集安市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集安市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )
A .1
B .
C .
D .2
2. 在复平面内,复数(﹣4+5i )i (i 为虚数单位)的共轭复数对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
3. 已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79),则以下结论正确的是( )
A .第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定
B .第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定
C .第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定
D .第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定
4. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系如图,那么水瓶的形状是图中的( )
A .
B .
C .
D .
5. 自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )
A .86210x y --=
B .86210x y +-=
C .68210x y +-=
D .68210x y --=
【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.
6. 已知函数⎩⎨⎧≤>=)0(|
|)0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有
1
()(2)2
g x g x =+;③当]1,1[-∈x 时,()g x 则函数)()(x g x f y -=在区间]4,4[-上零 点的个数为( )
A .7
B .6
C .5
D .4
【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.
7. 已知a ,b 是实数,则“a 2b >ab 2”是“<”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件
8. 若集合A={x|﹣2<x <1},B={x|0<x <2},则集合A ∩B=( )
A .{x|﹣1<x <1}
B .{x|﹣2<x <1}
C .{x|﹣2<x <2}
D .{x|0<x <1}
9. 复数z=(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
10.函数f (x )=lnx ﹣的零点所在的大致区间是( )
A .(1,2)
B .(2,3)
C .(1,)
D .(e ,+∞)
11.已知三棱锥S ABC -外接球的表面积为32π,090ABC ∠=,三棱锥S ABC -的三视图如图
所示,则其侧视图的面积的最大值为( )
A .4
B .
C .8
D .
12.已知x ,y
满足
时,z=x ﹣y 的最大值为( ) A .4 B .﹣4 C .0 D .2
二、填空题
13.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________.
14.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤02x -y -1≥0x -2y +1≤0
,若z =2x +by (b >0)的最小值为3,则b =________.
15.已知函数32()39f x x ax x =++-,3x =-是函数()f x 的一个极值点,则实数a = . 16.把函数y=sin2x
的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为 .
17.若曲线f (x )=ae x +bsinx (a ,b ∈R )在x=0处与直线y=﹣1相切,则b ﹣a= .
18
.计算:×5﹣1= .
三、解答题
19.(本小题满分12分)
在△ABC 中,∠A ,∠B ,∠C 所对的边分别是a 、b 、c ,不等式x 2cos C +4x sin C +6≥0对一切实数x 恒 成立.
(1)求cos C 的取值范围;
(2)当∠C 取最大值,且△ABC 的周长为6时,求△ABC 面积的最大值,并指出面积取最大值时△ABC 的 形状.
【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.
20.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,已知k sin B =sin A +sin C (k 为正常数),a =4c .
(1)当k =54
时,求cos B ; (2)若△ABC 面积为3,B =60°,求k 的值.
21.(本小题满分12分)
如图四棱柱ABCD -A 1B 1C 1D 1的底面为菱形,AA 1⊥底面ABCD ,M 为A 1A 的中点,AB =BD =2,且△BMC 1为
等腰三角形.
(1)求证:BD ⊥MC 1;
(2)求四棱柱ABCD -A 1B 1C 1D 1的体积.
22.(本小题满分10分)选修4-4:坐标系与参数方程
已知椭圆C 的极坐标方程为222123cos 4sin ρθθ
=+,点12,F F 为其左、右焦点,直线的参数方程为
2x y ⎧=+⎪⎪⎨⎪=⎪⎩(为参数,t R ∈). (1)求直线和曲线C 的普通方程;
(2)求点12,F F 到直线的距离之和.
23.设f (x )=x 2﹣ax+2.当x ∈,使得关于x 的方程f (x )﹣tf (2a )=0有三个不相等的实数根,求实数t 的取值范围.
24.
设函数
,若对于任意x ∈[﹣1,2]都有f (x )<m 成立,求实数m 的取值范围.
集安市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】A
【解析】解:极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,
可知两条曲线是同心圆,如图,|PQ|的最小值为:1.
故选:A.
【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.
2.【答案】B
【解析】解:∵(﹣4+5i)i=﹣5﹣4i,
∴复数(﹣4+5i)i的共轭复数为:﹣5+4i,
∴在复平面内,复数(﹣4+5i)i的共轭复数对应的点的坐标为:(﹣5,4),位于第二象限.
故选:B.
3.【答案】C
【解析】解:∵某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N1(90,86)和ξ2:N2(93,79),∴μ1=90,▱1=86,μ2=93,▱2=79,
∴第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定,
故选:C.
【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础.
4.【答案】B
【解析】解:如果水瓶形状是圆柱,V=πr2h,r不变,V是h的正比例函数,
其图象应该是过原点的直线,与已知图象不符.故D错;
由已知函数图可以看出,随着高度h的增加V也增加,但随h变大,
每单位高度的增加,体积V 的增加量变小,图象上升趋势变缓,
其原因只能是瓶子平行底的截面的半径由底到顶逐渐变小.故A 、C 错.
故选:B .
5. 【答案】D
【解析】由切线性质知PQ CQ ⊥,所以222PQ PC QC =-,则由PQ PO =,得,2222(3)(4)4x y x y -++-=+,化简得68210x y --=,即点P 的轨迹方程,故选D ,
6. 【答案】D
第
Ⅱ卷(共100分)[.Com]
7. 【答案】C
【解析】解:由a 2b >ab 2得ab (a ﹣b )>0,
若a ﹣b >0,即a >b ,则ab >0,则<成立,
若a ﹣b <0,即a <b ,则ab <0,则a <0,b >0,则<成立,
若<则,即ab (a ﹣b )>0,即a 2b >ab 2成立,
即“a 2b >ab 2”是“<”的充要条件,
故选:C
【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.
8. 【答案】D
【解析】解:A∩B={x|﹣2<x<1}∩{x|0<x<2}={x|0<x<1}.故选D.
9.【答案】C
【解析】解:z====+i,
当1+m>0且1﹣m>0时,有解:﹣1<m<1;
当1+m>0且1﹣m<0时,有解:m>1;
当1+m<0且1﹣m>0时,有解:m<﹣1;
当1+m<0且1﹣m<0时,无解;
故选:C.
【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题.
10.【答案】B
【解析】解:函数的定义域为:(0,+∞),有函数在定义域上是递增函数,所以函数只有唯一一个零点.
又∵f(2)﹣ln2﹣1<0,f(3)=ln3﹣>0
∴f(2)•f(3)<0,
∴函数f(x)=lnx﹣的零点所在的大致区间是(2,3).
故选:B.
11.【答案】A
【解析】
考点:三视图.
【方法点睛】本题主要考查几何体的三视图,空间想象能力.空间几何体的三视图是分别从空间几何体的正面,左面,上面用平行投影的方法得到的三个平面投影图.因此在分析空间几何体的三视图时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱,面的位置,
再确定几何体的形状,即可得到结果. 要能够牢记常见几何体的三视图.
12.【答案】A
【解析】解:由约束条件作出可行域如图,
联立,得A (6,2),
化目标函数z=x ﹣y 为y=x ﹣z ,
由图可知,当直线y=x ﹣z 过点A 时,直线在y 轴上的截距最小,z 有最大值为4.
故选:A .
【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
二、填空题
13.【答案】26
【解析】
试题分析:由题意得,根据等差数列的性质,可得371177362a a a a a ++==⇒=,由等差数列的求和 11313713()13262
a a S a +===. 考点:等差数列的性质和等差数列的和.
14.【答案】
【解析】
约束条件表示的区域如图, 当直线l :z =2x +by (b >0)经过直线2x -y -1=0与x -2y +1=0的交点A (1,1)时,z min =2+b ,∴2+b
=3,∴b=1.
答案:1
15.【答案】5
【解析】
试题分析:'2'
=++∴-=∴=.
()323,(3)0,5
f x x ax f a
考点:导数与极值.
16.【答案】y=cosx.
【解析】解:把函数y=sin2x的图象向左平移个单位长度,得,即y=cos2x的图象,把y=cos2x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx的图象;
故答案为:y=cosx.
17.【答案】2.
【解析】解:f(x)=ae x+bsinx的导数为f′(x)=ae x+bcosx,
可得曲线y=f(x)在x=0处的切线的斜率为k=ae0+bcos0=a+b,
由x=0处与直线y=﹣1相切,可得a+b=0,且ae0+bsin0=a=﹣1,
解得a=﹣1,b=1,
则b﹣a=2.
故答案为:2.
18.【答案】9.
【解析】解:×5﹣1=×=×=(﹣5)×(﹣9)×=9,
∴×5﹣1=9,
故答案为:9.
三、解答题
19.【答案】
【解析】
20.【答案】
【解析】解:(1)∵54sin B =sin A +sin C ,由正弦定理得5
4
b =a +
c ,
又a =4c ,∴5
4b =5c ,即b =4c ,
由余弦定理得cos B =a 2+c 2-b 22ac =(4c )2+c 2-(4c )22×4c ·c =1
8.
(2)∵S △ABC =3,B =60°.
∴1
2
ac sin B = 3.即ac =4. 又a =4c ,∴a =4,c =1.
由余弦定理得b 2=a 2+c 2-2ac cos B =42+12-2×4×1×1
2=13.
∴b =13,
∵k sin B =sin A +sin C ,
由正弦定理得k =a +c b =513
=513
13,
即k 的值为513
13.
21.【答案】
【解析】解:(1)证明:如图,连接AC ,设AC 与BD 的交点为E , ∵四边形ABCD 为菱形, ∴BD ⊥AC ,
又AA 1⊥平面ABCD ,
BD ⊂平面ABCD ,∴A 1A ⊥BD ; 又A 1A ∩AC =A ,∴BD ⊥平面A 1ACC 1, 又MC 1⊂平面A 1ACC 1,∴BD ⊥MC 1.
(2)∵AB =BD =2,且四边形ABCD 是菱形, ∴AC =2AE =2
AB 2-BE 2=23,
又△BMC 1为等腰三角形,且M 为A 1A 的中点, ∴BM 是最短边,即C 1B =C 1M . 则有BC 2+C 1C 2=AC 2+A 1M 2,
即4+C 1C 2=12+(C 1C 2
)2
,
解得C 1C =46
3
,
所以四棱柱ABCD -A 1B 1C 1D 1的体积为V =S 菱形ABCD ×C 1C =12AC ×BD ×C 1C =12×23×2×463=8 2. 即四棱柱ABCD -A 1B 1C 1D 1的体积为8 2.
22.【答案】(1)直线的普通方程为2y x =-,曲线C 的普通方程为22
143
x y +=;(2). 【解析】
试题分析:(1)由公式
cos
sin
x
y
ρθ
ρθ
=
⎧
⎨
=
⎩
可化极坐标方程为直角坐标方程,利用消参法可化参数方程为普通方程;
考点:极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化,点到直线的距离公式.
23.【答案】
【解析】设f(x)=x2﹣ax+2.当x∈,则t=,
∴对称轴m=∈(0,],且开口向下;
∴时,t取得最小值,此时x=9
∴税率t的最小值为.
【点评】此题是个指数函数的综合题,但在求解的过程中也用到了构造函数的思想及二次函数在定义域内求最值的知识.考查的知识全面而到位!
24.【答案】
【解析】解:∵,
∴f′(x)=3x2﹣x﹣2=(3x+2)(x﹣1),
∴当x∈[﹣1,﹣),(1,2]时,f′(x)>0;
当x∈(﹣,1)时,f′(x)<0;
∴f(x)在[﹣1,﹣),(1,2]上单调递增,在(﹣,1)上单调递减;
且f(﹣)=﹣﹣×+2×+5=5+,f(2)=8﹣×4﹣2×2+5=7;
故f max(x)=f(2)=7;
故对于任意x∈[﹣1,2]都有f(x)<m成立可化为7<m;
故实数m的取值范围为(7,+∞).
【点评】本题考查了导数的综合应用及恒成立问题的处理方法,属于中档题.。