两点,电荷量分别为q a =6.4×10-12C ,q b =-2.7×10-12C .已知静电力常量k =9.0×109N ⋅m 2/C 2,求c 点场强的大小及方向.
【答案】 方向与由a 指向b 的方向相同
【解析】 【详解】
如图所示,a 、b 两电荷在c 点的场强分别为
E a
=k =36N/C E b =k
=27N/C
由几何关系,有
E 2=E a 2+E b 2
解得
E =45N/C
方向与由a 指向b 的方向相同.
5. 如图所示,光滑绝缘水平面上固定着A 、B 、C 三个带电小球,它们的质量均为m ,间距均为r ,A 带电量Q A =10q ,B 带电量
Q B =q ,若小球C 上加一个水平向右的恒力,欲使A 、B 、C 始终保持r 的间距运动,求:
(1)C 球的电性和电量Q C ; (2)水平力F 的大小。
【答案】(1)C 球带负电 Q C =403q (2)F=70k 2
2q r
【解析】
(1)对A 、B 、C 系统研究得:3F
a m
=
A 球受到
B 球库仑斥力F 1和
C 球库仑力F 2后,要产生水平向右加速度,故F 2必为引力,C 球带负电。
对AB 两球有 2222(2)C A B A C B A B
Q Q Q Q Q Q Q Q k
k k k r r r r m m -+= 联立可得:403
C Q q = (2)对整体和A 有 22(2)3C A B A
Q Q Q Q k k F r r
m m
-=
2
270q F k r
=
6.如图所示,AB 为固定在竖直平面内粗糙倾斜轨道,BC 为光滑水平轨道,CD 为固定在竖直平面内的光滑圆弧轨道,且AB 与BC 通过一小段光滑弧形轨道相连,BC 与弧CD 相切。
已知AB 长为L =10m ,倾角θ=37︒,BC 长s =4m ,CD 弧的半径为R =2m ,O 为其圆心,∠COD =143︒。
整个装置处在水平向左的匀强电场中,电场强度大小为E =1×103N/C 。
一质量为m =0.4kg 、电荷量为q =+3×10 -3C 的物体从A 点以初速度v A =15m/s 沿AB 轨道开始运动。
若物体与轨道AB 间的动摩擦因数为μ=0.2,sin 37︒=0.6,cos 37︒=0.8,g =10m/s 2,物体运动过程中电荷量不变。
求:
(1)物体在AB 轨道上运动时,重力和电场力的合力对物体所做的总功; (2)物体在C 点对轨道的压力大小为多少;
(3)用物理知识计算物体能否到达D 点,若能算出通过D 点的速度;若不能说明理由。
【答案】(1)W =0(2)27N(3)物体能到达D 点 【解析】 【详解】
(1)物体所受重力和电场力的合力大小为
222332()()(0.410)(31010)N 5N F mg qE -=+=⨯+⨯⨯=
设合力F 与竖直方向的夹角为α,则
3
tan 4
qE mg α=
= 即
37α︒=
所以物体在轨道AB 上运动时,重力和电场力的合力与轨道AB 垂直,对物体做的总功为W =0;
(2) 从A →B 过程,根据受力分析可知,物体下滑过程受到的滑动摩擦力为:
f =μF N =μ(m
g cos 37︒+qE sin 37︒)
代入数据解得:
f =1N
A →C 过程,由动能定理得:
221122
C A W fL qEs mv mv --=
- 可得:222
115m /s C v =
在C 点,由重力和轨道支持力的合力提供向心力,由牛顿第二定律得:
2C
mv N mg R
-= 代入数据解得:
N =27N
(3)重力和电场力的合力为:
222332()()(0.410)(31010)N 5N F mg qE -=+=⨯+⨯⨯=
方向与竖直方向成37︒斜向左下方,所以D 点即为圆周运动中的等效最高点,物体到达D 点的最小速度设为v D ,则:
2D
v F m R
=
解得:
5m /s D v =
要到达D 点,在C 点速度至少为v ,从C →D ,由动能定理得
2211(cos37)cos3722
D mg R R qER mv mv ︒︒-+-=
-
解得:
222115m /s v =
则知v =v C ,所以物体恰能到达D 点
二、必修第3册 静电场中的能量解答题易错题培优(难)
7.在空间中取坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,如图所示.一电子从静止开始经电压U 加速后,从y 轴上的A 点以平行于x 轴的方向射入第一象限区域,A 点与原点O 的距离为h .不计电子的重力.
(1)若电子恰好从N 点经过x 轴,求匀强电场的电场强度大小E 0;
(2)匀强电场的电场强度E 大小不同,电子经过x 轴时的坐标也不同.试求电子经过x 轴时的x 坐标与电场强度E 的关系.
【答案】(1)02
4Uh E d =(2)Uh
x E
=或22d Uh x Ed =+ 【解析】 【分析】
本题考查电子在电场中的受力及运动 【详解】
设电子的电荷量为e 、质量为m ,电子经过电场加速后获得速度v 0.则
2012
eU mv =
(1)电子从A 点运动到N 点,有
00d v t =
eE a m
=
212
h at =
联立解得电场强度大小
02
4Uh
E d =
(2)讨论两种情况: ①当2
4Uh
E d ≥
时,电子从电场内经过x 轴,有 0x v t =
eE a m
= 212
h at =
联立解得x 坐标与电场强度E 的关系为
x =②当2
4Uh
E d <
时,电子先离开电场,之后再经过x 轴在电场内运动时间为t 1,有 01d v t =
21112
y at =
1y v at =
在电场外运动时间为t 2,电子做匀速直线运动,有
02x d v t -=
12y h y v t -=
联立解得x 坐标与电场强度E 的关系为
22d Uh x Ed
=
+
8.电容器是一种重要的电学元件,基本工作方式就是充电和放电.由这种充放电的工作方式延伸出来的许多电学现象,使得电容器有着广泛的应用.如图1所示,电源与电容器、电阻、开关组成闭合电路.已知电源电动势为E,内阻不计,电阻阻值为R,平行板电容器电容为C,两极板间为真空,两极板间距离为d,不考虑极板边缘效应.
(1)闭合开关S,电源向电容器充电.经过时间t,电容器基本充满.
a.求时间t内通过R的平均电流I;
b.请在图2中画出充电过程中电容器的带电荷量q随电容器两极板电压u变化的图象;并求出稳定后电容器储存的能量E0;
(2)稳定后断开开关S.将电容器一极板固定,用恒力F将另一极板沿垂直极板方向缓慢拉开一段距离x,在移动过程中电容器电荷量保持不变,力F做功为W;与此同时,电容器储存的能量增加了ΔE.请推导证明:W=ΔE.要求最后的表达式用已知量表示.
【答案】(1)a.
CE
I
t
= b.2
1
2
E CE
=(2)见解析
【解析】
试题分析:(1)a.设充电完毕电容器所带电量为Q,即时间t内通过电阻R的电量,此时电容器两端电
压等于电源的电动势
根据电容的定义(2分)
根据电流强度的定义(2分)
解得平均电流(2分)
b.根据q = Cu,画出q-u图像如图1所示(2分)
由图像可知,图线与横轴所围面积即为电容器储存的能量,如图2中斜线部分所示
由图像求出电容器储存的电能(2分)
解得
(2分)
(2)设两极板间场强为,两极板正对面积为S 根据
,
,得
,可知极板在移动过程中板间场强不变,两极板
间的相互作用力为恒力.两板间的相互作用可以看作负极板电荷处于正极板电荷产生的电场中,可知两板间的相互作用力.(2分)缓慢移动时有
根据功的定义有
代入已知量得出(2分) 电容器增加的能量
(或
)
(2分)
代入已知量得出(2分)
所以
考点:电容,电动势,能量守恒.
9.两块水平平行放置的导体板如图 (甲)所示,大量电子(质量m 、电量e )由静止开始,经电压为U 0的电场加速后,连续不断地沿平行板的方向从两板正中间射入两板之间.当两板均不带电时,这些电子通过两板之间的时间为3t 0;当在两板间加如图 (乙)所示的周期为2t 0,幅值恒为U 0的周期性电压时,恰好能使所有电子均从两板间通过.问:
⑴这些电子通过两板之间后,侧向位移(沿垂直于两板方向上的位移)的最大值和最小值分别是多少?
⑵侧向位移分别为最大值和最小值的情况下,电子在刚穿出两板之间时的动能之比为多少? 【答案】(10062t eU m 00
64
t
eU m
(2)1613
【解析】
画出电子在t =0时和t =t 0时进入电场的v –t 图象进行分析
(1)竖直方向的分速度010y eU v t md =,000
2022=y eU eU t v t md md
= 侧向最大位移2
00max 101010312()322y y y y eU t d
s v t v t v t md =+===
侧向最小位移2
00min 10101031 1.5224
y y y y eU t d
s v t v t v t md =+=== 解得0
6eU d t m =
所以00max 622
y t eU d s m =
00
min 644y t
eU d s m
=(2)由此得2
20010()6y eU eU v t md m ==,22
00202(2)3y eU eU v t md m
== 而2
02eU v m
=
所以
2202kmax 0022
kmin
000111/3162211/121322
y
y mv mv E eU eU E eU eU mv mv ++===++
【名师点睛】解决本题的关键知道粒子在偏转电场中水平方向上一直做匀速直线运动,在竖直方向上有电场时做匀加速直线运动,无电场时做匀速直线运动或静止.
10.如图所示,在竖直平面内有一固定的光滑绝缘轨道,圆心为O ,半径为r ,A 、B 、C 、D 分别是圆周上的点,其中A 、C 分别是最高点和最低点,BD 连线与水平方向夹角为
37︒。
该区间存在与轨道平面平行的水平向左的匀强电场。
一质量为m 、带正电的小球在
轨道内侧做完整的圆周运动(电荷量不变),经过D 点时速度最大,重力加速度为g (已知sin370.6︒=,cos370.8︒=),求: (1)小球所受的电场力大小;
(2)小球经过A 点时对轨道的最小压力。
【答案】(1)4
3
mg ;(2)2mg ,方向竖直向上. 【解析】 【详解】
(1)由题意可知 :
tan 37mg
F
︒= 所以:
43
F mg =
(2)由题意分析可知,小球恰好能做完整的圆周运动时经过A 点对轨道的压力最小. 小球恰好做完整的圆周运动时,在B 点根据牛顿第二定律有:
2sin 37B v mg
m r
︒= 小球由B 运动到A 的过程根据动能定理有:
()
22
111sin 37cos3722
B A mgr Fr mv mv ︒︒--+=-
小球在A 点时根据牛顿第二定律有:
2A
N v F mg m r
+=
联立以上各式得:
2N F mg =
由牛顿第三定律可知,小球经过A 点时对轨道的最小压力大小为2mg ,方向竖直向上.
11.如图,在竖直平面内,一半径为R 的光滑绝缘圆弧轨道ABC 和水平绝缘轨道PA 在A 点相切,BC 为圆弧轨道的直径,O 为圆心,OA 和OB 之间的夹角为α,3
sin 5
α=
,整个装置处于水平向右的匀强电场中。
一质量为m 、电荷量为q (q >0)的带电小球在电场力的作用下沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道。
已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零,重力加速度大小为g .求:
(1)匀强电场的场强大小;
(2)小球到达A 点时速度的大小。
(结果保留根号)
【答案】(1)34mg
q
(2)23gR
【解析】 【详解】
(1)设小球所受电场力为0F ,电场强度的大小为E 由力的合成法则有
tan F mg α= 0F qE =
解得:34mg
E q
=
(2)小球到达C 点时所受合力的大小为F ,由力的合成法则有:
()2
220F mg F =+
设小球到达C 点时的速度大小为c v ,由牛顿第二定律得
2
c v F m R
= 解得:5c gR
v =
设小球到达A 点的速度大小为A v ,作CD ⊥PA ,交PA 于D 点,由几何关系得
sin DA R α=
()1cos CD R α=+
由动能定理有
221122
C A mg C
D q
E DA mv mv -⋅-⋅=
-
故小球在A 点的速度大小为232
A gR
v =
12.如图,带电量为q =+2×10-3C 、质量为m =0.1kg 的小球B 静置于光滑的水平绝缘板右端,板的右侧空间有范围足够大的、方向水平向左、电场强度E =103N/C 的匀强电场.与B 球形状相同、质量为0.3kg 的绝缘不带电小球A 以初速度v 0=10m/s 向B 运动,两球发生弹性碰撞后均逆着电场的方向进入电场,在电场中两球又发生多次弹性碰撞,已知每次碰撞时间极短,小球B 的电量始终不变,取重力加速度g =10m/s 2.求:
(1)第一次碰撞后瞬间两小球的速度大小; (2)第二次碰撞前瞬间小球B 的动能; (3)又经过多长时间发生第三次碰撞.
【答案】(1) v A =5m/s ,v B =15m/s (2) E KB =6.25J (3)t '=1s 【解析】 【详解】 (1)第一次碰撞时,
两小球动量守恒,即3mv 0=3mv A +mv B 机械能守恒,即:
222011133222
A B mv mv mv =+ 解得碰后A 的速度v A =5m/s ,B 的速度v B =15m/s
(2)碰后AB 两球进入电场,竖直方向二者相对静止均做自由落体运动; 水平方向上,A 做匀速运动,
B 做匀减速直线运动,其加速度大小220m/s B qE
a m
=
= 设经过t 时间两小球再次相碰,则有21
2
A B B v t v t a t =- 解得:t =1s
此时,B 的水平速度为v x =v B -a B t =-5 m/s (负号表明方向向左) 竖直速度为v y =gt =10 m/s 故第二次碰前B 的动能221() 6.25J 2
kB x y E m v v =
+= (2)第二次碰撞时,AB 小球水平方向上动量守恒3mv A +mv x =3mv +mv 机械能守恒,即:
22222222
111113()()3()()2222
A y x y y x y m v v m v v m v v m v v ''+++=+++
解得第二次碰后水平方向A 的速度v =0,B 的速度v =10m/s 故第二次碰撞后A 竖直下落(B 在竖直方向上的运动与A 相同), 水平方向上, B 做匀减速直线运动, 设又经过t ' 时间两小球第三次相碰,则有21
02
x B v t a t ''-= 解得:t '=1s 【点睛】
解决本题的关键要是分析清楚两球的受力情况,判断出运动情况,知道弹性碰撞遵守两大守恒:动能守恒和动量守恒.根据位移关系研究相碰的时间.
三、必修第3册 电路及其应用实验题易错题培优(难)
13.实际电流表有内阻,可等效为理想电流表与电阻的串联.测量实际电流表1G 内阻1r 的电路如图所示.供选择的仪器如下:
①待测电流表1G (0~5mA ,内阻约300Ω),②电流表2G (0~10mA ,内阻约100Ω),③定值电阻1R (300Ω),④定值电阻2R (10Ω),⑤滑动变阻器3R (0~1000Ω),⑥滑动变阻器
4R (0~20Ω),⑦干电池 (1.5V),⑧电键S 及导线若干.
(1)定值电阻应选_______________,滑动变阻器应选_________________.(在空格内填写序号)
(2)用连线连接实物图. (3)补全实验步骤:
①按电路图连接电路,_____________________;
②闭合电键S ,移动滑动触头至某一位置,记录1G ,2G 的读数1I ,2I ; ③__________________________________________;
④以2I 为纵坐标,1I 为横坐标,作出相应图线,如图所示.
(4)根据21I I -图线的斜率k 及定值电阻,写出待测电流表内阻的表达式_____________________.
【答案】③,⑥ ①将滑动触头移至最左端 多次移动滑动触
头,记录相应的G 1,G 2读数I 1,I 2 11(1)r k R =- 【解析】 【分析】 【详解】
(1)根据电路连接特点,G 2为定值电阻和电流表G 1的总电流,若定值电阻选10Ω,则易使流过G 2的总电流超过其满偏值,故选R 1;分压接法用小阻值的滑动变阻器即可.
(2)
(3)在闭合开关前应将滑动变阻器滑片打在最左端以保护仪表. (4)根据欧姆定律:11211()I r I I R =-解得:1211
R r
I I R +=
即111r R k R +=,所以
11(1)r k R =-.
14.某同学将一个量程为0~1mA 、内阻未知的电流表G 改装为量程为0~3V 的电压表V 。
他先测量该电流表G 的内阻R g ,再进行改装,然后把改装的电压表与标准电压表进行校准并进行误差分析。
实验室准备的仪器有: 电源E (电动势为4.5V ,内阻约1.2Ω)
滑动变阻器R 1(最大阻值为5000Ω,允许通过的最大电流约为0.02A ) 滑动变阻器R 2(最大阻值为20Ω,允许通过的最大电流约为1.0A ) 电阻箱R (最大阻值为999.9Ω,允许通过的最大电流约为0.2A ) 标准电压表0V (最大量程为3.0V ,内阻约为4000Ω)
开关两个,导线若干 他的操作过程如下:
(1)先按如图(a)所示的电路,测量电流表G 的内阻R g ,其步骤为:
①将滑动变阻器R 1调到最大,保持开关K 2断开,闭合开关K 1,再调节滑动变阻器R 1,使电流表G 的指针指在满刻度I g 处。
②保持滑动变阻器R 1的阻值不变,再闭合开关K 2,调节电阻箱R 的阻值使电流表G 的指针指在满刻度的一半处,即
1
2
g I I =
, 此时电阻箱上示数如图(b)所示,则电流表G 的内阻R g =__Ω。
(2)他根据所测出的电流表G 内阻R g 的值,通过计算后,在表头G 上串联一个电阻R ,就将电流表G 改装成量程0~3V 的电压表V ,如图(c)所示,则这个定值电阻的阻值为R =__Ω。
(3)他再用标准电压表V 0对改装的电压表进行校准,要求电压能从0到最大值之间逐一进行校准,试在图(d)的方框中补全校准电路图,并标出所选用器材的符号,其中改装的电压表和标准电压表已画出。
(______________)
(4)由于电流表G 内阻R g 的测量值____(填“小于”或“大于”)真实值,改装电压表V 时串联电阻R 的阻值_____(填“偏大”或“偏小”),因此在校准过程中,改装的电压表的示数总比标准表的示数______(填“偏大”或“偏小”)。
【答案】105.0Ω 2895Ω 小于 偏大 偏小
【解析】 【分析】
根据题目中给出的提示,以及电表的改装知识进行解答。
【详解】
(1)[1]电阻箱的读数为
105.0ΩK R =,
电流表的内阻为
g 105.0ΩR =;
(2)[2]由电压表的改装原理可知:
()g g g g g 112895Ωg U U
R n R R R I R I ⎛⎫=-=-=-= ⎪ ⎪⎝⎭
;
(3)[3]要求电压从0到最大值之间逐一进行校准,因此应采用分压法,滑动变阻器选用
2R ,标准电压表和改装电压表应并联。
电路图如图所示:
;
(4)[4][5][6]用半偏法测电流表内阻g R 时,由于电阻箱R 的连入使得电路总电流变大,致使
g R 的测量值偏小,这样在改装电压表时串联电阻
()g g 1U
R n R R I
=-=
-, 其阻值偏大,使得校准时通过其电流值偏小,故改装的电压表示数小于标准表的示数。
【点睛】
电表的改装及校准。
15.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度。
如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B 、R 0分别表示有、无磁场时磁敏电阻的阻值。
为了测量磁感应强度B ,需先测量磁敏电阻处于磁场中的电阻值R B 。
请按要求完成下列实验。
(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响)。
要求误差较小______;
提供的器材如下:
A.磁敏电阻,无磁场时阻值R0=150 Ω
B.滑动变阻器R,总电阻约为20 Ω
C.电流表A,量程2.5 mA,内阻约30 Ω
D.电压表V,量程3 V,内阻约3 kΩ
E.直流电源E,电动势3 V,内阻不计
F.开关S,导线若干
(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:
123456
U(V)0.000.450.91 1.50 1.79 2.71
I(mA)0.000.300.60 1.00 1.20 1.80
根据上表可求出磁敏电阻的测量值R B=___Ω,结合题图可知待测磁场的磁感应强度B=
___T;
(3)试结合题图简要回答,磁感应强度B在0~0.2T和0.4~1.0T范围内磁敏电阻阻值的变化规律有何不同?
_______;
(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论_______。
【答案】 1500 0.90 在0~0.2T范围内,磁敏电阻的阻
值随磁感应强度非线性变化(或不均匀变化);在0.4~1.0T范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化)磁场反向,磁敏电阻的阻值不变
【解析】
【分析】
【详解】
(1)[1]当B=0.6T时,磁敏电阻阻值约为
6×150Ω
=900Ω
当B =1.0T 时,磁敏电阻阻值约为
11×150Ω=1650Ω
由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由
于x V
A x
R R R R >,所以电流表应内接。
电路图如图所示。
(2)[2]方法一:根据表中数据可以求得磁敏电阻的阻值分别为
130.4515000.3010R -=Ω=Ω⨯,2
30.91
1516.70.6010R -=Ω=Ω⨯ 331.5015001.0010R -=
Ω=Ω⨯,4
3
1.79
1491.71.2010R -=Ω=Ω⨯ 53
2.71
15051.8010
R -=
Ω=Ω⨯, 故电阻的测量值为
12345
15035
R R R R R R ++++=
Ω=Ω(1500~1503Ω都算正确。
)
[3]由于
0150010150
R R ==,从图1中可以读出 B =0.9T
方法二:作出表中的数据作出U -I 图像,图像的斜率即为电阻(略)。
(3)[4]在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);
(4)[5]从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关。
【点睛】
本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力。
从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻。
第(3)、(4)问则考查考生思维的灵敏度和创新能力。
总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取
新知识的能力、建模能力的一道好题。
16.现要绘制一个额定电压2.5V、额定功率约0.7W的小灯泡的伏安特性曲线.
⑴为使绘制的图线更加准确,选择了合适的器材,如图所示.请在图甲中连好实物电路图______.
⑵合上开关前,滑动变阻器的滑动触头应置于滑动变阻器的______(填“左端”或“右端”).
⑶根据实验数据,描绘出的U-I图象如图乙所示,某同学将该小灯泡连接在一个电动势为
3.0V、内电阻为6Ω的电源上,组成一个闭合电路,则此时该小灯泡实际功率约为
________W.(结果保留两位有效数字)
【答案】左端0.38W
【解析】
【分析】
【详解】
(1)[]1如下图所示,
因小灯泡的内阻较小,电流表采用外接法,要绘制小灯泡的伏安特性曲线,为使绘制的图线更加准确,需要多组电压、电流的实验数据,因此滑动变阻器需要分压式接法,所以实物电路图的连接如上图。
(2)[]2合上开关前,首先检查电路连接是否正确,无误后,为保证实验安全,并且使小灯泡上的电压从零开始变化,滑动变阻器的滑动触头应先置于滑动变阻器的左端。
(3)[]3将该小灯泡连接在一个电动势为3.0V 、内电阻为6Ω的电源上,因该电路的短路电流是0.5A,其U —I 图线如上图直线,两图线的交点坐标,就是小灯泡在电路中的实际工作电压和电流,由上图线得数据:1U =1.6V 1I =0.24A,据电功率公式得
111P U I ==0.38W
故小灯泡实际功率约为0.38W
17.某实验小组欲描绘小灯泡的伏安特性曲线,实验仪器如下:
A .小灯泡(额定电压为3V ,额定功率为1. 5W ))
B .电流表1A (满偏电流为10mA ,内阻r 1=100Ω)
C .电流表2A (量程为0. 6A ,内阻r 2=0. 5Ω);
D .滑动变阻器1R (0~20Ω,额定电流为2A )
E.滑动变阻器2R (0~1000Ω,额定电流为0. 5A )
F.定值电阻3R (5Ω)
G.定值电阻4R (200Ω)
H.电源(3V 、内阻可忽略)
I.开关、导线若干.
(1)由于所给的仪器中没有电压表,需要把以上电流表_________进行适当的改装,将其与定值电阻_________串联改装成3V 的电压表. (均填仪器前的字母序号)
(2)要使小灯泡两端电压从零开始变化,则滑动变阻器应选_________. (填仪器前的字母序号)
(3)按实验要求完成方框内实验电路图______
(4)若实验描绘出该灯的伏安特性曲线如图,将该小灯泡直接接到一电动势为3V 、内阻为5Ω的电源两端,则该小灯泡消耗的电功率为_________W.(结果保留两位有效数字)
【答案】B G D 0.35
【解析】
【详解】
(1)[1][2]根据=P UI 得小灯泡的额定电流为
0.5A P I U
== 故电流表选择A 2,A 1用来改装成电压表,故选B 。
改装电压表时串联电阻阻值为
g g 200U U R I -=
=Ω
故定值电阻应选G 。
(2)[3]要使小灯泡两端电压从零开始变化,滑动变压器采用分压接法,则阻值小了便于调节,故滑动变阻器选D 。
(3)[4]小灯泡的电阻为
2
x
6
U
R
P
==Ω
由于
x
A
6
12
0.5
R
R
==
V
300
=600
x0.5
R
R
=
所以
V
x
A
x
R
R
R R
<
所以电流表采用外接法,补全电路图如图所示
(4)[5]在U-I图像中做出电源的特性曲线,如下图所示
交点即为灯泡的实际电压和电流,通过作图可知
' 1.3V
U=
'0.34A
I=
故灯泡的实际功率为
''' 1.30.34=0.44W P U I ==⨯
18.为了测定电流表1A 的内阻,采用如下图所示的电路.其中1A 是待测电流表,量程为300μA ,内阻约为100Ω;2A 是标准电流表,量程是200μA ;1R 是电阻箱,阻值范围0~999.9Ω;2R 是滑动变阻器;3R 是保护电阻;E 是电池组,电动势为4V ,内阻不计;1S 是单刀单掷开关,2S 是单刀双掷开关.
⑴ 根据电路图甲,请在图乙中画出连线,将器材连接成实验电路______.
⑵ 连接好电路,将开关2S 扳到接点a 处,接通开关1S ,调整滑动变阻器2R 使电流表2A 的读数是150μA ;然后将开关2S 扳到接点b 处,保持2R 不变,调节电阻箱1R ,使2A 的读数仍为150μA .若此时电阻箱各旋纽的位置如图丙所示,电阻箱1R 的阻值是
________Ω,则待测电流表1A 的内阻g R =________Ω.
⑶ 上述实验中,无论怎样调整滑动变阻器2R 的滑动端位置,都要保证两只电流表的安全.在下面提供的四个电阻中,保护电阻3R 应选用:________(填写阻值相应的字母) A .200K Ω B .20K Ω C .15K Ω D .20Ω
⑷ 下面提供最大阻值不同的四个滑动变阻器供选用.既要满足上述实验要求,又要调整方便,滑动变阻器应选________(填写阻值相应的字母)
A .1K Ω
B .5K Ω
C .10K Ω
D .25K Ω。