《实际问题与二次函数》公开课教案1

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题与二次函数
教学目标:
1.能根据实际问题列出函数关系式、
2.使学生能根据问题的实际情况,确定函数自变量x 的取值范围。

3.通过建立二次函数的数学模型解决实际问题,培养学生分析问题、解决问题的能力,提高学生用数学的意识。

重点:根据实际问题建立二次函数不同的数学模型,应用函数的性质解答数学问题 难点:根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围, 教学过程:
一、复习旧知 导入新课
〔1〕建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA 。

O 恰好在水面中心,布置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 任意平面上的抛物线如图(5)所示,建立直角坐标系(如图(6)),水流喷出的高度y(m)与水面距离x(m)之间的函数关系式是y =-x 2
+52x +32,
请答复以下问题:
(1)花形柱子OA 的高度; (2)假设不计其他因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外? 〔2〕.如图(7),一位篮球运发动跳起投篮,球沿抛物线y =-15
x 2
二、学习新知
1、引导学生自学P24页例2〔既探究2〕 质疑 点评
出例如3 P25 引导学生应用不同的方法去构建数学模型 重点讲解例3 2、练一练:
〔1〕.如图是抛物线拱桥,水位在AB 位置时,水面宽46米,水位上升3米就到达警戒线CD ,这时水面宽43米,假设洪水到来时,水位以每小时0.25米速度上升,求水过警戒线后几小时淹到拱桥顶? 三、小结:
1.通过本节课的学习,你学到了什么知识?存在哪些困惑? 2.谈谈你的收获和体会。

四、作业:
一个涵洞成抛物线形,它的截面如图(3)所示,现测得,当水面宽AB =1.6m 时,涵洞顶点与水面的距离为2.4m 。

这时,离开
水面1.5m处,涵洞宽ED是多少?是否会超过1m?
五、板书
[教学反思]
学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

在今后的教学中,我会不断的钻研探索,使我的课堂真正成为学生学习的乐园。

本节课的教学活动,主要是让学生通过观察、动手操作,熟悉长方体、正方体的展开图以及图形折叠后的形状。

教学时,我让每个学生带长方体或正方体的纸盒,每个学生都剪一剪,并展示所剪图形的形状。

由于剪的方法不同,展开图的形状也可能是不同的。

学生在剪、拆盒子过程中,很容易把盒子拆散了,无法形成完整的展开图,就要求适当进行指导。

通过动手操作,动脑思考,集体交流,不仅提高了学生的空间思维能力,而且在情感上每位学生都获得了成功的体验,建立自信心。

24.1 圆 (第3课时)
教学内容
1.圆周角的概念.
2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弦所对的圆心角的一半.
推论:半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.
教学目标
1.了解圆周角的概念.
2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半.
3.理解圆周角定理的推论:半圆〔或直径〕所对的圆周角是直角,90•°的圆周角所对的弦是直径.
4.熟练掌握圆周角的定理及其推理的灵活运用.
设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题.
O B
A
C
重难点、关键
1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题. 2.难点:运用数学分类思想证明圆周角的定理. 3.关键:探究圆周角的定理的存在. 教学过程 一、复习引入
〔学生活动〕请同学们口答下面两个问题. 1.什么叫圆心角?
2.圆心角、弦、弧之间有什么内在联系呢? 老师点评:〔1〕我们把顶点在圆心的角叫圆心角.
〔2〕在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等.
刚刚讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题. 二、探索新知
问题:如下图的⊙O ,我们在射门游戏中,设E 、F 是球门,•设球员们只能在EF 所在的⊙O 其它位置射门,如下图的A 、B 、C 点.通过观察,我们可以发现像∠EAF 、∠EBF 、∠ECF 这样的角,它们的顶点在圆上,•并且两边都与圆相交的角叫做圆周角.
现在通过圆周角的概念和度量的方法答复下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化? 3.同弧上的圆周角与圆心角有什么关系?
〔学生分组讨论〕提问二、三位同学代表发言. 老师点评:
1.一个弧上所对的圆周角的个数有无数多个.
2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的. 3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.
下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,•并且
它的度数恰好等于这条弧所对的圆心角的度数的一半.〞 〔1〕设圆周角∠ABC 的一边BC 是⊙O 的直径,如下图 ∵∠AOC 是△ABO 的外角 ∴∠AOC=∠ABO+∠BAO ∵OA=OB
∴∠ABO=∠BAO ∴∠AOC=∠ABO ∴∠ABC=
1
2
∠AOC 〔2〕如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的两侧,那么∠ABC=
12
∠AOC 吗?请同学们独立完成这道题的说明过程.
老师点评:连结BO 交⊙O 于D 同理∠AOD 是△ABO 的外角,∠COD 是△BOC 的外角,•那么就有∠AOD=2∠ABO ,∠DOC=2∠CBO ,因此∠AOC=2∠ABC .
〔3〕如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的同侧,那么∠ABC=
1
2
∠AOC 吗?请同学们独立完成证明. 老师点评:连结OA 、OC ,连结BO 并延长交⊙O 于D ,那么∠AOD=2∠ABD ,∠COD=2∠CBO ,
O
B
A
C
D
而∠ABC=∠ABD-∠CBO=
12∠AOD-12∠COD=1
2
∠AOC 现在,我如果在画一个任意的圆周角∠AB ′C ,•同样可证得它等于同弧上圆心角一半,
因此,同弧上的圆周角是相等的. 从〔1〕、〔2〕、〔3〕,我们可以总结归纳出圆周角定理:
在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 进一步,我们还可以得到下面的推导:
半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径. 下面,我们通过这个定理和推论来解一些题目.
例1.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系?为什么?
分析:BD=CD ,因为AB=AC ,所以这个△ABC 是等腰,要证明D 是BC 的中点,•只要连结AD 证明AD 是高或是∠BAC 的平分线即可. 解:BD=CD
理由是:如图24-30,连接AD ∵AB 是⊙O 的直径
∴∠ADB=90°即AD ⊥BC 又∵AC=AB ∴BD=CD
三、稳固练习
1.教材P92 思考题. 2.教材P93 练习. 四、应用拓展
例2.如图,△ABC 内接于⊙O ,∠A 、∠B 、∠C 的对边分别设为a ,b ,c ,⊙O 半径为
R ,求证:
sin a A =sin b B =sin c C
=2R . 分析:要证明sin a A =sin b B =sin c C =2R ,只要证明sin a A =2R ,sin b B =2R ,sin c
C
=2R ,
即sinA=2a R ,sinB=2b R ,sinC=2c
R
,因此,十清楚显要在直角三
角形中进行.
证明:连接CO 并延长交⊙O 于D ,连接DB ∵CD 是直径 ∴∠DBC=90° 又∵∠A=∠D
在Rt △DBC 中,sinD=
BC DC ,即2R=sin a
A
同理可证:sin b B =2R ,sin c
C =2R
∴sin a A =sin b B =sin c
C
=2R
五、归纳小结〔学生归纳,老师点评〕 本节课应掌握: 1.圆周角的概念;
2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;
3.半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径. 4.应用圆周角的定理及其推导解决一些具体问题. 六、布置作业
1.教材P95 综合运用9、10、
[教学反思]
学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

在今后的教学中,我会不断的钻研探索,使我的课堂真正成为学生学习的乐园。

本节课的教学活动,主要是让学生通过观察、动手操作,熟悉长方体、正方体的展开图以及图形折叠后的形状。

教学时,我让每个学生带长方体或正方体的纸盒,每个学生都剪一剪,并展示所剪图形的形状。

由于剪的方法不同,展开图的形状也可能是不同的。

学生在剪、拆盒子过程中,很容易把盒子拆散了,无法形成完整的展开图,就要求适当进行指导。

通过动手操作,动脑思考,集体交流,不仅提高了学生的空间思维能力,而且在情感上每位学生都获得了成功的体验,建立自信心。

相关文档
最新文档