分子生物学笔记

合集下载

分子生物学复习笔记

分子生物学复习笔记

七年制分子生物学2005.6 for Victor第一章绪论重点与难点:掌握医学分子生物学研究的主要内容及其在医学上的应用。

名词解释:分子生物学(molecular biology):是一门从分子水平研究生命现象、生命本质、生命活动及其规律的科学。

医学分子生物学(medical molecular biology):是分子生物学的一个重要分支,又是一门新兴的交叉学科。

它是从分子水平上研究人体在正常和疾病状态下的生命活动规律,从分子水平开展人类疾病的预防、诊断和治疗研究的一门科学。

问答题:1.分子生物学与生物化学有何联系和区别?(1)联系:“分子生物学”顾名思义,必须研究分子,是从分子水平上研究生物学,研究生命现象、生命活动及其规律。

但其研究的重点不是化学,而是生物学。

现代生物化学是从分子水平上研究生命现象,其研究重点是化学,而不是生物学。

因为分子生物学是从生物化学、生物物理、遗传学、微生物学等多门学科,经过相互杂交、相互渗透而产生出来的,所以:从学科范畴讲,分生包括了生化;从研究的基本内容讲,遗传信息流:DNA→mRNA→蛋白质的过程,其许多内容又属于生化的范畴。

因此,分生与生化这两门学科是“你中有我”“我中有你”,难以区分。

但是,生化不等于分生。

可从其研究方向和研究方法来区别。

(2)区别:①研究方向上:分生主要研究蛋白质、核酸和其他大分子的结构与功能以及他们之间的相互作用,着重解决细胞中遗传信息传递和代谢调节的问题。

生化主要研究大、小分子在生命活动的代谢过程,特别是参与糖酵解过程、脂肪氧化过程、三羧酸循环等代谢过程的大量的小分子的代谢转化更是生化的重要课题。

但是这些都不属于分生的研究范畴。

所以,两者在研究内容上有相同之处,但在研究方向上,分生的着重点是大分子的结构和功能,而生化则是分子的代谢转化。

②研究方法上:分生是以射线衍射等物理学方法研究大分子结构,采用生化与遗传学相结合的方法探索其功能,解决大分子结构与功能及其代谢调节的关系。

分子生物学笔记6655581238

分子生物学笔记6655581238

分子生物学知识点(修改)染色体与DNA▲基因:DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质最小的功能单位。

▲基因的分子生物学定义:产生一条多肽链或功能RNA所必需的全部核苷酸序列▲基因组:单倍体细胞中含有的整套染色体。

▲染色体:细胞在有丝分裂(或减数分裂)时遗传物质存在的特定形式,是间期细胞染色质结构紧密组装的结果。

▲染色体组成:DNA、组蛋白、非组蛋白、部分RNA▲染色体的特征:1、分子结构相对稳定2、能够自我复制,使亲子代之间保持连续性3、能够指导蛋白质的合成,掌握整个生命过程4、可以产生可遗传的变异▲组蛋白:与DNA结合但没有序列特异性的蛋白,是染色体的结构蛋白,与DNA共同组成真核生物染色质的基本结构单位核小体▲组蛋白的特性:1、进化上保守,不同生物组蛋白的氨基酸组成和相似2、无组织特异性3、肽链上氨基酸分布不对称4、组蛋白有修饰作用▲非组蛋白:与DNA结合但有序列特异性的蛋白▲非组蛋白的特性:1、具有多样性和异质性,不同组织细胞中其种类和数量都不相同2、具有识别、结合特异性,能够识别特异的DNA序列,在不同的基因组之间,这些非组识别的DNA序列在进化上是保守的3、具有功能的多样性,包括基因表达的调控和协助染色质高级结构的形成▲C值反常现象(C值谬误):C值和种系进化程度无关▲DNA到染色体的四级组装:DNA 核小体螺线管超螺线管染色单体 7*6*40*5▲DNA的结构:DNA的一级结构:4种核苷酸的链接及排列顺序,表示了DNA分子的化学构成。

DNA的二级结构:两条多核苷酸链反向平行盘绕所生成的双螺旋结构,二级结构和高级结构各种构型之间是存在一个动力学的平衡关系。

双螺旋结构的基本特点:1、DNA分子是由两条反向平行的脱氧核苷酸链盘绕构成的右手螺旋结构2、DNA分子中的脱氧核糖和磷酸交替连接在外侧,通过3’-5’磷酸二酯键连接,构成基本骨架,碱基在内侧,碱基平面与纵轴垂直,糖环平面与纵轴平行3、DNA分子两条链上的碱基通过氢键按碱基互补配对原则结合4、双螺旋的平均直径为2nm,一圈上升10个核苷酸,螺距为3.4nmDNA的高级结构:指DNA双螺旋进一步扭曲盘绕形成的特定空间结构,正负超螺旋在拓扑异构酶或溴乙啶的作用下可以相互转变。

分子生物学笔记

分子生物学笔记

1.原核DNA复制特点1)复制起始在拓扑异构酶I的作用下解开DNA负超螺旋后,与解链酶共同作用,在复制起点处解开双链,解链过程中SSB蛋白稳定被解开的单链保证局部不恢复回双链。

解链过程中需要ATP提供能量。

解链后,由引发酶直接在DNA前导链模板上合成引物;由蛋白n、n`、n``、DnaB、C、I共同组成引发体在后随链上合成引物RNA。

2)复制延伸延伸过程中,前导链连续延伸;后随链上,引发体延5`→3`方向前进并合成RNA引物,再由DNA聚合酶Ⅲ断断续续合成小的DNA片段。

小片段上RNA引物被RNase H降解,DNA片段被DNA聚合酶I连接成完整DNA链。

3)复制终止当复制叉遇到由22个碱基组成的Ter序列时,Ter-Tus复合物使DnaB停止DNA解链,阻挡复制叉前移。

在反方向复制叉到达后,停止复制,其间50-100bp 未被复制的片段由DNA修复机制补齐。

然后两条链分开,并在拓扑异构酶Ⅳ作用下使复制叉解体,释放子链。

2.原核RNA转录1)模板识别原核RNA聚合酶可直接与启动子区结合,完成转录起始2)转录起始RNA聚合酶先与启动子可逆结合,形成封闭复合物。

之后DNA双链构象发生变化,封闭复合物转为开放复合物,使RNA聚合酶结合的DNA序列中有一小段双链被解开。

解链后,开放复合物与最初两个NTP 结合形成磷酸二酯键并转变为RNA 聚合酶-DNA- 新生RNA 链三元复合物。

之后,转录起始后直到形成 9个核苷酸短链是通过启动子阶段,此时RNA聚合酶一直处于启动子区,新生的 RNA链与 DNA模板链的结合不够牢固,很容易从DNA链上掉下来并导致转录重新开始。

一旦RNA聚合酶成功地合成 9个以上核苷酸并离开启动子区,转录就进入正常的延伸阶段。

3)转录延伸当RNA聚合酶催化新生RNA链长度超过9-10个核苷酸时,σ因子脱离转录复合物,RNA聚合酶离开启动子,核心酶延模板移动使新生RNA链不断延伸。

4)转录终止RNA聚合酶碰到终止信号后,与模板脱离并释放新生RNA。

最新现代分子生物学-复习笔记

最新现代分子生物学-复习笔记

现代分子生物学复习提纲第一章绪论第一节分子生物学的基本含义及主要研究内容1 分子生物学Molecular Biology的基本含义⏹广义的分子生物学:以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,从分子水平阐明生命现象和生物学规律。

⏹狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控等过程,也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。

1.1 分子生物学的三大原则1) 构成生物大分子的单体是相同的2) 生物遗传信息表达的中心法则相同3) 生物大分子单体的排列(核苷酸、氨基酸)的不同1.3 分子生物学的研究内容●DNA重组技术(基因工程)●基因的表达调控●生物大分子的结构和功能研究(结构分子生物学)●基因组、功能基因组与生物信息学研究第二节分子生物学发展简史1 准备和酝酿阶段⏹时间:19世纪后期到20世纪50年代初。

确定了生物遗传的物质基础是DNA。

DNA是遗传物质的证明实验一:肺炎双球菌转化实验DNA是遗传物质的证明实验二:噬菌体感染大肠杆菌实验RNA也是重要的遗传物质-----烟草花叶病毒的感染和繁殖过程2 建立和发展阶段⏹1953年Watson和Crick的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑。

⏹主要进展包括:遗传信息传递中心法则的建立3 发展阶段⏹基因工程技术作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。

⏹第三节分子生物学与其他学科的关系思考⏹证明DNA是遗传物质的实验有哪些?⏹分子生物学的主要研究内容。

⏹列举5~10位获诺贝尔奖的科学家,简要说明其贡献。

第二章染色体与DNA第一节染色体1.作为遗传物质的染色体特征:⏹分子结构相对稳定⏹能够自我复制⏹能够指导蛋白质的合成,从而控制整个生命过程;⏹能够产生遗传的变异。

2 真核细胞染色体组成(1) DNA(2) 蛋白质(包括组蛋白和非组蛋白)(3) 少量的RNA组蛋白:呈碱性,结构稳定;与DNA结合形成、维持染色质结构,与DNA含量呈一定的比例非组蛋白:呈酸性,种类和含量不稳定;作用还不完全清楚3.染色质和核小体染色质是一种纤维状结构,由最基本的单位—核小体(nucleosome)成串排列而成的。

医学分子生物学-整理笔记

医学分子生物学-整理笔记

第2章基因、基因组和基因组学基因(gene):携带有遗传信息的DNA或RNA序列,也称为遗传因子。

基因是合成有功能的蛋白质或RNA所必需的全部DNA,包括编码蛋白质或RNA的核酸序列,也包括为保证转录所必需的调控序列。

基因的功能:传递遗传信息,控制个体性状表现。

结构基因(structural genes):可被转录形成mRNA,并转译成多肽链,构成各种结构蛋白质,催化各种生化反应的酶和激素等。

调节基因(regulatory genes) :某些可调节控制结构基因表达的基因。

其突变可影响一个或多个结构基因的功能,或导致一个或多个蛋白质(或酶)量的改变。

eg. miRNA, siRNA, piRNA核糖体RNA 基因(ribosomal RNA genes) 与转运RNA 基因(transfer RNA genes):只转录产生相应的RNA而不翻译成多肽链。

真核生物的RNA聚合酶( 3种):RNA 聚Array合酶I, II, III.开放阅读框架(open reading frame,ORF):在DNA链上,由蛋白质合成的起始密码开始,到终止密码为止的一个连续编码序列。

断裂基(split gene):真核生物结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质。

基因组(genome):一个细胞内的全部遗传信息,包括染色体基因组和染色体外基因组。

基因组中的DNA包括编码序列和非编码序列。

部分病毒基因组--RNA。

C值(C-value):一种生物体单倍体基因组DNA的总量,用以衡量基因组的大小。

通常,进化程度越高的生物其基因组越大,但从总体上说,生物基因组的大小同生物在进化上所处地位的高低无关。

存在C-value paradox (C值悖理)。

生物复杂性越高,其基因的密度越低。

病毒基因组的大小: 与细菌或真核细胞相比,病毒的基因组很小。

分子生物学考试整理笔记

分子生物学考试整理笔记

分⼦⽣物学考试整理笔记第⼀章1.请定义DNA重组技术和基因⼯程技术。

DNA重组技术:是将不同的DNA⽚段按照⼈们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表的,产⽣影响受体细胞的新的遗传性状。

基因⼯程技术:是将不同的DNA⽚段按照⼈们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表的,产⽣影响受体细胞的新的遗传性状。

还包括其他可能使⽣物细胞基因组结构得到改造的体系。

第⼆章2.什么是核⼩体?简述其形成过程。

由DNA和组蛋⽩组成的染⾊质纤维细丝是许多核⼩体连成的念珠状结构。

核⼩体是由H2A,H2B,H3,H4各两个分⼦⽣成的⼋聚体和由⼤约200bp的DNA组成的。

⼋聚体在中间,DNA分⼦盘绕在外,⽽H1则在核⼩体外⾯。

每个核⼩体只有⼀个H1。

所以,核⼩体中组蛋⽩和DNA的⽐例是每200bpDNA有H2A,H2B,H3,H4各两个,H1⼀个。

⽤核酸酶⽔解核⼩体后产⽣只含146bp核⼼颗粒,包括组蛋⽩⼋聚体及与其结合的146bpDNA,该序列绕在核⼼外⾯形成1.75圈,每圈约80bp。

由许多核⼩体构成了连续的染⾊质DNA细丝。

核⼩体的形成是染⾊体中DNA压缩的第⼀阶段。

在核⼩体中DNA盘绕组蛋⽩⼋聚体核⼼,从⽽使分⼦收缩⾄原尺⼨的1/7。

200bpDNA完全舒展时长约68nm,却被压缩在10nm的核⼩体中。

核⼩体只是DNA压缩的第⼀步。

核⼩体长链200bp→核酸酶初步处理→核⼩体单体200bp→核酸酶继续处理→核⼼颗粒146bp3. 简述DNA的⼀,⼆,三级结构的特征DNA⼀级结构:4种核苷酸的的连接及排列顺序,表⽰了该DNA分⼦的化学结构DNA⼆级结构:指两条多核苷酸链反向平⾏盘绕所⽣成的双螺旋结构DNA三级结构:指DNA双螺旋进⼀步扭曲盘绕所形成的特定空间结构4.原核⽣物DNA具有哪些不同于真核⽣物DNA的特征?(1)结构简练:原核DNA分⼦的绝⼤部分是⽤来编码蛋⽩质,只有⾮常⼩的⼀部分不转录,这与真核DNA的冗余现象不同。

分子生物学笔记

分子生物学笔记

分子生物学笔记中心法则(Central dogma)DNA的组成DNA的融解温度Tm,高GC含量使得DNA的Tm升高,以及GC的体积较小,使得测得密度较大DNA变性的条件:有机化合物,高pH,低盐浓度探针和DNA杂交基因组是一个生物体的所有遗传信息的集合。

染色体的组成:DNA、蛋白质、RNA组蛋白Histones:五种H1、H2A、H2B、H3、H4核小体核心由8个组蛋白组成H2A、H2B、H3、H4各两个(组蛋白八聚体)146bpDNA核小体核心+H1+linkerDNA组成了染色体组蛋白的修饰乙酰化:转录激活,结构变松散DNA复制半保留复制DNA聚合酶只能从5‘到3’合成DNA(前导链)2. 3‘到5’的DNA聚合酶移动是半不连续复制(后随链,也是从5’-3‘合成)冈崎片段(DNA+RNA引物),后随链绕DNA聚合酶一圈,使得两者的复制方向相同细菌的后随链片段约1000nt,真核细胞中约200nt3. 引物和模板依赖DNA聚合酶不能从头合成DNA,必须前面由10-12nt的RNA引物提供3’羟基引物酶在合成DNA前加上一小段RNA引物复制叉两条母链解开时形成复制叉(replication fork)拓扑异构酶(DNA旋转酶,gyrases):去除DNA的超螺旋结构DNA解旋酶(DNA helicase):DnaB作用以及DnaA、DnaC等其他蛋白质SSBP:单链结合蛋白,稳定解旋后的单链引物酶:合成RNA引物,需要引发体DNA聚合酶Ⅲ(原核):同时合成两条链,链伸长DNA聚合酶Ⅲ:从5‘-3’合成DNA片段,然后删去RNA引物(具有核酸外切酶5‘-3’活性),发生缺口平移(缺口出现在引物和冈崎片段之间)DNA连接酶:去除引物后,连接冈崎片段和之前合成的片段滑动夹:保持DNA聚合酶不从DNA上掉下来端粒酶(telomerase):DNA复制酶只能5‘-3’合成DNA片段,因此DNA两端5’的RNA引物去除后不能让DNA聚合酶Ⅲ生成替换RNA引物的DNA片段(末端隐缩)。

分子生物学课堂笔记

分子生物学课堂笔记

分子生物学真核生物的基因1.真核生物基因组的一般特点真核生物的基因组一般比较庞大,远大于原核生物的基因组。

真核生物的DNA与蛋白质结合形成染色体,储存于细胞核内。

真核基因组存在着许多重复序列,重复次数可达几百万以上。

绝大多数真核生物编码蛋白质的基因为断裂基因,即结构基因是不连续排列的,中间由插入序列隔开。

真核生物基因组中不编码的区域多于编码区域。

真核生物不仅含有核内染色体DNA,还有核外细胞器DNA、核外细胞器有线立体DNA和叶绿体DNA。

`2.断裂基因(不连续基因)interrupted or discontinuous genesSV40A蛋白基因含有一段346NT的间隔区。

每个活性珠蛋白基因含有两个间隔区。

卵清蛋白基因含有7个插入序列被分成八段。

`3.基因家族与基因簇gene family & gene cluster定义:真核生物基因组中许多来源相同,结构相似,功能相关的基因在染色体上成串存在,这样的一组基因称为基因家族。

多基因家族是真核生物基因组织的一个重要特征。

多基因家族在基因组中的分布情况不同,有些基因成串排列集中在一条染色体上,集中成簇的一组基因形成基因簇。

也称串联重复基因(见后)。

如组蛋白基因, rRNA基因, tRNA基因等。

而有些基因家族成员不集中排列,而是分散在基因组的不同部位。

如干扰素,珠蛋白,生长激素,SOX 基因家族。

在多基因家族中,有些成员不具有任何功能,这类基因叫假基因(pseudogene)。

4.串联重复基因`特征:A. 各成员间有高度的序列一致性或完全相同。

B. 拷贝数高,几十个至几百个。

因其在细胞中的需要量很大。

C. 非转录的间隔区短而一致。

`组蛋白基因五种组蛋白基因彼此靠近构成一个重复单位。

许多这样的重复单位串联在一起,构成组蛋白基因簇。

`rRNA基因原核生物有三种rRNA:5S,16S,23S真核生物有四种rRNA:5.8S,18S,28S, 5S主体rRNA:三种主体rRNA基因组成重复单位,转录出一个45SrRNA,经转录后处理切除间隔区成为18S,5.8S,28S 三种rRNA。

分子生物学笔记

分子生物学笔记

1、分子生物学(狭义):即在核酸与蛋白质水平上研究基因的复制,基因的表达(包括RNA转录、蛋白质翻译),基因表达的调控以及基因的突变与交换的分子机制。

2、分子生物学(广义):即在分子水平上研究生命现象,或用分子的术语描述生物现象的学科。

3、克里克认为分子生物学基于两个基本原理:①序列假说:是指核酸片段的特异性完全由其碱基序列决定,而且这种序列是某一蛋白质氨基酸的密码。

②中心法则:是指DNA的遗传信息经RNA一旦进入蛋白质,也就不可能再行输出。

4、分子生物学作为所有生命物质的共性学科所遵循的三大原则:①构成生物大分子的单体是相同的。

共同的核酸语言,即构成核酸大分子的单体均是A、T(U)、C、G;共同的蛋白质语言,构成蛋白质大分子的单体均是20种基本氨基酸。

②生物大分子单体的排列(核苷酸,氨基酸)决定了生物性状的差异和个性特征。

③生物遗传信息的表达的中心法则相同。

5、生物学的三大发现:DNA 双螺旋结构的揭示、遗传密码子的破译、信使RNA的发现。

奠定了DNA-RNA-蛋白质三者之间关系的基础。

第二章:基因概念的演变与发展1、遗传学家摩尔根根据对果蝇的遗传试验提出了基因是:基因像念珠(bead)一样孤立地呈线状一样排列在染色体上,是具有特定功能、能独立发生突变和遗传交换的、“三位一体”的、最小的遗传单位。

2、等位基因:是指野生型基因(A)发生突变后形成的突变基因(a),它与野生型基因位于相同染色体的同一基因座位上。

当野生型基因(A)向不同方向发生突变形成不同状态的等位基因,又总称为复等位基因。

3、拟等位基因:将紧密连锁、控制同一性状的非等位基因定义为拟等位基因。

4、科学家们通过对噬菌体突变体与表型之间的关系的研究,提出了顺反子理论:顺反子是基因的同义词,认为基因是一个具有特定功能的、完整的、不可分割的最小遗传单位。

在一个基因内可以发生突变、重组(交换)。

该理论认为:基因(即顺反子)是染色体上的一个区段,在一个顺反子内有若干个交换单位,最小的交换单位称为交换子;在一个顺反子中有若干个突变单位,最小的突变单位被称为突变子。

《分子生物学导论》笔记_学习笔记

《分子生物学导论》笔记_学习笔记

《分子生物学导论》笔记第一章:分子生物学概述1.1分子生物学的定义与发展1.2分子生物学的研究对象1.3分子生物学与其他学科的关系1.4分子生物学的重要性第二章:DNA的结构与功能2.1DNA的双螺旋结构2.2DNA的复制机制2.3DNA的修复与重组2.4DNA的功能与基因表达第三章:RNA的类型与作用3.1信使RNA(mRNA)3.2转运RNA(tRNA)3.3核糖体RNA(rRNA)3.4小RNA及其功能第四章:蛋白质的合成与功能4.1转录与翻译过程4.2蛋白质的结构层次4.3蛋白质的折叠与修饰4.4蛋白质的功能与作用机制第五章:基因调控机制5.1基因表达调控的基本概念5.2转录因子与增强子5.3表观遗传学与基因表达5.4RNA干扰与基因沉默第六章:分子生物学的应用6.1分子生物学在医学中的应用6.2分子生物学在农业中的应用6.3分子生物学在生物技术中的应用6.4未来发展与挑战第1章:分子生物学概述分子生物学的定义与发展分子生物学是研究生命现象的分子基础的科学,主要关注生物大分子的结构、功能及其相互作用。

其核心内容包括DNA、RNA和蛋白质的相互关系。

分子生物学的起源可以追溯到20世纪初,随着显微镜技术的发展,科学家们对细胞组成的认识逐渐深入。

1940年代,随着DNA的双螺旋结构被发现,分子生物学开始正式形成。

关键概念包括:DNA(脱氧核糖核酸):遗传信息的载体,结构为双螺旋。

RNA(核糖核酸):在基因表达中起到中介作用,主要类型有信使RNA(mRNA)、转运RNA(tRNA)和核糖体RNA(rRNA)。

蛋白质:由氨基酸构成,承担细胞内外的多种功能。

重要发展里程碑:1953年,沃森和克里克提出DNA双螺旋结构。

1961年,霍普金斯等人发现RNA的转译机制。

1970年代,基因工程技术的引入,推动了分子生物学的应用。

考点:分子生物学定义的准确描述DNA、RNA和蛋白质的基本功能和相互关系重要历史事件及其影响分子生物学的研究对象分子生物学的研究对象主要包括核酸(DNA和RNA)、蛋白质、酶及其相互作用。

分子生物学笔记

分子生物学笔记

1、Allele(等位基因):是指位于染色体的相同位置上控制着同一个性状的基因。

2、Cistron(顺反子):是基因的同义词,是染色体上的一个区段,在一个顺反子内有若干个交换单位,即交换子(recon);在一个顺反子中有若干个突变单位,即突变子(muton),它的提出是对“基因概念”的一种修正。

3、Operon(操纵子):为了使基因表达调控更有效,生物体往往将功能相关的一组基因连续排列,协调控制它们的表达,组成一组连续排列,协调表达的基因组,即操纵子。

(必考)4、Gene(基因):是指可遗传的,可自我复制,可表达功能,可以突变的,最小的功能单位。

5、RNA与DNA在结构上的差别:RNA中的核糖的2'位含有OH基,DNA中没有;RNA碱基中没有胸腺嘧啶T,只有尿嘧啶U;RNA分子多为单链分子,DNA分子为双琏分子;RNA分子的化学稳定性差,易发生降解;RNA与DNA在功能上的差别:DNA作为主要遗传物质,控制着生物的代谢和遗传;RNA在细胞中mRNA、tRNA和rRNA,其中mRNA,作为DNA转录的产物,直接翻译蛋白质,是DNA和蛋白质之间的信使,起到遗传信息的传递作用,tRNA在翻译中将携带氨基酸与核糖体结合,起到运输氨基酸的载体作用,rRNA又叫核糖体RNA,与核糖体的合成有关,是核糖体的成分之一,也与蛋白质的合成有关。

6、双螺旋(double helix)的结构特点:每一单链具有5'→ 3'极性;两条单链间以碱基间的氢键连接;两条单链,极性相反,反向平行;以中心为轴,向右盘旋(B-form);双螺旋中存在大沟(2. 2nm)和小沟(1. 2nm)7、维持双螺旋结构的作用力:(注意一下影响双螺旋结构稳定性的因素)横向作用力——氢键和碱基堆积力(非特异性结合力,同一条核苷酸链中,相邻碱基的疏水作用力和范德华力)→弱键,可加热解链纵向作用力——磷酸酯键→强键,需酶促解链8、Tm值(变性/熔解/退火温度):DNA的双螺旋结构降解一半时的温度或OD增加值的中点温度(一般为85-95℃)影响Tm值的因素:☆在A, T, C, G 随机分布的情况下,GC%愈高,Tm值愈大,GC%愈低,Tm值愈小☆GC%含量相同的情况下,AT形成变性核心,变性加快,Tm值小,碱基排列对Tm 值具有明显影响(除变性核心外)相同的碱基组成,不同的排列,碱基堆积力不同☆对于大片段D.S. DNA分子,片段长短对Tm值的影响较小, 与组成和排列相关,而对于小于100bp 的D.S DNA分子,片段愈短,变性愈快,Tm值愈小☆变性液中含有尿素,酰胺等有机试剂,可与碱基间形成氢键,从而改变碱基对间的氢键,一般Tm值可降至40℃左右☆盐浓度的影响,由于单链DNA主链的磷酸基团,而使DNA存在负电荷的静电斥力,会导致两条单链DNA的分离,而Na盐的浓度可以消除DNA单链上磷酸基团间的静电斥力,使DNA趋于稳定☆极端pH条件的影响,改变氢键的形成与结合力总之,一切减弱氢键,减弱碱基堆积力的因素均将使Tm值降低9、变性与复性变性:D.S. DNA经加温,极端pH,尿素,酰胺变为S.S. DNA的过程复性:变性条件解除后S.S. DNA重新变为D.S. DNA复性过程依赖于单链分子间的随机碰撞10、超螺旋结构的形成规律:L=T+W (L:双链DNA的交叉数,T:双链DNA的缠绕数,W:超螺旋的数目)W=负值(negative superhelix)W =正值( positive superhelix)11、生物体内主要是以右旋B—DNA为主,且生物体内DNA多数以负超螺旋(松弛态)存在(见书47)12、目前,仅在生活在极端高温环境下(如温泉)中的嗜热微生物体内发现了正超螺旋(紧缩态)DNA,是由于高温容易使DNA变性,双链解开。

《分子生物学》笔记整理

《分子生物学》笔记整理

分生资料王之龙第三章核酸的结构与功能一、核酸的化学组成:1.含氮碱:参与核酸和核苷酸构成的含氮碱主要分为嘌呤碱和嘧啶碱两大类。

组成核苷酸的嘧啶碱主要有三种--尿嘧啶(U)、胞嘧啶(C)和胸腺嘧啶(T),它们都是嘧啶的衍生物。

组成核苷酸的嘌呤碱主要有两种--腺嘌呤(A)和鸟嘌呤(G),它们都是嘌呤的衍生物。

2.戊糖:核苷酸中的戊糖主要有两种,即β-D-核糖与β-D-2-脱氧核糖,由此构成的核苷酸也分为核糖核苷酸与脱氧核糖核酸两大类。

3.核苷:核苷是由戊糖与含氮碱基经脱水缩合而生成的化合物。

通常是由核糖或脱氧核糖的C1' β-羟基与嘧啶碱N1或嘌呤碱N9进行缩合,故生成的化学键称为β,N糖苷键。

其中由D-核糖生成者称为核糖核苷,而由脱氧核糖生成者则称为脱氧核糖核苷。

由"稀有碱基"所生成的核苷称为"稀有核苷"。

假尿苷(ψ)就是由D-核糖的C1' 与尿嘧啶的C5相连而生成的核苷。

二、核苷酸的结构与命名:核苷酸是由核苷与磷酸经脱水缩合后生成的磷酸酯类化合物,包括核糖核苷酸和脱氧核糖核酸两大类。

最常见的核苷酸为5'-核苷酸(5' 常被省略)。

5'-核苷酸又可按其在5'位缩合的磷酸基的多少,分为一磷酸核苷(核苷酸)、二磷酸核苷和三磷酸核苷。

此外,生物体内还存在一些特殊的环核苷酸,常见的为环一磷酸腺苷(cAMP)和环一磷酸鸟苷(cGMP),它们通常是作为激素作用的第二信使。

核苷酸通常使用缩写符号进行命名。

第一位符号用小写字母d代表脱氧,第二位用大写字母代表碱基,第三位用大写字母代表磷酸基的数目,第四位用大写字母P代表磷酸。

三、核酸的一级结构:核苷酸通过3',5'-磷酸二酯键连接起来形成的不含侧链的多核苷酸长链化合物就称为核酸。

核酸具有方向性,5'-位上具有自由磷酸基的末端称为5'-端,3'-位上具有自由羟基的末端称为3'-端。

(完整版)分子生物学笔记完全版

(完整版)分子生物学笔记完全版

(完整版)分子生物学笔记完全版分子生物学笔记第一章基因的结构第一节基因和基因组一、基因(gene) 是合成一种功能蛋白或RNA分子所必须的全部DNA序列.一个典型的真核基因包括①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5'-端和3'-端非翻译区(UTR) ④调控序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene),外显子不连续。

二、基因组(genome) 一特定生物体的整套(单倍体)遗传物质的总和,基因组的大小用全部DNA的碱基对总数表示。

人基因组3X1 09(30亿bp),共编码约10万个基因。

每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。

人类基因组计划(human genome project, HGP)基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。

蛋白质组(proteome)和蛋白质组学(proteomics)第二节真核生物基因组一、真核生物基因组的特点:,①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中.②真核基因组中,编码序列只占整个基因组的很小部分(2—3%),三、基因家族(gene family) 一组功能相似且核苷酸序列具有同源性的基因.可能由某一共同祖先基因(ancestral gene)经重复(duplication)和突变产生。

基因家族的特点:①基因家族的成员可以串联排列在一起,形成基因簇(genecluster)或串联重复基因(tandemly repeated genes),如rRNA、tRNA和组蛋白的基因;②有些基因家族的成员也可位于不同的染色体上,如珠蛋白基因;③有些成员不产生有功能的基因产物,这种基因称为假基因(Pseudogene).Ψa1表示与a1相似的假基因.四、超基因家族(Supergene family ,Superfamily) 由基因家族和单基因组成的大基因家族,结构上有程度不等的同源性,但功能不同.第四节细菌和病毒基因组一、细菌基因组的特点。

分子生物学辅导笔记

分子生物学辅导笔记

(前4章注意概念就行了,重点是转座子,RNA编辑)Chapter1真核生物基因组结构与功能的特点本章应掌握的基本概念细胞核基因组的大小;C值矛盾;重复序列;基因家族;真核基因的断裂结构基因家族(gene family) 指核苷酸序列或编码产物的结构具有一定程度同源性的一组基因。

假基因(pseudogene) 在多基因家族中有的成员并不能表达出有功能的产物。

1、核酸序列相同:即为多拷贝基因如rRNA基因家族,tRNA基因家族,组蛋白基因家族。

2、核酸序列高度同源:如人类生长激素基因家族包括三种激素的基因,人生长激素、人胎盘促乳素和催乳素,它们之间高度同源。

3、编码产物有同源功能:基因序列的相似性可能较低,但基因编码的产物具有高度保守的功能区。

如src癌基因家族4、编码产物具有小段保守基序:有些基因家族中各成员的DNA序列可能不明显相关,而所编码的产物却有共同的功能特征,存在小段保守的氨基酸基序。

基因超家族(gene superfamily) 指一组由多基因家族及单基因组成的更大的基因家族,它们的结构有不同的同源性,但功能并不一定相同。

如免疫球蛋白基因超家族。

真核基因的断裂结构断裂基因(split gene) 基因与基因间的非编码序列为间隔DNA( spacer DNA).内含子(intron)无编码意义的DNA片段外显子(extron)具有编码意义的DNA片段Chapter2 叶绿体基因组本章应掌握的基本概念叶绿体DNA的信息含量;叶绿体基因组的结构;叶绿体基因的组成;(记忆每个大标题,了解就可以了)叶绿体基因的一些结构特征。

★p33. RNA编辑Chapter3线粒体基因组本章应掌握的基本概念.线粒体基因组的大小;.线粒体基因组的组织结构;.线粒体基因组的组成;.线粒体基因的一些特征;.★p44. RNA编辑;(注意概念,分类,★意义).遗传信息在基因组之间的流动。

(适当关注)Chapter4可移位遗传因子.本章应掌握的基本概念.可移位因子的类型;.转座子;.LTR逆转录转座子;.无LTR逆转录转座子;转位因子(transposable element) 可移动的基因成分,指能在一个DNA分子内部或两个DNA分子之间移动的片段。

现代分子生物学_复习笔记

现代分子生物学_复习笔记

现代分子生物学复习提纲第一章绪论第一节分子生物学的基本含义及主要研究内容1 分子生物学Molecular Biology的基本含义⏹广义的分子生物学:以核酸与蛋白质等生物大分子的结构及其在遗传信息与细胞信息传递中的作用为研究对象,从分子水平阐明生命现象与生物学规律。

⏹狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达与调控等过程,也涉及与这些过程相关的蛋白质与酶的结构与功能的研究。

1、1 分子生物学的三大原则1) 构成生物大分子的单体就是相同的2) 生物遗传信息表达的中心法则相同3) 生物大分子单体的排列(核苷酸、氨基酸)的不同1、3 分子生物学的研究内容●DNA重组技术(基因工程)●基因的表达调控●生物大分子的结构与功能研究(结构分子生物学)●基因组、功能基因组与生物信息学研究第二节分子生物学发展简史1 准备与酝酿阶段⏹时间:19世纪后期到20世纪50年代初。

➢确定了生物遗传的物质基础就是DNA。

DNA就是遗传物质的证明实验一:肺炎双球菌转化实验DNA就是遗传物质的证明实验二:噬菌体感染大肠杆菌实验RNA也就是重要的遗传物质-----烟草花叶病毒的感染与繁殖过程2 建立与发展阶段⏹1953年Watson与Crick的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑。

⏹主要进展包括:❖遗传信息传递中心法则的建立3 发展阶段⏹基因工程技术作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。

⏹第三节分子生物学与其她学科的关系思考⏹证明DNA就是遗传物质的实验有哪些?⏹分子生物学的主要研究内容。

⏹列举5~10位获诺贝尔奖的科学家,简要说明其贡献。

第二章染色体与DNA第一节染色体1、作为遗传物质的染色体特征:⏹分子结构相对稳定⏹能够自我复制⏹能够指导蛋白质的合成,从而控制整个生命过程;⏹能够产生遗传的变异。

2 真核细胞染色体组成(1) DNA(2) 蛋白质(包括组蛋白与非组蛋白)(3) 少量的RNA组蛋白:呈碱性,结构稳定;与DNA结合形成、维持染色质结构,与DNA含量呈一定的比例非组蛋白:呈酸性,种类与含量不稳定;作用还不完全清楚3、染色质与核小体染色质就是一种纤维状结构,由最基本的单位—核小体(nucleosome)成串排列而成的。

医学分子生物学笔记

医学分子生物学笔记

医学分子生物学(medical molecular biology ):医学分子生物学主要从分子水平研究人体在正常和疾病状态下的生命活动及其规律的一门学科;主要研究人体生物大分子的结构、功能、相互作用及其同疾病发生、发展的关系。

第一章基因(gene)的概念及其发展1、基因的物质载体是染色体2、基因的生化作用本质是控制酶的合成3、DNA是主要的遗传物质4、基因的概念:基因(gene)是核酸分子中储存遗传信息的遗传单位,是指储存有功能的蛋白质多肽链或RNA序列信息及表达这些信息所必需的全部核苷酸序列.第二节基因的结构1、原核生物:类核2、真核生物:染色质,基本结构单位——核小体第三节基因的功能1、功能:①利用四种碱基(A、T、G 、C)不同排列负荷遗传信息;②通过复制将遗传信息传递给子代细胞;③作为基因表达模板2、结构基因:⑴概念:结构基因(structural gene)是指能够编码特定RNA分子或蛋白质分子的遗传单位。

含有编码序列和非编码序列(与转录后加工、修饰及翻译过程相关)⑵特点:①原核生物结构基因编码序列连续②真核生物结构基因编码序列是不连续的,称为断裂基因(split gene)。

通常需要进行转录后剪接加工③病毒结构基因编码序列取决于侵袭的宿主⑶外显子(exon)和内含子(intron):能够在成熟RNA分子中保留的序列称为外显子(exon),而不能在成熟RNA分子中保留的序列称为内含子(intron)⑷内含子数目=外显子-1(组蛋白编码基因无内含子)3、调控序列:⑴概念:与结构基因转录表达调控相关的非编码序列称为调控序列(regulating sequence),或调控基因(regulating gene)⑵原核生物:①启动子(promoter):指位于结构基因上游,并与RNA聚合酶识别、结合和启动转录有关的一段特殊DNA序列(启动子序列不出现于RNA产物中)。

转录起始识别部位+核心启动子(核心启动子=Pribnow 盒+转录起始部位)②终止子(terminater ):指位于结构基因下游的一段富含GC的具有回文特征的特殊DNA序列,该序列转录生成的RNA能够形成特殊的发卡结构并导致RNA聚合酶从DNA模板上脱离,促使转录过程终止。

现代分子生物学 复习笔记

现代分子生物学 复习笔记

现代分子生物学复习提纲第一章绪论第一节分子生物学的基本含义及主要研究内容1分子生物学Molecular Biology的基本含义广义的分子生物学:以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,从分子水平阐明生命现象和生物学规律。

狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控等过程,也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。

1.1分子生物学的三大原则1)构成生物大分子的单体是相同的2)生物遗传信息表达的中心法则相同3)生物大分子单体的排列(核苷酸、氨基酸)的不同1.3分子生物学的研究内容• DNA重组技术(基因工程)•基因的表达调控•生物大分子的结构和功能研究(结构分子生物学)•基因组、功能基因组与生物信息学研究第二节分子生物学发展简史1准备和酝酿阶段时间:19世纪后期到20世纪50年代初。

确定了生物遗传的物质基础是DNA。

DNA是遗传物质的证明实验一:肺炎双球菌转化实验DNA是遗传物质的证明实验二:噬菌体感染大肠杆菌实验RNA也是重要的遗传物质-----烟草花叶病毒的感染和繁殖过程2建立和发展阶段1953年Watson和Crick的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑。

主要进展包括:遗传信息传递中心法则的建立3发展阶段基因工程技术作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始第三节分子生物学与其他学科的关系思考证明DNA是遗传物质的实验有哪些?分子生物学的主要研究内容。

列举5〜10位获诺贝尔奖的科学家,简要说明其贡献。

第二章染色体与DNA第一节染色体1. 作为遗传物质的染色体特征 :分子结构相对稳定 能够自我复制能够指导蛋白质的合成,从而控制整个生命过程 ;能够产生遗传的变异。

2真核细胞染色体组成(1) DNA(2) 蛋白质(包括组蛋白和非组蛋白)(3)少量的RNA组蛋白:呈碱性,结构稳定;与 DNA 结合形成、维持染色质结构,与 DNA 含量呈一定的比例非组蛋白:呈酸性,种类和含量不稳定;作用还不完全清楚 3. 染色质和核小体染色质是一种纤维状结构,由最基本的单位 一核小体(nucleosome)成串排列而成的。

医学分子生物学核心笔记

医学分子生物学核心笔记

第一章~第八章基因genes:基因是负责编码RNA或一条多肽链DNA片段,包括编码序列、编码序列外的侧翼序列及插入序列。

是决定遗传性状的功能单位。

结构基因structure genes:基因中编码RNA或蛋白质的DNA序列称为结构基因。

基因组genome:一个细胞或病毒的全部遗传信息。

(细胞或生物体的一套完整单倍体的遗传物质的总和。

)真核生物基因组是指一套完整单倍体DNA(染色体DNA)和线粒体DNA的全部序列,包括编码序列和非编码序列。

GT-AG法则:真核生物基因的外显子与内含子接头处都有一段高度保守的一致性序列,即:内含子5’端大多数是以GT开始,3’端大多是以AG结束。

端粒:以线性染色体形式存在的真核基因组DNA末端都有一种特殊的结构叫端粒。

该结构是一段DNA序列和蛋白质形成的一种复合体,仅在真核细胞染色体末端存在。

端粒DNA由重复序列组成,人类端粒一端是TTAGGG另一端是AATCCC.操纵子:是指数个功能上相关的结构基因串联在一起,构成信息区,连同其上游的调控区(包括启动子和操纵基因)以及下游的转录终止信号所构成的基因表达单位。

所转录的RNA为多顺反子。

操纵元件:是一段能够被不同基因表达调控蛋白质识别和结合的DNA 序列,是决定基因表达效率的关键元件。

顺式作用元件:是指那些与结构基因表达调控相关、能够被基因调控蛋白特异性识别和结合的特异DNA序列。

包括启动子、上游启动子元件、增强子、反应元件和poly(A)加尾信号。

反式作用因子:是指真核细胞内含有的大量可以通过直接或间接结合顺式作用元件而调节基因转录活性的蛋白质因子。

启动子:是能够被RNA聚合酶特异性识别并与其结合并开始转录的核苷酸序列。

(TATAbox、CAATbox、GCbox)增强子enhancer:是一段短的DNA序列,其中含有多个作用元件,可以特异性地与转录因子结合,增强基因的转录活性。

它可位于被增强的转录基因的上游或下游,也可相距靶基因较远。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子生物学笔记??第一章基因的结构第一节基因和基因组一、基因(gene)是合成一种功能蛋白或RNA分子所必须的全部DNA序列.一个典型的真核基因包括①编码序列—外显子(exon)②插入外显子之间的非编码序列—内合子(intron)③5'-端和3'-端非翻译区(UTR)④调控序列(可位于上述三种序列中)绝大多数真核基因是断裂基因(split-gene),外显子不连续。

二、基因组(genome)一特定生物体的整套(单倍体)遗传物质的总和,基因组的大小用全部DNA的碱基对总数表示。

人基因组3X1 09(30亿bp),共编码约10万个基因。

每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。

人类基因组计划(human genome project, HGP)基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。

蛋白质组(proteome)和蛋白质组学(proteomics)第二节真核生物基因组一、真核生物基因组的特点:,①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中.②真核基因组中,编码序列只占整个基因组的很小部分(2—3%),二、真核基因组中DNA序列的分类?(一)高度重复序列(重复次数>lO5)卫星DNA(Satellite DNA)(二)中度重复序列1.中度重复序列的特点①重复单位序列相似,但不完全一样,②散在分布于基因组中.③序列的长度和拷贝数非常不均一,④中度重复序列一般具有种属特异性,可作为DNA标记.⑤中度重复序列可能是转座元件(返座子),2.中度重复序列的分类①长散在重复序列(long interspersed repeated segments.)LINES②短散在重复序列(Short interspersed repeated segments)SINESSINES:长度<500bp,拷贝数>105.如人Alu序列LINEs:长度>1000bp(可达7Kb),拷贝数104-105,如人LINEl(三)单拷贝序列(Unique Sequence)包括大多数编码蛋白质的结构基因和基因间间隔序列,三、基因家族(gene family)一组功能相似且核苷酸序列具有同源性的基因.可能由某一共同祖先基因(ancestral gene)经重复(duplication)和突变产生。

基因家族的特点:①基因家族的成员可以串联排列在一起,形成基因簇(gene cluster)或串联重复基因(tandemly repeated genes),如rRNA、tRNA和组蛋白的基因;②有些基因家族的成员也可位于不同的染色体上,如珠蛋白基因;③有些成员不产生有功能的基因产物,这种基因称为假基因(Pseudogene).Ψa1表示与a1相似的假基因.假基因分类。

加工过的假基因(processed pseudogene)。

典型的基因家族1.tRNA基因?单倍体人基因组中1300个tRNA基因,tRNA基因簇.2.rRNA基因>l00copy.rRNA基因簇(重复单元28S、18S、3.组蛋白基因30-40copy.定位:7q32-q36组蛋白基因簇(重复单位:H1,H2A,H2B,H3、H4)特点:无intron,Poly(A)- RNA.?4.珠蛋白基因α类:16p13,基因簇(24Kb):5’—ζ—Ψζ—Ψα1—α2—α1—3’β类:11p15,基因簇(60Kb):5’—ζ—Gr—Ar—Ψβ—δ—β—3’四、超基因家族(Supergene family ,Superfamily)由基因家族和单基因组成的大基因家族,结构上有程度不等的同源性,但功能不同.五、人类基因组中的重复序列标记1、A1u序列单倍体人基因组50万-100万拷贝,平均每隔3-6Kb就有一个Alu序列,人A1u序列长300bp:2X130bp重复序列;?+31bp间隔序列(中间);两侧7-21bp正向重复(direct repeats),返座子?Alu序列广泛散布于人基因组,约90%巳克隆的人基因合有Alu序列Alu序列标志。

2、可变数串联重复,?Variable number tamdem repeat,VNTR.又称小卫星DNA(minisatellite DNA)由短重复单位(6-40bp)串联重复(6-100次以上)而成,多位于基因的非编码区,广泛分布。

VNTR多态性—分子标记—DNA指纹图(fingerprint).小卫星DNA突变与肿瘤,H-Ras。

3、短串联重复(short tandem repeat,STR)又称微卫星DNA(microstallite DNA)2-6个核苷酸组成的重复单位串联重复(10-60次),两侧为特异的单拷贝序列,人基因组中每l0kb DNA序列至少一个STR序列。

{CA)n,50,000-100,000拷贝.新一代遗传标记,人类基因组研究,肿瘤,遗传病.、第三节线粒体基因组人线粒体基因组的特点:1、人线粒体基因组为16,569bp的双链闭环分子,一条链为重链(H链),一条链为轻链(L链),两条链均有编码功能,每个mtDNA分于编码13种蛋白质和24种结构RNA(22rRNA,2tRNA).2、线粒体DNA为母系遗传.3、结构基因不含内含子,部分区域有基因重叠,因此病理性mtDNA突变更易发生.4、mtDNA突变频率更高.5、线粒体DNA突变的表型表达与核DNA不同。

第四节细菌和病毒基因组一、细菌基因组的特点。

1.功能相关的几个结构基因往往串联在—起,受它们上游的共同调控区控制,形成操纵子结构,2.结构基因中没有内含子,也无重叠现象。

3.细菌DNA大部分为编码序列。

二、病毒基因组的特点1.每种病毒只有一种核酸,或者DNA,或者RNA;2.病毒核酸大小差别很大,3X103一3X106bp;3.除逆病毒外,所有病毒基因都是单拷贝的。

4.大部份病毒核酸是由一条双链或单链分子(RNA或DNA),仅少数RNA病毒由几个核酸片段组成.?5.真核病毒基因有内含子,而噬菌体(感染细菌的病毒)基因中无内含子.6.有重叠基因.第五节染色质和染色体细胞分裂间期—染色质(chromatin)分裂期—染色体(chromosome)一、染色质的基本单位—核小体(一)核小体(nucleosome)结构DNA绕在组蛋白八聚体(H2A、H2B、H3、H4各一对)核心外周(146bp),形成核小体核心颗粒。

两个核小体核心颗粒之间有Linker DNA(0-80bp),核小体核心颗粒+Linker=核小体(长180-210bp)核小体DNA Ladder.(二)组蛋白(histone):一类小的带有丰富正电荷<富含Lys,Arg)的核蛋白,与DNA有高亲和力.组蛋白分类:1.核小体核心组蛋白,H2A,H2B,H3,H4。

分子量较小(102-135aa)作用:盘绕DNA形成核小体。

2.H1组蛋白:较大(220aa),作用:与Linker DNA结合后利于核小体稳定和更高级结构的形成。

二、染色质的高级结构1、30nm染色质纤丝,2、袢环结构(looped domain)。

3、细胞分裂期染色体分裂期染色体=一对姐妹染色单体(Chromatid)有丝分裂中期46条染色体按大小和形状排列的的光学显微镜图像称为人的染色体核型(Karyotype)三、染色体的结构要素。

(一).着丝粒(centromere):细胞分裂时染色体与仿锤丝相连结的部位,为染色体的正常分离所必需。

?(二).端粒(telomere):真核生物线状染色体分子末端的DNA区域端粒DNA的特点:1、由富含G的简单串联重复序列组成(长达数kb).人的端粒DNA重复序列:TTAGGC。

2、端粒的末端都有一条12-16碱基的单链3’端突出。

端粒的作用:防止DNA末端降解,保证染色体的稳定性和功能(三)、复制原点第五章信号转导?细胞外信号通过与细胞表面的受体相互作用转变为胞内信号并在细胞内传递的过程称为信号转导(signal transduction)跨膜信号转导过程包括:1,胞外信号被质膜上的特异性受体蛋白识别,受体被活化;2,通过胞内信号转导物(蛋白激酶,第二信使等) 的相互作用传递信号;3,信号导致效应物蛋白的活化,引发细胞应答(如激活核内转录因子,调节基因表达)。

·第一节胞内信使细胞内信使(intracellular messenger)是具有信息传递作用的一些小分子,也称为第二信使(second messengers)。

一、cAMP{环磷酸腺苷),生成:腺苷酸环化酶催化ATP生成cAMP;代谢:cAMP磷酸二酯酶水解cAMP产生5’-AMP功能:,①激活蛋白激酶A②抑制蛋白磷酸酯酶二、cGMP(环磷酸鸟苷)生成酶:鸟苷酸环化酶代谢酶:cGMP磷酸二酯酶功能:①激活蛋白激酶G ②调控细胞膜离子通道三、三磷酸肌醇(inositol triphosphate,IP3)和甘油二酯(diacyglycerol, DAG)G-蛋白偶联受体激活磷脂酶Cβ生成IP3及DAG功能:1、IP3:开放胞内钙库,激活Ca2+途径.2、DAD:在Ca2+和磷脂酰丝氨酸存在下,激活蛋白激酶C,四、钙离子细胞内钙离子主要贮存于胞内钙库(如肌细胞的肌浆网,SR)和线粒体中。

细胞质膜两铡[Ca2+]跨膜梯度:细胞外液>>胞浆胞浆内[Ca2+]的调节一通过(质膜和钙库膜上的)钙离子通道(进入)和钙泵(出),钙通道开放的条件:①质膜或钙库膜去极化(可兴奋细胞);成②IP3介导钙库膜上钙通道开放(任何细胞).钙泵激活.线粒体钙泵的作用.Ca2+功能:与钙调蛋白(calmodulin, CaM)结合形成Ca2+CaM复合物:①激活腺苷酸环化酶和磷酸二酯酶,②激活Ca2+CaM依赖蛋白激酶钙通道阻断剂及其临床应用。

五、一氧化氮(NO)NO合成酶催化L-精氨酸生成NO和胍氨酸NO合成酶(NOS)分类:①神经元型(nNOS).②内皮细胞型(ecNOS)③诱导型(iNOS)功能:激活乌苷酸环化酶,刺激cGMP合成。

NO的生理病理作用第二节蛋白激酶和蛋白磷酸酯酶蛋白激酶(Protein kinase,PK)催化蛋白质的含羟基氨基酸(丝/苏和酪)的侧链羟基形成磷酸酯(ATP 的γ磷酸基转移至氧).蛋白质磷酸酯酶(Protein phosphatase,PPase)催化磷酸蛋白的磷酸酯键水解而去磷酸化。

细胞内任何一种蛋白质的磷酸化状态是由蛋白激酶和蛋白磷酸酯酶的两种相反酶活性之间的平衡决定的。

相关文档
最新文档