能量守恒与电荷守恒

合集下载

电场的能量守恒与电荷守恒

电场的能量守恒与电荷守恒

电场的能量守恒与电荷守恒电场是由电荷产生并影响其他电荷的一种物理现象。

在研究电场过程中,能量守恒和电荷守恒是两个重要的物理规律。

本文将深入探讨电场的能量守恒和电荷守恒原理,并分析它们在电场中的应用和意义。

一、电场的能量守恒电场的能量守恒原理是指在电场中,能量的总量保持不变。

根据电磁场的理论,电场能量主要包括电势能和电磁能。

电势能是指电荷由于在电场中的位置而具有的能量。

它与电荷之间的距离和电势之间的差异有关。

在电场中,电荷从一个位置移动到另一个位置,其电势能会发生变化。

根据电势能与电荷之间的关系,我们可以得出电场的能量守恒公式:ΔPE = q(V2 - V1)其中,ΔPE表示电势能的变化量,q表示电荷的大小,V1和V2分别表示起始位置和终止位置处的电势。

电磁能是指电场与磁场相互作用而产生的能量。

在电场中,当电荷受到电场力的作用而加速运动时,电磁能会转化为动能;当电荷由于碰撞或摩擦而减速时,动能会转化为电磁能。

根据动能和电磁能的转化关系,我们可以得出电场的能量守恒公式:ΔKE + ΔEM = 0其中,ΔKE表示动能的变化量,ΔEM表示电磁能的变化量。

从上述公式可以看出,在电场中,电势能的变化量与电磁能的变化量是相互抵消的,即ΔPE + ΔKE + ΔEM = 0。

这意味着在电场过程中,电势能的损失会被电磁能的增加所抵消,从而保持能量不变。

电场的能量守恒原理在现实生活中有着广泛的应用。

例如,电力输送过程中,电能转化为电势能和电磁能;电容器的充电和放电过程中,电势能和电磁能相互转化。

了解电场的能量守恒原理有助于我们更好地理解电场现象,并能为电力工程等领域的设计和应用提供理论支持。

二、电场的电荷守恒电场的电荷守恒原理是指在电场中,电荷的总量保持不变。

根据库仑定律,电荷和电场之间存在一种相互作用的力,当两个电荷之间产生相互作用时,它们所携带的电荷不会发生改变。

电荷守恒原理是守恒定律的具体应用之一,与能量守恒原理类似。

高中物理的能量守恒定律知识点

高中物理的能量守恒定律知识点

高中物理的能量守恒定律知识点高中物理的学习中会有很多关于守恒的定律,下面店铺的小编将为大家带来能量守恒的定律介绍,希望能够帮助到大家。

高中物理的能量守恒定律介绍能量守恒定律内容能量守恒定律也称能的转化与守恒定律。

其内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体;在转化或转移的过程中,能量的总量不变。

高中物理都研究了哪些形式的能量?研究能量守恒定律,要搞明白咱们主要研究哪些能量呢?从解高中物理题的角度来分析,我们主要分析的是这五种形式的能量:动能、弹性势能、重力势能、内能、电势能。

注:内能包括摩擦生热与焦耳热两种形式,高中不考磁能。

动能、弹性势能、重力势能这三种形式能量之和称之为机械能。

当然,上述五种形式的能量,是力学与电磁学常考到的。

选修内容中的机械振动也是具有能量的,还有光子能量,核能等等,这些都不在本文讨论范围内,不过同学们需要知道,光电效应方程与波尔能级方程也都是能量守恒定律的推导。

能量守恒定律的公式E1=E2即,初始态的总能量,等于末态的总能量。

或者说,能量守恒定律,就是说上文提到的五种形式的能量之和是恒定的。

机械能守恒定律与能量守恒定律关系机械能守恒定律是能的转化与守恒定律的特殊形式。

两者大多都是针对系统进行分析的。

(1)在只有重力、弹力做功时,系统对应的只有动能、弹簧弹性势能、重力势能三种形式能量之间的变化。

(2)在有重力、弹簧弹力、静电场力、摩擦力、安培力等等,众多形式的力做功时,系统对应的有动能、弹簧弹性势能、重力势能、电势能、摩擦热、焦耳热等等众多形式的能量变化,而这些能量也是守恒的。

从上述对比中不难看出,机械能守恒是能量守恒的一种特例。

因此,在熟练掌握能的转化与守恒定律内容的基础上,我们可以使用能量守恒来解决机械能守恒的问题。

或者说,能量守恒掌握的非常棒了,我们就可以把机械能守恒忘掉了。

能量守恒定律的前提条件问:什么情况下能用能量守恒定律解题?回答,我们是建立在解物理题技巧的基础上的。

能量守恒定律

能量守恒定律

三、能量守恒定律 - 重要意义

能量守恒定律,是自然界最普遍、最重要的基 本定律之一。从物理、化学到地质、生物,大到宇 宙天体。小到原子核内部,只要有能量转化,就一 定服从能量守恒的规律。从日常生活到科学研究、 工程技术,这一规律都发挥着重要的作用。人类对 各种能量,如煤、石油等燃料以及水能、风能、核 能等的利用,都是通过能量转化来实现的。能量守 恒定律是人们认识自然和利用自然的有力武器。 “能量的转化和守恒定律”的三种表述反映了人类 认识这一自然规律的历程。这三种表述一种比一种 更深刻,一种比一种更接近客观真理。人类正是这 样一步一步地认识物质世界的。
(4)永动机的不可能
据说永动机的概念发端于印度,在公元12世纪传入欧洲。 据记载欧洲最早、最著名的一个永动机设计方案是十三 世纪时一个叫亨内考(Villand de Honnecourt)的法国人提 出来的。如图所示:轮子中央有一个转动轴,轮子边缘安装 着12个可活动的短杆,每个短杆的一端装有一个铁球。 随后,研究和发明永动机的人不断涌现。尽管有不少学 者研究指出永动机是不可能的,研究永动机的人还是前赴后 继。 文艺复兴时期意大利伟大学者达 芬奇(Leonardo da vinc,1452-1519)曾经用不少精力研究永动机。可贵的是 他最后得到了永动机不可能的结论。 与达 芬奇同时代还有一位名叫卡丹的意大利人 (Jerome Cardan ,1501-1576),他以最早给出求解三次 方程的根而出名,也认为永动机是不可能的。
1. 能量守恒定律发现的准备

能械能和热能有较深入的研究。我们现在就这 两方面来叙述。
(1)活力与死力的论战
1644年笛卡尔(Rene Descartes,1596-1650)在他所著的《哲学原理》 中讨论碰撞问题时引进了动量的概念,用以度量运动。1687年牛顿(Isac Newton,1642-1727)在他的《自然哲学的数学原理》中把动量的改变来 度量力。与此不同的是莱布尼兹(Gottfried Wilhelm Leibniz,1646- 1716)在1686年的一篇论文中抨击笛卡尔,主张用质量乘速度的平方来 度量运动,莱布尼兹称之为活力。把牛顿由动量所度量的力也称为死力。 莱布尼兹的主张正好和1669年惠更斯关于碰撞问题研究的结论一致,该 结论说“两个物体相互碰撞时,它们的质量与速度平方乘积之和在碰撞 前后保持不变。” 从莱布尼兹挑起争论起,形成了以笛卡尔和莱布尼兹两大派的论争。 这场论战延续了近半个世纪,许多学者都参加了论战,并且各有实验佐 证。一直到1743年法国学者达朗贝尔(Jean le Rond d'Alembert,1717 -1783)在他的《论动力学》中说:“对于量度一个力来说,用它给予 一个受它作用而通过一定距离的物体的活力,或者用它给予受它作用一 定时间的物体的动量同样都是合理的。”在这里,达朗贝尔揭示了活力 是按作用距离力的量度,而动量是按作用时间力的量度。这场争论终于 尘埃落定了。活力才作为一个正式的力学名词为力学家们普遍接受。

自然界三大守恒定律

自然界三大守恒定律

自然界三大守恒定律自然界的三大守恒定律分别为质量守恒、能量守恒、电荷守恒定律。

拓展资料:质量守恒自然界的基本定律之一.在任何与周围隔绝的物质系统(孤立系统)中,不论发生何种变化或过程,其总质量保持不变.18世纪时法国化学家拉瓦锡从实验上推翻了燃素说之后,这一定律始得公认.20世纪初以来,发现高速运动物体的质量随其运动速度而变化,又发现实物和场可以互相转化,因而应按质能关系考虑场的质量.质量概念的发展使质量守恒原理也有了新的发展,质量守恒和能量守恒两条定律通过质能关系合并为一条守恒定律,即质量和能量守恒定律.质量守恒定律在19世纪末作了最后一次检验,那时候的精密测量技术已经高度发达.结果表明,在任何化学反应中质量都不会发生变化(哪怕是最微小的).例如,把糖溶解在水里,则溶液的质量将严格地等于糖的质量和水的质量之和.实验证明,物体的质量具有不变性.不论如何分割或溶解,质量始终不变.在任何化学反应中质量也保持不变.燃烧前炭的质量与燃烧时空气中消耗的氧的质量之和准确地等于燃烧后所生成物质的质量.能量守恒能量在量方面的变化,遵循自然界最普遍、最基本的规律,即能量守恒定律.能量守恒定律指出:“自然界的一切物质都具有能量,能量既不能创造也不能消灭,而只能从一种形式转换成另一种形式,从一个物体传递到另一个物体,在能量转换和传递过程中能量的总量恒定不变”.能源在一定条件下可以转换成人们所需要的各种形式的能量.例如,煤燃烧后放出热量,可以用来取暖;可以用来生产蒸汽,推动蒸汽机转换为机械能,推动汽轮发电机转变为电能.电能又可以通过电动机、电灯或其它用电器转换为机械能、光能或热能等.又如太阳能,可以通过聚热气加热水,也可以产生蒸汽用以发电;还可以通过太阳能电池直接将太阳能转换为电能.当然,这些转换都遵循能量守恒定律. 电荷守恒定律电荷的总量既不能创造,也不能消失,只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分.这就是电荷守恒定律,也就是说:在与外界没有电荷交换的一个系统内,总电荷量不变(电荷的代数和不变).电荷守恒定律是物理学的基本定律之一.这个定律是从大量实验概括得出的自然界的基本规律,对宏观现象、微观现象都适用,对所有惯性参考系都成立.在两个电中性的物体摩擦起电现象中,电子从一个物体转移到另一个物体.失去电子的物体带正电,获得电子的物体带负电.两个物体正负电荷数量相等.电荷代数和保持为零,如:硬橡胶棒与毛皮摩擦后,硬橡胶棒带的负电与毛皮带的正电数量相等.。

能量守恒定律

能量守恒定律

能量守恒定律能量守恒定律是物理学中的一个基本定律,它表明在一个封闭系统内,能量的总量是恒定的,不会凭空增加或减少。

这一原理被广泛应用于各个领域,包括力学、热力学、电磁学等。

能量的定义和形式在讨论能量守恒之前,我们首先需要了解能量的定义和不同形式。

在物理学中,能量被定义为物体或系统的能力来做功的量度。

它可以以不同的形式存在,包括机械能、热能、化学能、电能等。

1. 机械能机械能指的是物体的动能和势能之和。

动能是物体运动时所具有的能量,与物体的质量和速度有关。

势能则是物体由于位置而具有的能量,与物体的重力和位置有关。

当物体在过程中不受到摩擦力和空气阻力等因素的影响时,机械能守恒定律成立。

2. 热能热能是物体内部原子和分子的运动所具有的能量。

温度的高低反映了物体内部的热能状态,而热能的传递则通过热传导、热辐射和热对流等方式发生。

根据热力学第一定律,能量在系统中的改变等于对系统做功和热量传递之和。

3. 化学能化学能是物质在化学反应中能够释放或吸收的能量。

化学能通常以键能的形式存在于分子和离子之间,当发生化学反应时,原子之间的键能会发生变化。

例如,化学电池在反应过程中将化学能转化为电能。

4. 电能电能是由电荷的电位差所具有的能量。

当电荷在电场中移动时,会产生电流,而电能就是电流的能量形式。

电能在日常生活中被广泛使用,比如电力供应和电子设备。

能量守恒定律的表述现在我们进入能量守恒定律的核心内容。

能量守恒定律可以由以下表述方式进行描述:1.能量不能被创造或破坏:在一个封闭系统中,能量的总量始终保持不变。

尽管能量可以在不同的形式之间相互转化,但总能量的和保持不变。

2.能量守恒定律适用于孤立系统和封闭系统:能量守恒定律通常适用于孤立系统和封闭系统。

孤立系统是指与外部环境没有能量或物质交换的系统,而封闭系统则允许能量之间的交换,但不允许物质的进出。

3.能量转化的损失:实际情况下,能量转化的过程中会有一定的损失。

例如,机械能在摩擦作用下会转化为热能,电能在线路中会有一定的损耗。

新教材-人教版高中物理必修第三册-第12章-电能-能量守恒定律-知识点考点重点难点提炼汇总

新教材-人教版高中物理必修第三册-第12章-电能-能量守恒定律-知识点考点重点难点提炼汇总

第12章电能能量守恒定律1.电路中的能量转化 (1)2.闭合电路的欧姆定律 (5)3.实验:电池电动势和内阻的测量 (11)4.能源与可持续发展 (17)1.电路中的能量转化一、电功和电功率1.电流做功的实质:导体中的恒定电场对自由电荷的静电力做功。

2.电功(1)定义:电流在一段电路中所做的功,等于这段电路两端的电压、电路中的电流、通电时间三者的乘积。

(2)公式:W=UIt。

(3)单位:国际单位是焦耳,符号是J。

3.电功率(1)定义:电流在一段电路中所做的功与通电时间之比。

(2)公式:P=Wt=UI。

(3)单位:国际单位是瓦特,符号是W。

二、焦耳定律1.内容:电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻及通电时间成正比。

2.表达式:Q=I2Rt。

3.热功率三、电路中的能量转化1.电动机工作时的能量转化(1)能量关系:电动机从电源获得的能量一部分转化为机械能,还有一部分转化为内能。

(2)功率关系:电动机消耗的功率P电等于电动机的输出功率P机与电动机损失的功率P损之和,即:P电=P机+P损,P电=UI,P损=I2R。

2.电池充电时的能量转化电池从电源获得的能量一部分转化为化学能,还有一部分转化为内能。

考点1:串、并联电路中电功率的计算1.串联电路功率关系(1)各部分电路电流I相同,根据P=I2R,各电阻上的电功率与电阻成正比。

(2)总功率P总=UI=(U1+U2+…+U n)I=P1+P2+…+P n。

2.并联电路功率关系(1)各支路电压相同,根据P=U2R,各支路电阻上的电功率与电阻成反比。

(2)总功率P总=UI=U(I1+I2+…+I n)=P1+P2+…+P n。

3.结论无论是串联电路还是并联电路,电路消耗的总功率均等于各负载消耗的功率之和。

【例1】有额定电压都是110 V,额定功率P A=100 W,P B=40 W 的电灯两盏,若接在电压是220 V的电路上,两盏电灯均能正常发光,那么电路中消耗功率最小的电路是( )A B C D思路点拨:(1)电路的总功率等于各用电器消耗的功率之和。

高中化学三大守恒教学

高中化学三大守恒教学

高中化学三大守恒教学一、教学任务及对象1、教学任务本节课的教学任务是向高中学生讲授化学中的三大守恒原理,即物质守恒、电荷守恒和能量守恒。

通过系统讲解和实例分析,使学生深入理解这三大守恒在化学反应中的具体应用,并能运用这些原理解决实际问题。

教学内容涉及化学反应的基本概念、定律以及守恒原理的数学表达和实际操作。

2、教学对象教学对象为高中二年级学生,他们在前期学习中已经掌握了化学反应的基本知识,能够进行简单的化学反应方程式的书写和计算。

此外,学生对守恒概念有一定的了解,但可能对化学守恒原理的深入应用还不太熟练。

因此,本节课将针对学生的知识水平和学习需求,通过多种教学策略,帮助学生深化理解,提高应用能力。

二、教学目标1、知识与技能(1)理解并掌握化学三大守恒原理的基本概念,包括物质守恒、电荷守恒和能量守恒;(2)学会运用守恒原理分析化学反应中的物质变化、能量变化和电荷变化;(3)掌握化学方程式的书写方法,能正确书写涉及守恒原理的化学反应方程式;(4)培养运用守恒原理解决实际化学问题的能力,如计算反应物与生成物的物质量、能量变化等。

2、过程与方法(1)通过实例分析,引导学生发现守恒原理在化学反应中的应用,培养学生的问题发现和解决能力;(2)采用以退为进、以点带面的教学策略,帮助学生从具体实例中提炼出一般性规律,培养学生归纳总结的能力;(3)通过课堂讨论、小组合作等形式,促进学生交流与合作,培养学生团队协作能力;(4)利用实验、动画等教学资源,让学生直观感受化学反应过程,提高学生的实验观察和分析能力。

3、情感,态度与价值观(1)激发学生对化学学科的兴趣,培养他们探索科学奥秘的热情;(2)培养学生严谨求实的科学态度,使他们认识到化学研究对于解决实际问题的意义;(3)通过学习守恒原理,引导学生树立环保意识,认识到合理利用资源和保护环境的重要性;(4)培养学生勇于挑战困难、克服挫折的精神,使他们具备面对化学问题积极求解的信心。

五大守恒定律

五大守恒定律

五大守恒定律引言在自然界中存在着一系列的守恒定律,它们描述了能量、质量和动量在各种物理过程中的守恒规律。

这些守恒定律是物理学领域中的关键概念,无论是在研究基础物理学还是应用物理学中,都具有重要的作用。

本文将对五大守恒定律进行深入探讨,分别是能量守恒定律、质量守恒定律、动量守恒定律、角动量守恒定律和电荷守恒定律。

一、能量守恒定律能量守恒定律是自然界中最基本的定律之一,它描述了能量在物理系统中的转化和转移过程中总是保持不变。

根据能量守恒定律,一个系统的总能量在任何时刻都保持不变,只能从一种形式转化为另一种形式。

这意味着能量既不能被创造也不能被销毁,只能从一处转移到另一处。

1. 能量的形式能量可以存在于多种形式,主要包括: - 动能:物体由于运动而具有的能量。

- 势能:物体由于位置或状态而具有的能量。

- 热能:物体内部分子或原子的热运动所具有的能量。

- 光能:电磁波的能量形式。

- 电能:带电粒子相互作用所具有的能量。

2. 能量转化与转移能量的转化和转移是指能量从一种形式转化为另一种形式或在物体之间进行传递的过程。

在这个过程中,能量的总量保持不变。

例如,当一个物体从高处下落时,其势能逐渐转化为动能;在机械工作中,电能可以转化为机械能;光能可以被太阳能电池转化为电能等等。

3. 能量守恒定律的应用能量守恒定律在现实生活中有广泛的应用。

例如,工程领域的能源管理需要考虑能量的转化和利用效率;在交通运输中,通过改进动力系统以实现更高的能量利用效率来降低能源消耗;在环境保护中,能源的合理利用可以减少对环境的影响等等。

二、质量守恒定律质量守恒定律描述了在任何物理或化学过程中,一个封闭系统中的总质量保持不变。

这意味着在一个封闭系统中,质量既不能被创建也不能被销毁,只能在物质之间进行转移或转化。

1. 可逆反应与不可逆反应质量守恒定律适用于可逆反应和不可逆反应。

可逆反应指的是反应物转化为生成物的过程可以逆转,反应物和生成物之间可以达到平衡;而不可逆反应指的是反应物转化为生成物的过程不能逆转。

能量守恒定律知识点总结

能量守恒定律知识点总结

能量守恒定律知识点总结一、能量守恒定律的内容1. 定义- 在一个孤立系统中,能量不会凭空产生,也不会凭空消失,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。

2. 表达式- E_{初}=E_{末},即系统初始状态的总能量等于系统末状态的总能量。

- Δ E = 0,表示系统能量的变化量为零。

二、能量的形式及转化1. 能量的形式- 机械能- 包括动能(物体由于运动而具有的能量,E_{k}=(1)/(2)mv^2)和势能(重力势能E_{p}=mgh,弹性势能E_{p弹}=(1)/(2)kx^2)。

- 内能- 物体内部所有分子热运动的动能和分子势能的总和,与物体的温度、质量、状态等有关。

- 电能- 与电荷的移动和电场做功有关,例如电流通过用电器时电能转化为其他形式的能量。

- 化学能- 储存在物质内部化学键中的能量,如燃料燃烧时化学能转化为内能和光能等。

- 核能- 原子核发生变化(裂变或聚变)时释放出的巨大能量。

2. 能量转化的实例- 水电站里水轮机带动发电机发电,机械能转化为电能;电动机带动水泵抽水,电能转化为机械能。

- 燃料燃烧时,化学能转化为内能;植物进行光合作用时,光能转化为化学能。

三、能量守恒定律的实验探究1. 探究思路- 通过设计实验,观察不同形式能量之间的转化,测量转化前后能量的大小,验证能量总量是否保持不变。

2. 简单实验示例- 单摆实验- 实验器材:单摆(小球、细线)、刻度尺、秒表等。

- 实验原理:单摆在摆动过程中,重力势能和动能相互转化。

在忽略空气阻力的情况下,单摆的机械能守恒。

- 实验步骤:- 测量单摆的摆长l。

- 将单摆拉到一定高度h,此时小球具有重力势能E_{p}=mgh。

- 释放小球,用秒表记录单摆摆动的周期T,在不同位置测量小球的速度v (可通过v = ω r,ω=(2π)/(T),r = lsinθ近似计算,θ为摆角),从而得到动能E_{k}=(1)/(2)mv^2。

守恒法

守恒法

守恒法“守恒”就是利用化学反应前后某些量之间的等量关系,经过分析得出答案的一种方法。

守恒法是中学化学计算中的一种重要方法与技巧,也是高考试题中应用最多的方法之一,其特点就是抓住有关变化的始态与终态,忽略中间过程细节,利用其中某种不变量建立关系式,从而简化思路,快捷解题。

常见的守恒法有:质量守恒、电子守恒、电荷守恒、化合价守恒。

一、质量守恒由于化学反应前后原子的种类、数目、质量不变,所以化学反应中反应物的总质量等于生成物的总质量,即质量守恒定律。

又因为同种元素原子的物质的量在反应前后不变,因此质量守恒又演变出原子守恒等守恒。

1. 质量守恒在化学反应过程中找准反应前后的质量关系,利用不变量可快速求解。

常用于物质的组成成分判断等计算。

【例1】把a g铁铝合金粉末溶于足量的盐酸中,加入过量的NaOH溶液,过滤出沉淀,经洗涤、干燥、灼烧,得到红色粉末的质量仍为a g,则原合金中铁的质量分数为合金中铁的质量分数为( ) A. 70% B. 52.4% C. 47.6% D. 30%解析:把a g铁铝合金粉末溶于足量的盐酸中,生成Al3+和Fe2+,再加入过量NaOH溶液,Al3+转化为AlO2-,留在溶液中;Fe2+转化为Fe(OH)2沉淀,过滤出沉淀,经洗涤、干燥、灼烧,得到红色粉末为Fe2O3,铁在反应过程中是守恒的,Fe2O3中氧的质量等于合金中铝的质量,则w(Fe)=×100%=70%选A【练习】1.在臭氧发生器中装入100mlO2,经反应3O2=2O3,最后气体体积变为95ml(体积均为标准状况下的体积)求反应后混合气体的密度。

(1.5g/L)2.已知Q和R的摩尔质量之比为9:22,在反应X+2Y=2Q+R中,当1.6gX与Y完全反应后,生成4.4gR,则参与反应的Y和生成物Q的质量之比为()A.23:9 B.32:9 C.46:9 D.16:92.原子守恒抓住“初始反应物和最终生成物中某一原子(或原子团)个数不变”这一特征列出关系式,进而解答。

高中物理常用公式:能量守恒定律公式

高中物理常用公式:能量守恒定律公式

高中物理常用公式:能量守恒定律公式克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}注:布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;温度是分子平均动能的标志;分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU >0;吸收热量,Q>0物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;r0为分子处于平衡状态时,分子间的距离;其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

网友1能量守恒定律定律内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变。

(1)机械能守恒定律内容:在只有重力或系统内弹力做功的物体系统内,物体的动能Ek和势能Ep可以相互转化,但机械能保持不变。

公式:Ek1+Ep1=Ek2+Ep2适用条件:只有重力或系统内弹力做功(2)动量守恒定律内容:一个系统不受外力或所受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律。

公式:m1v1+m2v2+…=m1v1ˊ+m2v2ˊ+…,其中v1,v2…都是作用前同一时刻的瞬时速度,v1ˊ,v2ˊ都是作用后同一时刻的瞬时速度。

适用条件:一个系统不受外力或所受外力之和为零网友2动量守恒定律公式:一个系统不受外力或所受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律.?可表述为:m1v1+m2v2=m1v1′+m2v2′(等式两边均为矢量和);机械能守恒定律:在只有重力对物体做功的条件下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。

《电解质溶液中三大守恒》教案

《电解质溶液中三大守恒》教案

小 结 方 【变式训练 1】试写出 NaHSO3 溶液的电荷守恒式
法,变式
c(H+)+c(Na+)= c(HSO3-)+ 2c(SO32-) +c(OH-)
训练
【拓展思考 1】等浓度的 CH3COOH 和 CH3COONa 溶液等体积混
合后,电荷守恒该如何书写?
c(Na+)+c(H+)=c(CH3COO-)+c(OH-) 学生反馈完成情况,教师及时评价和点拨。
导学生从正负电荷个数相等推出正负电荷浓度分别相等。
学生小结书写电荷守恒的方法,并从实际书写过程中体会知
识储备环节的意义。
【方法小结】
三 、 小 组 1、把溶液中所有的阳离子和所有的阴离子分别写在等号两边, 合 作 , 解 用浓度表示其数量关系
决 问 题 , 2、把每种离子所带电荷数作为其系数乘在对应离子前面
1、能够认识溶液中的离子的存在状态,学生的微观想象的能力有所提高; 2、掌握混合溶液中的三大守恒式的书写。 二、过程与方法: 教学目标 1、通过观看微课,积极思考并理解混合溶的逻辑思维能力。 三、情感、态度和价值观:
通过本课的学习,学生在解决问题中体验到学习的快乐。 重点难点 电解质溶液中的三大守恒式的书写
五、结尾 授课完毕,谢谢观看!
教学过程
内容
时间
回顾化学反应质量守恒定律、能量守恒定律以及离子方程式
书写检查电荷守恒、原子守恒,引入电解质溶液中的三大守恒。
介绍电解质溶液中的三个守恒式(物料守恒、电荷守恒和质子守
恒) 一、导入
[投影]
1 分钟
1、物料守恒(原子守恒)
2、电荷守恒(阳离子的所带电荷总数=阴离子的所带电荷总数)

(nh4)2so4三大守恒方程式

(nh4)2so4三大守恒方程式

题目:(NH4)2SO4三大守恒方程式随着化学科学的不断发展,人们对化学反应的认识也日渐深入。

在化学反应中,许多物质的转化都是符合某些守恒定律的,其中包括能量守恒定律、质量守恒定律以及电荷守恒定律。

在这篇文章中,我们将会探讨铵硫酸((NH4)2SO4)化学反应中的三大守恒方程式。

一、能量守恒定律能量守恒定律是指在一个封闭系统内,能量不能被创造或者被销毁,只能够从一种形式转化为另一种形式。

在铵硫酸的化学反应中,也同样符合这一定律。

以铵硫酸分解反应为例:(NH4)2SO4 -> 2NH3 + SO3 + H2O 。

在这个反应过程中,化学键的形成和断裂导致了反应物原有的化学能被转化为产物的化学能,但总的化学能保持不变。

能量守恒定律在铵硫酸化学反应中得到了充分的体现。

二、质量守恒定律质量守恒定律是指在任何化学反应中,反应前后所涉及的物质的质量总和保持不变。

在铵硫酸的化学反应中,同样可以观察到这一定律的表现。

以铵硫酸溶液的蒸发结晶为例:(NH4)2SO4(aq) ->(NH4)2SO4(s) + H2O(g) 。

在这个反应过程中,虽然溶液中的水被蒸发,但是溶液中的铵硫酸的质量总和没有发生变化。

而在溶液结晶后,所得的固体产物与原溶液中的铵硫酸质量之和仍然保持不变。

质量守恒定律同样被铵硫酸化学反应所遵循。

三、电荷守恒定律电荷守恒定律是指在任何一个封闭系统内,总电荷的数量是不会发生改变的。

在铵硫酸化学反应中,同样可以发现电荷守恒定律的体现。

以铵硫酸的电解反应为例:(NH4)2SO4 -> 2NH4+ + SO4^2- 。

在这个反应中,虽然铵离子和硫酸根离子的数量发生了改变,但总电荷的数量保持不变。

也就是说,在反应前后,离子的总电荷量是相等的。

电荷守恒定律同样在铵硫酸化学反应中得到了充分的体现。

总结起来,铵硫酸((NH4)2SO4)化学反应中的能量守恒定律、质量守恒定律以及电荷守恒定律都得到了充分的体现。

五大守恒定律

五大守恒定律

五大守恒定律五大守恒定律是物理学中的基本定律,它们分别是能量守恒定律、动量守恒定律、角动量守恒定律、电荷守恒定律和质量守恒定律。

这些定律对于我们理解自然界中的各种现象和过程非常重要,下面将对每个定律进行详细的解释。

一、能量守恒定律能量守恒定律是指在一个封闭系统内,能量的总量始终保持不变。

换句话说,能量不能被创造或破坏,只能从一种形式转化为另一种形式。

例如,在机械系统中,机械能可以转化为热能;在化学反应中,化学能可以转化为热能或电能等。

这个定律具有广泛的适用性,在物理学、化学、生物学等领域都有重要应用。

例如,在工程设计中需要考虑系统的能源平衡,而在环境保护方面也需要考虑资源的合理利用。

二、动量守恒定律动量守恒定律是指在一个封闭系统内,所有物体的总动量始终保持不变。

动量是质量乘以速度,因此这个定律也可以理解为质量和速度的乘积的总和始终保持不变。

例如,在两个物体碰撞时,它们的动量之和在碰撞前后保持不变。

这个定律对于理解物体运动的基本规律非常重要。

例如,在航天工程中需要考虑火箭发射时的动量平衡,而在交通工程中需要考虑车辆碰撞时的动量守恒。

三、角动量守恒定律角动量守恒定律是指在一个封闭系统内,所有物体的总角动量始终保持不变。

角动量是质量、速度和距离的乘积,因此这个定律也可以理解为质量、速度和距离的乘积之和始终保持不变。

例如,在旋转物体上应用力矩时,系统的角动量会发生改变。

这个定律对于理解旋转运动的基本规律非常重要。

例如,在天文学中需要考虑行星、卫星等天体围绕中心天体旋转时的角动量守恒。

四、电荷守恒定律电荷守恒定律是指在一个封闭系统内,正电荷和负电荷的总量始终保持不变。

换句话说,电荷不能被创造或破坏,只能从一种物体转移到另一种物体。

例如,在电路中,正电荷和负电荷之间的流动可以产生电流。

这个定律对于理解电学现象非常重要。

例如,在电力系统中需要考虑电荷守恒定律来保证系统的稳定运行。

五、质量守恒定律质量守恒定律是指在一个封闭系统内,物体的总质量始终保持不变。

能量的转化与守恒

能量的转化与守恒

能量的转化与守恒能量是指物体或系统所具有的做功或产生热的能力。

根据物理学的基本原理,能量无法被创造或销毁,只能转化形式或从一个物体传递到另一个物体。

这就是能量的转化与守恒原理。

本文将探讨能量转化的各种形式以及能量守恒的重要性。

一、能量转化的形式1. 动能转化:动能是物体由于运动而具有的能量。

当物体在运动中时,它的动能会随着速度和质量的变化而改变。

例如,当一个汽车以较快的速度行驶时,它具有较大的动能,如此动能可以转化为其他形式的能量,比如刹车时摩擦力所产生的热能。

2. 电能转化:电能是由电荷携带的能量。

电能可以转化为其他形式的能量,比如光能、热能和声能。

例如,当我们使用电灯时,电能被转化为光能,照亮了周围的环境。

3. 热能转化:热能是物体内部粒子之间分子运动的能量。

当两个物体接触并具有不同的温度时,热能会从温度较高的物体转移给温度较低的物体,直到两者温度相等。

这个过程被称为热传导。

此外,热能也可以通过辐射和对流传输。

4. 化学能转化:化学能是由化学反应中产生的能量。

当化学反应进行时,原子之间的键被打破或形成,从而释放或吸收能量。

比如在燃烧过程中,化学能转化为热能和光能。

二、能量守恒的原理能量守恒原理是物理学中的基本法则之一,它表明在一个封闭系统中,能量的总量始终保持不变。

换句话说,能量不能从系统中消失,也不能从系统外部引入。

系统可以是一个闭合的物体,也可以是一个具有相互作用的多个物体的组合。

能量守恒原理可以通过以下公式表示:能量转化前的总能量 = 能量转化后的总能量这意味着能量在不同形式之间的转化是相互平衡的。

例如,当一个物体从一个高处下落时,它的势能会逐渐减小,而它的动能会逐渐增加。

虽然能量的形式发生了改变,但总能量保持不变。

能量守恒原理对于科学研究和工程应用都具有重要意义。

它使我们能够预测和理解物体和系统中能量的行为,以及如何有效地利用和转化能量。

三、能量转化与守恒的应用能量转化与守恒原理在各个领域都有广泛的应用。

高中物理电能能量守恒定律总结

高中物理电能能量守恒定律总结

高中物理电能与能量守恒定律深度解析在高中物理中,电能与能量守恒定律是两个核心概念,它们不仅相互关联,而且在实际问题中经常同时出现。

电能作为能量的一种形式,在电路中流动和转化,而能量守恒定律则确保在整个过程中能量的总量保持不变。

下面我们将详细探讨这两个概念,并通过具体的例题和解答来展示其应用方法和技巧。

一、电能的基本概念电能是指电荷在电场中移动时所做的功,通常用符号E 表示,单位是焦耳(J)。

在直流电路中,电能可以通过以下公式计算:E = UIt其中U是电压(伏特,V),I是电流(安培,A),t是时间(秒,s)。

这个公式告诉我们,电能在电路中的流动与电压、电流和时间三个因素密切相关。

二、能量守恒定律能量守恒定律是物理学中的一个基本定律,它表明在一个孤立的系统中,能量不能被创造或消失,只能从一种形式转化为另一种形式。

在电路中,电能可以转化为热能、光能、动能等其他形式的能量,但总能量始终保持不变。

三、方法和技巧理解电能与能量守恒的关系:在解决涉及电能和能量守恒的问题时,首先要明确电能是能量的一种形式,它在电路中流动和转化时遵循能量守恒定律。

应用公式进行计算:在解题过程中,要灵活运用电能和能量守恒的相关公式进行计算。

例如,在直流电路中,可以使用E = UIt公式来计算电能;在涉及能量转化的问题中,要注意不同形式能量之间的转换关系。

分析电路图:在解决电路问题时,要学会分析电路图,理解电路中各个元件的连接方式和作用,以便正确应用相关公式进行计算。

注意单位换算:在解题过程中,要注意不同物理量之间的单位换算,确保计算结果的准确性。

四、例题及解答例1:一个电阻为10欧姆的灯泡接在220伏特的电源上,通电5分钟,求灯泡消耗的电能。

解答:根据电能公式E = UIt,我们知道电压U=220V,电阻R=10Ω,因此电流I=U/R=220V/10Ω=22A。

时间t=5分钟=300秒。

将这些值代入公式,得到E = 220V ×22A ×300s = 1452000J。

九年级物理能量守恒知识点

九年级物理能量守恒知识点

九年级物理能量守恒知识点能量是物理学中的重要概念,我们生活中的许多现象都与能量有关。

能量守恒定律是能量守恒理论的基础,它在九年级物理学习中占据着重要地位。

本文将会详细介绍九年级物理学中关于能量守恒的知识点。

一、能量的定义和分类能量是物体或系统进行工作所具有的能力。

根据其性质和形式,能量主要分为机械能、热能、电能和化学能等几种。

1. 机械能:机械能是物体由于位置和运动所具有的能量。

它包括动能和势能两个部分。

动能是物体由于运动而具有的能量,可以用公式E = 1/2mv^2来计算,其中m为物体的质量,v为物体的速度。

势能是物体由于位置而具有的能量,它又可分为重力势能、弹性势能和化学势能等。

2. 热能:热能是物体内部微观粒子的热运动所具有的能量。

热能是一个物体温度高低的体现,热能的传递是通过热传导、热辐射和对流传递的。

热能的单位是焦耳(J)。

3. 电能:电能是电荷在电场中所具有的能量。

电能的动能体现在电荷的流动中,电能的势能体现在电荷的分布形式中。

电能的单位是焦耳(J)。

4. 化学能:化学能是化学反应所释放或吸收的能量。

在化学能转化过程中,化学键的形成和断裂导致了化学能的变化。

二、能量守恒定律能量守恒定律是物理学中的基本定律之一,它描述了一个系统内能量的转化和传递过程。

能量守恒定律可以表述为:一个系统中的能量总量在封闭过程中保持不变。

能量守恒定律可以分为机械能守恒定律和热能守恒定律。

1. 机械能守恒定律:在没有外力做功和无能量损失的情况下,一个封闭的力学系统中机械能守恒。

即动能和势能的总和保持不变。

在现实情况下,由于摩擦力和空气阻力等因素的存在,机械能并不能完全守恒。

2. 热能守恒定律:能量守恒定律在热力学中的具体表现,描述了热能在系统内的转化和传递过程。

热能守恒定律可以简化为系统所吸收的热量等于系统所做的功和热量的总和。

三、能量转化和能量传递根据能量守恒定律,能量可以在不同形式之间进行转化和传递。

1. 能量转化:能量在物体或系统中由一种形式转换为另一种形式的过程。

原子物理学中的守恒思想

原子物理学中的守恒思想

原子物理学中的“守恒”思想守恒定律是自然界中普遍存在的基本规律,它的本质是:物质在发生变化或物体间相互作用的过程中某些物理量的总量保持不变.应用守恒定律时,可以不考虑变化或相互作用过程的细节,给解题带来极大的方便.故在解决问题时,首先考虑应用守恒定律,是物理学中一种有效的思维方法.原子和原子核物理学是研究原子和原子核的内部结构和运动规律的科学,原子和原子核在发生变化或相互作用中存在许多守恒量.本文结合实例作分类阐述. 一、能级跃迁时的能量守恒根据玻尔理论的原子跃迁量子化假设:原子从一种定态跃迁到另一种定态时,辐射或吸收一定频率的光子,光子的能量等于这两定态的能量差,即hv =21E E -.题1(2000年春季高考题)根据玻尔理论,某原子的电子从能量为E 的轨道跃迁到能量为E '的轨道,辐射出波长为λ的光.用h 表示普朗克常量,c 表示真空中的光速,则E '等于( )A .c h E λ-B .ch E λ+ `C .λch E - D .λc h E +解析:根据原子跃迁时能量守恒E E hv '-=,又λcv =,所以E 'vc h E -=,故选C .题2(1995年全国高考题)如图1给出氢原子最低的四个能级,氢原子在这些能级之间跃迁所辐射的光子的频率最多有______种,其中最小的频率等于_______Hz .(保留两位有效数字)解析:氢原子最低的四个能级之间的辐射跃起迁,如图2分析有6种形式,则对应发射光子的能量有6种,对应的频率亦有6种.其中从n=4跃迁到n=3能级时原子辐射能量最小,对应发出的光频率也最小,根据跃迁时能量守恒,min hv =4E -3E ,则:hE E v 34min -=[]34191063.6106.1)51.1(85.0--⨯⨯⨯---=Hz14106.1⨯=Hz 二、核反应中的守恒 1、电荷数、质量数守恒电荷数和质量数守恒是原子核反应中的两个基本定律,也是解答这类题目的基本根据. 题3 (2001年全国高考题)在下列四个方程中,X 1 、X 2、X 3和X 4各代表某种粒子.①++→+Xe Sr n U 138549538102359231X②+H 212X n He 1032+→③+→Th U 23490238923X–3.4–13.6 1 2 3 4 –0.86 –1.51 –3.4 –13.6 0.86 1.51 n nE n (eV) E n (eV) 图 2图 1④+→+Al He Mg 27134224124X以下判断正确的是( )A .1X 是中子B .2X 是质子C .3X 是α粒子D .4X 是氘核解析:首先根据电荷数守恒算出X 1、X 2、X 3、X 4的核电荷数分别为0、1、2、1,从而确定粒子的名称分别为中子、氢、氦、氢,然后再根据质量数守恒确定X 1代表中子,X 2代表氘核,X 3代表α粒子,X 4代表质子,故A 、C 正确. 题4(1998年全国高考题)天然放射性元素23290Th(钍)经过一系列α衰变和β衰变之后,变成Pb 20682(铅),下列论断正确的是( )A . 铅核比钍核少8个质子B .铅核比钍核少24个质子C .衰变过程共有4次α衰变和8次β衰变D .衰变过程共有6次α衰变和4次β衰变解析:根据题意,钍核的电荷数是90,质量数是232,则其质子数为90、中子数为232―90=142;铅核的电荷数是82,质量数为208,则其质子数为82、中子数为208―82=126,所以选项A 对B 错.设经过了X 次α衰变和Y 次β衰变,则核衰变方程可写成:+→Pb Th 2088223292X +He 42Y e 01-根据质量数和电荷数守恒,可列方程: 238=208+4X 90=82+2X –Y 解得:X=6,Y=4说明共经过了6次α衰变和4次β衰变,选项C 错D 对. 2、 动量守恒动量守恒定律是自然界普遍适用的基本规律之一,大到天体,小到微观粒子,无论相互作用的是什么力,动量守恒定律都适用,因此,动量守恒定律也适用于原子或原子核间的相互作用. 题5、在垂直于纸面的匀强磁场中,有一原来静止的原子核,该核衰变后,放出的带电粒子和反冲核的运动分别如图3中a 、b 所示,若两圆半径之比是32:1,则: (1) 该核发生的是何种衰变?磁场的方向怎样? (2) 该核的原子序数是多少?解析:本题是1994年的高考题稍为改造过来的.核衰变放出的带电粒子和反冲核速度方向相反.若放出的是正粒子,根据左手定则,其在磁场中受洛伦兹力的方向与反冲核的相反,一起在磁场中做匀速圆周运动,两圆轨道应外切.故图中两圆内切表明粒子应带负电,即该核发生的是β衰变.匀强磁场的方向可能是向里,也可能向外,因为它对运动的轨迹没有影响.设这个原子核的原子序数为Z ,衰变后β粒子半径为r 1,质量为m 1,速度大小为v 1;产生新核的半径为r 2,质量为m 2,速度大小为v 2,根据动量守恒定律得:m 1v 1―m 2v 2=0 ∴m 1v 1=m 2v 2根据q v B=m rv 2得:qB mv r =∝q 1∴112121+==Z q q r r 代入数据,得Z=32题6(2003年全国高考题)如图4所示,K -介子衰变的方程为K -→π-+π0,其中K -介子和π-介子带负的基元电荷,π0介子不带电.一个K -介子沿垂直于磁场的方向射入匀强磁场中,其轨迹为圆弧AP ,衰变后产生π-介子的轨迹为圆弧PB .两轨迹在P 点相切,它们的半径-K R 与-πR 之比为 2:1.π0介子的轨迹没画出.由此可知π-的动量大小与π0的动量大小之比是( ) A.1:1 B.1:2 C.1:3 D.1:6解析:根据题意先分别求出带电粒子在磁场中作圆周运动中的轨道半径.设K -、π-、πo介子在磁场中运动时的动量大小分别是-k p 、-πp 、o p π ,由Rv m qvB 2=得:qBp qBv m R K K K K ----=⋅=qBp R --=ππ 又∵-K R :-πR =2:1最后根据衰变过程动量守恒,---=ππp p p o k 可得:--=πp p k∴-πp :o p π=1:3.正确选项为C .3、能量守恒能量守恒定律是人类长期总结得到的一条普遍适用的基本规律.重核裂变和轻核聚变是获取能量的两个重要途径,是能量转化和守恒的重要运用.题7(2002年广东高考题)如下一系列反应是在恒星内部发生的P + 126C → 137N137N → 136C + e ++ υP + 136C → 147NP + 147N → 158O图4 ABP158O → 157N + e + + υP + 157N → 126C + α其中P 为质子,α为α粒子,e +为正电子,υ为一种中微子,已知质子的质量为m P =1.672648⨯10-27kg ,α粒子的质量为m a=6.644929⨯10-27kg ,正电子质量为m e=9.11⨯10-31kg ,中微子的质量可忽略不计,真空中光速c=3.00⨯108m/s.试计算该系列核反应完成后释放的能量.解析:为求出系列反应后释放的能量,将题中所给的诸核反应方程左右两侧分别相加,消去两侧相同的项,系列反应最终等效为:4P → α + 2e ++ 2υ设反应后释放的能量为Q ,根据质能关系和能量守恒可得:22224c m c m c m e p ⋅+⋅=⋅α+Q代入数值可得:Q =3.95⨯10-12J题8(2000年全国高考题)裂变反应是目前核能利用中常用的反应,以原子核23592U为燃料的反应中,当23592U俘获一个慢中子后发生的裂变反应可以有多种方式,其中一种可表示为:23592U + 10n → 13954Xe + 9438Sr + 310n235.0439 1.0087 138.9178 93.9154反应方程下方的数字是中子及有关原子的静止质量(以原子质量单位u 为单位),已知1u 的质量对应的能量为9.3⨯102MeV ,此裂变反应释放出的能量是______MeV . 解析:裂变前后的质量亏损是:Δm =(235.0439+1.0087–138.9778–93.9154–3⨯1.0087)u =0.2033u 由质能方程和能量守恒,可得裂变过程释放出的能量:ΔE =Δm •c 2=0.2033×9.3×102MeV =1.89×102MeV 4、能量和动量守恒题9(2000年春季高考题)云室处在磁感应强度为B 的匀强磁场中,一静止的质量为M 的原子核在云室中发生一次α衰变,α粒子的质量为m ,电量为q ,其运动轨迹与在磁场垂直的平面内.现测得α粒子运动的轨道半径为R ,试求在衰变过程中的质量亏损.(注:涉及动量问题时,亏损的质量可忽略不计)解析:该衰变放出α粒子在匀强磁场中做匀速圆周运动,其轨道半径R 与运动速度v 的关系由洛伦兹力和牛顿第二定律可得:q v B=m v 2/R ①设衰变后剩余核的速度为v ′, 衰变过程中动量守恒,故有: 0=m v –(M –m )v ′ ②又衰变过程α粒子和剩余核的动能都来自于 亏损质量,即:22221)(21mv v m M c m +'-=⋅∆ ③联立①②③解得:Δm =22)(2)(cm M m qBR M ⋅- 题10、已知氘核的质量为2.0136u ,中子的质量为1.0087u ,32He 的质量为3.0150u .(1) 写出两个氘核聚变的核反应方程; (2) 计算上述反应中释放的核能;(3) 若两个氘核以相等的动能0.35MeV 做对心碰撞即可发生上述核反应,且释放的核能全部转化为机械能,则反应中生成的32He 核的动能为多大? 解析:(1)应用质量数守恒和电荷数守恒可写出核反应方程:21H + 21H → 32He + 10n(2)由题给条件可求出质量亏损为:Δm =2.0136⨯2–(3.0150+1.0087) =0.0035u∴释放的核能为:ΔE =Δc m ⋅2=931.5⨯0.0035MeV =3.26MeV(3)因核反应中释放的能量全部转化为机械能,即转化为32He 核和中子的动能.设32He和中子的质量分别为m 1、m 2,速度为v 1、v 2,则由动量守恒定律和能量守恒定律得:m 1v 1–m 2v 2 =0E E E E K K K ∆+=+0212联立以上两式解得:1K E =)2(410E E K ∆+ =)26.335.02(41+⨯⨯MeV=0.99MeV三、粒子碰撞中的守恒粒子间的相互碰撞属于弹性碰撞,故碰撞过程中动量守恒、动能也守恒.题11.已知碳核的质量是中子的12倍,假设中子与碳核发生弹性正碰,且碰撞前碳核是静止的,中子的动能是E 0,那么至少经过多少次碰撞,中子的动能才能小于10-6E 0?解析:设中子质量为m ,碳核质量为M ,碰撞前中子的速度为v 0,碰撞后中子的速度为v ,碳核的速度为V ,根据动量守恒和动能守恒,有:mv 0=MV mv +220212121MV mv mv += 222212121H H v m v m mv +'=222212121NN v m v m mv ''+''=NN v m v m mv ''+''=又m M 12=联立以上三式,可得:01311v v -=所以碰撞一次,中子的动能变为:02211131121E mv E ⎪⎭⎫ ⎝⎛==同理,第二次碰撞后中子的动能为:0212213141312E E E ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛= 所以碰撞n 次后中子的动能为:021311E E nn ⎪⎭⎫ ⎝⎛=则021311E n⎪⎭⎫ ⎝⎛<0610E -即n21311⎪⎭⎫ ⎝⎛<610- 取对数计算,有: 2n (lg11-lg13)<-6 解得:n > 41.4所以至少碰撞42次,中子的动能才能小于10-6E 0题12、1930年发现用钋放出的α射线轰击铍核Be 时产生一种射线,其贯穿能力极强,能穿透几厘米厚的铅板.当时著名物理学家居里夫人也不知道这是什么射线.1932年,英国青年物理学家查德威克用这种射线分别轰击氢原子和氮原子,结果打出一些氢核和氮核.若未知射线均和静止氢核、氮核发生正碰,测出被打出的氢核的最大速度为v H =3.5×107m/s,被打出的氮核的最大速度υN =4.7×106m/s.假定正碰时没有能量损失,试根据上述数据算出未知射线中的粒子的质量与质子质量之比.解析:设未知粒子的质量为m ,速度为υ,粒子和核碰撞时,动量、动能守恒,有:联立①②,解得: v m m mv HH +='2 联立③④,解得:v m m mv NN +=''2vm m m H142+=代入数值,得:H m m =可见未知粒子的质量非常接近于质子的质量. 从以上分析可看出,在各种核反应中都存在着一定的守恒量,因此在求解有关核反应问题时,先分析在反应过程中存在哪些守恒量,再选用相应的守恒定律就可快速求解,这是解决原子物理问题的主要依据和有效的思维方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能量守恒与能源
1、一个质量为m的物体以a=2g的加速度竖直向上运动,则在此物体上升h的过程中,物体的( )
A.重力势能减少了2mgh B.动能增加了2mgh
C.机械能保持不变 D.机械能增加了mgh
2、在光滑的水平面上,有一质量为M的长木块以一定初速度向右匀速运动,将质量为m的小铁块无初速度的轻放到木块右端,小铁块与木块间动摩擦因数为u,当小铁块在木块上相对木块滑动L时与木块保持相对静止,此时长木块对地位移为l,求:
(1)该过程中系统产生的热能?
(2)小铁块增加的动能?
(3) 木块减少的动能?
(4)系统机械能减少量?
电荷及守恒定律
1、关于摩擦起电和感应起电的实质,下列说法中正确的是()
A.摩擦起电说明电荷可以从一个物体转移到另一个物体
B.摩擦起电现象说明机械能可以转化为电能,也说明通过做功可以创造出电荷
C.感应起电说明不接触就能产生电荷
D.感应起电说明电荷可以从带电的物体转移到原来不带电的物体
2、目前普遍认为,质子和中子都是由被称为u夸克和d夸克的两类夸克组成.u夸克带电量为2e/3,d夸克带电量为-1e/3,e为基本电荷.下列论断可能正确的是( )
A.质子由1个u夸克和1个d夸克组成,中子由1个u夸克和2个d夸克组成
B.质子由2个u夸克和1个d夸克组成,中子由1个u夸克和2个d夸克组成
C.质子由1个u夸克和2个d夸克组成,中子由2个u夸克和1个d夸克组成
D.质子由2个u夸克和1个d夸克组成,中子由1个u夸克和1个d夸克组成
3、有两个完全相同的带电绝缘金属小球A、B,分别带有电量Q A= 6.4×10-9C,Q B=-3.2×10-9C,让两绝缘金属小球接触,在接触过程中,电子如何转移并转移了多少?
4、不带电的枕形导体的A、B两端各贴有一对金箔。

当枕形导体的
A端靠近一带电导体C时()
A.A端金箔张开,B端金箔闭合
B.用手触摸枕形导体后,A端金箔仍张开,B端金箔闭合
C.用手触摸枕形导体后,将手和C都移走,两对金箔均张开
D.选项A中两对金箔分别带异种电荷,选项C中两对金箔带同种电
荷。

相关文档
最新文档