安吉县一中2018-2019学年下学期高二期中数学模拟题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安吉县一中2018-2019学年下学期高二期中数学模拟题
一、选择题
1. 若实数x ,y 满足,则(x ﹣3)2+y 2的最小值是( )
A .
B .8
C .20
D .2
2. 已知=(2,﹣3,1),=(4,2,x ),且⊥,则实数x 的值是( )
A .﹣2
B .2
C .﹣
D .
3. 设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等
于( )A .
B .
C .24
D .48
4. 已知点F 1,F 2为椭圆
的左右焦点,若椭圆上存在点P 使得,
则此椭圆的离心率的取值范围是(
)
A .(0,)
B .(0,]
C .(,]
D .[,1)
5. 已知复数z 满足(3+4i )z=25,则=( )
A .3﹣4i
B .3+4i
C .﹣3﹣4i
D .﹣3+4i
6. 已知定义在上的奇函数)(x f ,满足,且在区间上是增函数,则 R (4)()f x f x +=-[0,2]A 、 B 、(25)(11)(80)f f f -<<(80)(11)(25)f f f <<-C 、 D 、(11)(80)(25)f f f <<-(25)(80)(11)
f f f -<<7. 如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是(
)
A .第一象限
B .第二象限
C .第三象限
D .第四象限
8. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )
A .若m ∥β,则m ∥l
B .若m ∥l ,则m ∥β
C .若m ⊥β,则m ⊥l
D .若m ⊥l ,则m ⊥β9. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)
B .(0,2)
C .(4,+∞)
D .(0,4)10.函数g (x )是偶函数,函数f (x )=g (x ﹣m ),若存在φ∈(,
),使f (sin φ)=f (cos φ),则实
数m 的取值范围是( )
A .(
)B .(,]
C .(
)
D .(
]
11.两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )
A .akm
B .
akm
C .2akm
D .
akm
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
12.已知F1、F2分别是双曲线﹣=1(a>0,b>0)的左、右焦点,过点F2与双曲线的一条渐近线平行的
直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是()
A.(1,)B.(,+∞)C.(,2)D.(2,+∞)
二、填空题
13.已知函数f(x)=,点O为坐标原点,点An(n,f(n))(n∈N+),向量=(0,1),θn是向量
与i的夹角,则++…+= .
14.空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.
①若AC=BD,则四边形EFGH是 ;
②若AC⊥BD,则四边形EFGH是 .
15.已知变量x,y,满足,则z=log4(2x+y+4)的最大值为 .
16.若P(1,4)为抛物线C:y2=mx上一点,则P点到该抛物线的焦点F的距离为|PF|= .17.已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6= .
18.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.
三、解答题
19.我市某校某数学老师这学期分别用m,n两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示.
(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用ξ表示抽到成绩为86分的人数,求ξ的分布列和数学期望;
(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
下面临界值表仅供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k 2.072 2.706 3.841 5.024 6.6357.87910.828
(参考公式:K2=,其中n=a+b+c+d)
20.在直接坐标系中,直线的方程为,曲线的参数方程为(为参数)。
(1)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为(4,),判断点与直线的位置关系;
(2)设点是曲线上的一个动点,求它到直线的距离的最小值。
21.已知函数f(x)=alnx+x2+bx+1在点(1,f(1))处的切线方程为4x﹣y﹣12=0.
(1)求函数f(x)的解析式;
(2)求f(x)的单调区间和极值.
22.(本小题满分10分)已知函数.
()|||2|f x x a x =++-(1)当时,求不等式的解集;3a =-()3f x ≥(2)若的解集包含,求的取值范围.
()|4|f x x ≤-[1,2]23.如图,正方形ABCD 中,以D 为圆心、DA 为半径的圆弧与以BC 为直径的半圆O 交于点F ,连接CF 并延长交AB 于点E .(Ⅰ)求证:AE=EB ;
(Ⅱ)若EF •FC=,求正方形ABCD 的面积.
24.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位得到的数据:
赞同
反对合计男50 150200女30 170 200合计
80
320
400
(Ⅰ)能否有能否有的把握认为对这一问题的看法与性别有关?
97.5%(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述发言,设发言的女士人数为,求的分布列和期望.
X X 参考公式:,2
2
()K ()()()()
n ad bc a b c d a c b d -=++++()
n a b c d =+++
安吉县一中2018-2019学年下学期高二期中数学模拟题(参考答案)
一、选择题
1.【答案】A
【解析】解:画出满足条件的平面区域,如图示:
,
由图象得P(3,0)到平面区域的最短距离d min=,
∴(x﹣3)2+y2的最小值是:.
故选:A.
【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.
2.【答案】A
【解析】解:∵=(2,﹣3,1),=(4,2,x),且⊥,
∴=0,
∴8﹣6+x=0;
∴x=﹣2;
故选A.
【点评】本题考查向量的数量积判断向量的共线与垂直,解题的关键是将垂直关系转化为两向量的内积为0,建立关于x的方程求出x的值.
3.【答案】C
【解析】解:F1(﹣5,0),F2(5,0),|F1F2|=10,
∵3|PF1|=4|PF2|,∴设|PF2|=x,则,
由双曲线的性质知,解得x=6.
∴|PF1|=8,|PF2|=6,
∴∠F1PF2=90°,
∴△PF1F2的面积=.
故选C.
【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.
4. 【答案】D
【解析】解:由题意设=2x ,则2x+x=2a ,
解得x=
,故|
|=
,|
|=
,
当P 与两焦点F 1,F 2能构成三角形时,由余弦定理可得
4c 2=
+
﹣2×
×
×cos ∠F 1PF 2,
由cos ∠F 1PF 2∈(﹣1,1)可得4c 2=﹣
cos ∠F 1PF 2∈(,
),
即
<4c 2<
,∴
<
<1,即
<e 2<1,∴
<e <1;
当P 与两焦点F 1,F 2共线时,可得a+c=2(a ﹣c ),解得e==
;
综上可得此椭圆的离心率的取值范围为[,1)
故选:D
【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题.
5. 【答案】B
解析:∵(3+4i )z=25,z==
=3﹣4i .
∴=3+4i .故选:B .6. 【答案】D
【解析】∵,∴,∴,(4)()f x f x +=-(8)(4)f x f x +=-+(8)()f x f x +=∴的周期为,∴,)0()80(f f =,
()f x 8(25)(1)f f -=-,
(11)(3)(14)(1)(1)f f f f f ==-+=--=又∵奇函数)(x f 在区间上是增函数,∴)(x f 在区间上是增函数,[0,2][2,2]-∴,故选D.(25)(80)(11)f f f -<<7. 【答案】D
【解析】解:∵P (sin θcos θ,2cos θ)位于第二象限,∴sin θcos θ<0,cos θ>0,∴sin θ<0,∴θ是第四象限角.故选:D .
【点评】本题考查了象限角的三角函数符号,属于基础题.
8. 【答案】D
【解析】【分析】由题设条件,平面α∩β=l,m是α内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可
【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;
B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;
C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;
D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;
综上D选项中的命题是错误的
故选D
9.【答案】C
【解析】解:令f(x)=x2﹣mx+3,
若方程x2﹣mx+3=0的两根满足一根大于1,一根小于1,
则f(1)=1﹣m+3<0,
解得:m∈(4,+∞),
故选:C.
【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.
10.【答案】A
【解析】解:∵函数g(x)是偶函数,函数f(x)=g(x﹣m),
∴函数f(x)关于x=m对称,
若φ∈(,),
则sinφ>cosφ,
则由f(sinφ)=f(cosφ),
则=m,
即m==(sinφ×+cosαφ)=sin(φ+)
当φ∈(,),则φ+∈(,),
则<sin(φ+)<,
则<m<,
故选:A
【点评】本题主要考查函数奇偶性和对称性之间的应用以及三角函数的图象和性质,利用辅助角公式是解决本题的关键.
11.【答案】D
【解析】解:根据题意,
△ABC中,∠ACB=180°﹣20°﹣40°=120°,
∵AC=BC=akm,
∴由余弦定理,得cos120°=,
解之得AB=akm,
即灯塔A与灯塔B的距离为akm,
故选:D.
【点评】本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.
12.【答案】D
【解析】解:双曲线﹣=1的渐近线方程为y=±x,
不妨设过点F2与双曲线的一条渐过线平行的直线方程为y=(x﹣c),
与y=﹣x联立,可得交点M(,﹣),
∵点M在以线段F1F2为直径的圆外,
∴|OM|>|OF2|,即有>c2,
∴b2>3a2,
∴c2﹣a2>3a2,即c>2a.
则e=>2.
∴双曲线离心率的取值范围是(2,+∞).
故选:D.
【点评】本题考查的知识点是双曲线的简单性质,熟练掌握双曲线的渐近线、离心率的计算公式、点与圆的位置关系是解题的关键.
二、填空题
13.【答案】 .
【解析】解:点An(n,)(n∈N+),向量=(0,1),θn是向量与i的夹角,
=,=,…,=,
∴++…+=+…+=1﹣=,
故答案为:.
【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
14.【答案】
菱形 ;
矩形 .
【解析】解:如图所示:①∵EF∥AC,GH∥AC且EF=AC,GH=AC
∴四边形EFGH是平行四边形
又∵AC=BD
∴EF=FG
∴四边形EFGH是菱形.
②由①知四边形EFGH是平行四边形
又∵AC⊥BD,
∴EF⊥FG
∴四边形EFGH是矩形.
故答案为:菱形,矩形
【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题.
15.【答案】
【解析】解:作的可行域如图:
易知可行域为一个三角形,
验证知在点A(1,2)时,
z1=2x+y+4取得最大值8,
∴z=log4(2x+y+4)最大是,
故答案为:.
【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.
16.【答案】 5 .
【解析】解:P(1,4)为抛物线C:y2=mx上一点,
即有42=m,即m=16,
抛物线的方程为y2=16x,
焦点为(4,0),
即有|PF|==5.
故答案为:5.
【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题.
17.【答案】63
【解析】解:解方程x2﹣5x+4=0,得x1=1,x2=4.
因为数列{a n}是递增数列,且a1,a3是方程x2﹣5x+4=0的两个根,
所以a1=1,a3=4.
设等比数列{a n}的公比为q,则,所以q=2.
则.
故答案为63.
【点评】本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.
18.【答案】
【解析】【知识点】空间几何体的三视图与直观图
【试题解析】正方体中,BC中点为E,CD中点为F,
则截面为
即截去一个三棱锥其体积为:
所以该几何体的体积为:
故答案为:
三、解答题
19.【答案】
【解析】
【专题】综合题;概率与统计.
【分析】(Ⅰ)依据茎叶图,确定甲、乙班数学成绩集中的范围,即可得到结论;
(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2,求出概率,可得ξ的分布列和数学期望;
(Ⅲ)根据成绩不低于85分的为优秀,可得2×2列联表,计算K2,从而与临界值比较,即可得到结论.
【解答】解:(Ⅰ)由茎叶图知甲班数学成绩集中于60﹣9之间,而乙班数学成绩集中于80﹣100分之间,所以乙班的平均分高┉┉┉┉┉┉
(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2
P(ξ=0)==,P(ξ=1)==,P(ξ=2)==┉┉┉┉┉┉
则随机变量ξ的分布列为
ξ012
P
数学期望Eξ=0×+1×+2×=人﹣┉┉┉┉┉┉┉┉
(Ⅲ)2×2列联表为
甲班乙班合计
优秀31013
不优秀171027
合计202040
┉┉┉┉┉
K2=≈5.584>5.024
因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关.┉┉
【点评】本题考查概率的计算,考查独立性检验知识,考查学生的计算能力,属于中档题.
20.【答案】(1)点P在直线上
(2)
【解析】(1)把极坐标系下的点化为直角坐标,得P(0,4)。
因为点
P 的直角坐标(0,4)满足直线的方程
,所以点P 在直线上,
(2)因为点Q 在曲线C 上,故可设点Q 的坐标为
,
从而点Q 到直线的距离为,
21.【答案】
【解析】解:(1)求导f ′(x )=+2x+b ,由题意得:
f ′(1)=4,f (1)=﹣8,
则,解得,
所以f (x )=12lnx+x 2﹣10x+1;
(2)f (x )定义域为(0,+∞),
f ′(x )=,
令f ′(x )>0,解得:x <2或x >3,
所以f (x )在(0,2)递增,在(2,3)递减,在(3,+∞)递增,
故f (x )极大值=f (2)=12ln2
﹣15,
f (x )极小值=f (3)=12ln3﹣20.
22.【答案】(1)或;(2).
{|1x x ≤8}x ≥[3,0]-【解析】
试
题解析:(1)当时,,当时,由得,解得;3a =-25,2()1,
2325,3x x f x x x x -+≤⎧⎪=<<⎨⎪-≥⎩
2x ≤()3f x ≥253x -+≥1x ≤当时,,无解;当时,由得,解得,∴的解集为23x <<()3f x ≥3x ≥()3f x ≥253x -≥8x ≥()3f x ≥或.
{|1x x ≤8}x ≥(2),当时,,
()|4||4||2|||f x x x x x a ≤-⇔---≥+[1,2]x ∈|||4|422x a x x x +≤-=-+-=∴,有条件得且,即,故满足条件的的取值范围为.22a x a --≤≤-21a --≤22a -≥30a -≤≤[3,0]-考点:1、绝对值不等式的解法;2、不等式恒成立问题.
23.【答案】
【解析】证明:(Ⅰ)∵以D 为圆心、DA 为半径的圆弧与以BC 为直径半圆交于点F ,
且四边形ABCD 为正方形,
∴EA 为圆D 的切线,且EB 是圆O 的切线,
由切割线定理得EA 2=EF •EC ,
故AE=EB .
(Ⅱ)设正方形的边长为a ,连结BF ,
∵BC 为圆O 的直径,∴BF ⊥EC ,
在Rt △BCE 中,由射影定理得EF •FC=BF 2=,
∴
BF==,解得a=2,
∴正方形ABCD 的面积为4
.
【点评】本题考查两线段相等的证明,考查正方形面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
24.【答案】
【解析】【命题意图】本题考查统计案例、超几何分布、分层抽样等基础知识,意在考查统计思想和基本运算
能力.
的分布列为:
X 的数学期望为
X X
0123P 5
2815281556156
………………12分()51515190123282856568
E X =⨯+⨯+⨯+⨯=。