融合Morlet小波与GA优化多模态核的轴承故障检测算法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
融合Morlet小波与GA优化多模态核的轴承故障检测算法杨琦
【期刊名称】《吉林大学学报(理学版)》
【年(卷),期】2018(056)001
【摘要】针对轴承故障检测算法特征分辨性较低、准确度较低等问题,提出一种融合Morlet小波和遗传算法优化的多模态核方法轴承故障检测算法.该算法首先针对原始轴承故障信号提取多个尺度和多个位移条件下的Morlet小波变换特征,然后设计一个多模态核方法,包含线性核函数与径向基(RBF)核函数,最后在支持向量机(SVM)训练过程中采用遗传算法(GA)优化多模态核的参数,使用最优化多模态核进行轴承故障检测.在UoCn的智能维护中心数据集上分别测试了滚珠故障、内圈裂纹故障和外圈裂纹故障的检测,并对单一核与多模态核间的错误率与效率进行对比.实验结果表明,改进算法能获得鲁棒的轴承故障检测特征,且多模态核在GA的优化下能快速收敛,获得最优化结果,通过牺牲少量的时间效率而极大提升了轴承故障检测准确率.%The author proposed a bearing fault detection algorithm based on Morlet wavelet and multi-mode kernel optimized by genetic algorithm .Firstly ,the algorithm extracted the characteristics of Morlet wavelet transform under conditions of multi-scale and multiple displacement for the fault signal of original bearing . Secondly , the author designed a multi-mode kernel method , including linear kernel and radical basis function (RBF) kernel .Finally ,the genetic algorithm (GA) was used to optimize parameters of multi-mode kernel in the support vector machine (SVM ) training process , and the optimizing multi-mode kernel for bearing
fault detection was carried out .The ball fault ,inner ring crack fault and outer ring crack fault were tested on the data set of UoCn intelligent maintenance center ,and the error rate and efficiency of single-mode kernel and multi-mode kernel were compared . The experimental results show that the improved algorithm can get the robust features for bearing fault detection ,and the multi-mode kernel can converge quickly and get optimal results under the optimization of GA ,the accuracy of bearing fault detection is greatly improved by sacrificing a small amount of time efficiency .
【总页数】8页(P101-108)
【作者】杨琦
【作者单位】安徽工业大学工程实践与创新教育中心 ,安徽马鞍山243002
【正文语种】中文
【中图分类】TP391
【相关文献】
1.基于优化组合核和 Morlet 小波核的 LSSVM脉动风速预测方法 [J], 迟恩楠;李春祥
2.应用自适应Morlet小波和NGA优化SVM的轴承故障诊断 [J], 蒋永华;阚君武;程光明;温建明;张忠华
3.基于自适应最优Morlet小波的滚动轴承故障诊断 [J], 祝小彦;王永杰;张钰淇;袁婧怡
4.基于Morlet小波变换和SVM的滚动轴承故障诊断 [J], 隋瑒;张红玲
5.BSS与Morlet小波变换在轴承声学故障诊断中的研究 [J], 李静娇;陈恩利;刘永强
因版权原因,仅展示原文概要,查看原文内容请购买。