STM32单片机的模拟看门狗的库函数设置

合集下载

零死角玩转stm32-中级篇2、ADC(DMA模式)

零死角玩转stm32-中级篇2、ADC(DMA模式)

0、友情提示《零死角玩转STM32》系列教程由初级篇、中级篇、高级篇、系统篇、四个部分组成,根据野火STM32开发板旧版教程升级而来,且经过重新深入编写,重新排版,更适合初学者,步步为营,从入门到精通,从裸奔到系统,让您零死角玩转STM32。

M3的世界,与野火同行,乐意惬无边。

另外,野火团队历时一年精心打造的《STM32库开发实战指南》将于今年10月份由机械工业出版社出版,该书的排版更适于纸质书本阅读以及更有利于查阅资料。

内容上会给你带来更多的惊喜。

是一本学习STM32必备的工具书。

敬请期待!2、ADC(DMA模式)2.1 ADC简介ADC (Analog to Digital Converter),模/数转换器。

在模拟信号需要以数字形式处理、存储或传输时,模/数转换器几乎必不可少。

STM32在片上集成的ADC外设非常强大。

在STM32F103xC、STM32F103xD和STM32F103xE增强型产品,内嵌3个12位的ADC,每个ADC共用多达21个外部通道,可以实现单次或多次扫描转换。

如野火STM32开发板用的是STM32F103VET6,属于增强型的CPU,它有18个通道,可测量16个外部和2个内部信号源。

各通道的A/D转换可以单次、连续、扫描或间断模式执行。

ADC的结果可以左对齐或右对齐方式存储在16位数据寄存器中。

模拟看门狗特性允许应用程序检测输入电压是否超出用户定义的高/低阀值。

2.2 STM32的ADC主要技术指标对于ADC来说,我们最关注的就是它的分辨率、转换速度、ADC类型、参考电压范围。

●分辨率12位分辨率。

不能直接测量负电压,所以没有符号位,即其最小量化单位LSB = V ref+ / 212。

●转换时间转换时间是可编程的。

采样一次至少要用14个ADC时钟周期,而ADC的时钟频率最高为14MHz,也就是说,它的采样时间最短为1us。

足以胜任中、低频数字示波器的采样工作。

●ADC类型ADC的类型决定了它性能的极限,STM32的是逐次比较型ADC。

基于单片机按键控制看门狗仿真设计

基于单片机按键控制看门狗仿真设计

基于单片机按键控制看门狗仿真设计本文档旨在介绍《基于单片机按键控制看门狗仿真设计》的主题,并提供写作大纲的目的概述。

该文档将深入探讨如何利用单片机按键控制看门狗的仿真设计。

我们将详细介绍看门狗的概念和原理,并提供一个基于单片机按键的仿真设计案例。

通过本文档的阅读,读者将了解如何使用单片机按键来控制看门狗,在系统遇到异常情况时采取适当的措施来保护系统的稳定性和可靠性。

接下来,将按照以下大纲扩写内容,详细介绍《基于单片机按键控制看门狗仿真设计》的相关内容。

在介绍基于单片机按键控制看门狗的仿真设计之前,我们需要先了解单片机和看门狗的概念,并探讨为什么使用单片机按键控制看门狗是有意义的。

单片机是一种集成了微处理器核心、内存、输入/输出设备和其他功能模块的微型计算机系统。

它具有体积小、功耗低、成本低等特点,因而广泛应用于各种电子设备中。

看门狗(Watchdog)是一种用于检测和处理系统故障的硬件或软件机制。

它监视系统运行状态,并在系统发生故障时自动执行预定的纠错操作。

看门狗的主要作用是保障系统的稳定性和可靠性。

基于单片机按键控制看门狗的仿真设计就是利用单片机上的按键来控制看门狗的功能。

通过按下特定的按键,我们可以触发或关闭看门狗的工作,以解决系统故障或异常情况。

使用单片机按键控制看门狗具有以下意义:提高系统的稳定性:通过按键控制看门狗,可以及时检测和处理系统故障,保障系统的稳定运行。

简化系统调试过程:按键控制看门狗可以方便地触发系统故障模式,便于调试和定位问题。

提升系统的可靠性:看门狗机制可以在系统故障时自动执行纠错操作,提高系统的可靠性和容错能力。

综上所述,基于单片机按键控制看门狗的仿真设计是一种有效的解决方案,可以提高系统的稳定性、简化系统调试过程并提升系统的可靠性。

本文将阐述按键控制看门狗的仿真设计步骤,包括硬件和软件方面的具体要点。

硬件设计步骤准备所需材料和器件,包括单片机、按键、继电器等。

按照电路原理图连接各个器件,确保电路的正确性和稳定性。

STM32双ADC多路通道采样DMA传输单通道模拟看门狗设置

STM32双ADC多路通道采样DMA传输单通道模拟看门狗设置

STM32双ADC多路通道采样DMA传输单通道模拟看门狗设置vu32 ADCConvertedValue[TimsOfSample][NbrOfChannel];void DMA_Config(){DMA_InitTypeDef DMA_InitStructure;RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1,ENABLE);NVIC_Config( DMA1_Channel1_IRQn,0,1);DMA_DeInit(DMA1_Channel1);DMA_InitStructure.DMA_BufferSize=DMABuffSize;//⼀次中断传输数据的个数,数据单位与外设或内存单位⼤⼩相同DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralSRC;//外设作为数据传输来源DMA_InitStructure.DMA_M2M=DMA_M2M_Disable;//内存到内存传输关闭DMA_InitStructure.DMA_MemoryBaseAddr=(u32)ADCConvertedValue;//存储器地址,实际就是⼀个内部的SRAM变量DMA_InitStructure.DMA_MemoryDataSize=DMA_MemoryDataSize_Word;//内存数据⼤⼩与外设数据⼤⼩相同,为32位DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable;//内存地址递增DMA_InitStructure.DMA_Mode=DMA_Mode_Circular;//循环模式⽤于处理循环缓冲区和连续的数据传输(如ADC的扫描模式)。

DMA_InitStructure.DMA_PeripheralBaseAddr=(u32)&ADC1->DR;//外设基地址:ADC数据寄存器地址DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Word;//外设数据⼤⼩为32位DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Disable;//外设地址固定DMA_InitStructure.DMA_Priority=DMA_Priority_High;//优先级⾼,只使⽤⼀个DMA时,优先级设置不影响DMA_Init(DMA1_Channel1,&DMA_InitStructure);//DMA_ITConfig(DMA1_Channel1,DMA_IT_TC,ENABLE);DMA_Cmd(DMA1_Channel1,ENABLE);}void ADC_DualModeConfig(){ADC_InitTypeDef ADC_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1|RCC_APB2Periph_ADC2,ENABLE);RCC_ADCCLKConfig(RCC_PCLK2_Div6);//ADC采样时钟分频,确保ADC的时钟不超过14MHzGPIO_Config( GPIOA,RCC_APB2Periph_GPIOA,GPIO_Mode_AIN,GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7);NVIC_Config( ADC1_2_IRQn,0,0);DMA_Config();ADC_DeInit(ADC1);ADC_InitStructure.ADC_ContinuousConvMode=ENABLE;//连续转换模式ADC_InitStructure.ADC_DataAlign=ADC_DataAlign_Right;//数据对齐⽅式右对齐ADC_InitStructure.ADC_ExternalTrigConv=ADC_ExternalTrigConv_None;ADC_InitStructure.ADC_Mode=ADC_Mode_RegSimult;//同步规则模式ADC_InitStructure.ADC_NbrOfChannel=NbrOfChannel;//规则序列的长度ADC_InitStructure.ADC_ScanConvMode=ENABLE;//模数转换⼯作在扫描模式ADC_Init(ADC1,&ADC_InitStructure);ADC_RegularChannelConfig(ADC1,ADC_Channel_0,1,ADC_SampleTime_28Cycles5);ADC_RegularChannelConfig(ADC1,ADC_Channel_7,2,ADC_SampleTime_28Cycles5);ADC_RegularChannelConfig(ADC1,ADC_Channel_1,3,ADC_SampleTime_28Cycles5);ADC_InitStructure.ADC_Mode = ADC_Mode_RegSimult;ADC_InitStructure.ADC_ScanConvMode = ENABLE;ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;ADC_InitStructure.ADC_NbrOfChannel = NbrOfChannel;ADC_Init(ADC2, &ADC_InitStructure);ADC_RegularChannelConfig(ADC2, ADC_Channel_6, 1, ADC_SampleTime_28Cycles5); ADC_RegularChannelConfig(ADC2, ADC_Channel_4, 2, ADC_SampleTime_28Cycles5); ADC_RegularChannelConfig(ADC2, ADC_Channel_5, 3, ADC_SampleTime_28Cycles5); ADC_ExternalTrigConvCmd(ADC2, ENABLE);ADC_AnalogWatchdogThresholdsConfig(ADC2,0xBA3, 0x000);ADC_AnalogWatchdogSingleChannelConfig(ADC2, ADC_Channel_6);ADC_AnalogWatchdogCmd(ADC2, ADC_AnalogWatchdog_SingleRegEnable);ADC_ITConfig(ADC2, ADC_IT_AWD, ENABLE);ADC_DMACmd(ADC1,ENABLE);ADC_Cmd(ADC1,ENABLE);ADC_ResetCalibration(ADC1);while(ADC_GetResetCalibrationStatus(ADC1));ADC_StartCalibration(ADC1);while(ADC_GetCalibrationStatus(ADC1));ADC_Cmd(ADC2, ENABLE);ADC_ResetCalibration(ADC2);while(ADC_GetResetCalibrationStatus(ADC2));ADC_StartCalibration(ADC2);while(ADC_GetCalibrationStatus(ADC2));ADC_SoftwareStartConvCmd(ADC1, ENABLE);while(!DMA_GetFlagStatus(DMA1_FLAG_TC1));DMA_ClearFlag(DMA1_FLAG_TC1);}。

STM32中文参考手册-stm32f103中文参考手册

STM32中文参考手册-stm32f103中文参考手册

STM32F10xxx参考手册参考手册小,中和大容量的STM32F101xx, STM32F102xx和STM32F103xxARM内核32位高性能微控制器导言本参考手册针对应用开发,提供关于如何使用小容量、中容量和大容量的STM32F101xx、STM32F102xx或者STM32F103xx微控制器的存储器和外设的详细信息。

在本参考手册中STM32F101xx、STM32F102xx和STM32F103xx被统称为STM32F10xxx。

STM32F10xxx系列拥有不同的存储器容量,封装和外设配置。

关于订货编号、电气和物理性能参数,请参考STM32F101xx、STM32F102xx和STM32F103xx 的数据手册。

关于芯片内部闪存的编程,擦除和保护操作,请参考STM32F10xxx闪存编程手册。

关于ARM Cortex™-M3内核的具体信息,请参考Cortex™-M3技术参考手册。

相关文档● Cortex™-M3技术参考手册,可按下述链接下载:/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf下述文档可在ST网站下载(/mcu/):● STM32F101xx、STM32F102xx和STM32F103xx的数据手册。

● STM32F10xxx闪存编程手册。

* 感谢南京万利提供原始翻译文档目录1文中的缩写 161.1寄存器描述表中使用的缩写列表 161.2术语表161.3可用的外设16 2存储器和总线构架 172.1系统构架172.2存储器组织182.3存储器映像192.3.1嵌入式SRAM 202.3.2位段202.3.3嵌入式闪存 212.4启动配置23 3CRC计算单元(CRC) 253.1CRC简介253.2CRC主要特性253.3CRC功能描述253.4CRC寄存器263.4.1数据寄存器(CRC_DR) 263.4.2独立数据寄存器(CRC_IDR) 263.4.3控制寄存器(CRC_CR) 273.4.4CRC寄存器映像 27 4电源控制(PWR) 284.1电源284.1.1独立的A/D转换器供电和参考电压 284.1.2电池备份区域 294.1.3电压调节器 294.2电源管理器294.2.1上电复位(POR)和掉电复位(PDR) 294.2.2可编程电压监测器(PVD) 304.3低功耗模式304.3.1降低系统时钟 314.3.2外部时钟的控制 314.3.3睡眠模式 314.3.4停止模式 324.3.5待机模式 334.3.6低功耗模式下的自动唤醒(AWU) 344.4电源控制寄存器 354.4.1电源控制寄存器(PWR_CR) 354.4.2电源控制/状态寄存器 364.4.3PWR寄存器地址映像 37 5备份寄存器(BKP) 385.1BKP简介385.2BKP特性385.3BKP功能描述385.3.1侵入检测 385.3.2RTC校准 395.4BKP寄存器描述 395.4.1备份数据寄存器x(BKP_DRx) (x = 1 … 10) 395.4.2RTC时钟校准寄存器(BKP_RTCCR) 395.4.3备份控制寄存器(BKP_CR) 405.4.4备份控制/状态寄存器(BKP_CSR) 405.4.5BKP寄存器映像 42 6复位和时钟控制(RCC) 456.1复位456.1.1系统复位 456.1.2电源复位 456.1.3备份域复位 466.2时钟466.2.1HSE时钟 486.2.2HSI时钟 486.2.3PLL 496.2.4LSE时钟 496.2.5LSI时钟496.2.6系统时钟(SYSCLK)选择 506.2.7时钟安全系统(CSS) 506.2.8RTC时钟 506.2.9看门狗时钟 506.2.10时钟输出 506.3RCC寄存器描述 516.3.1时钟控制寄存器(RCC_CR) 516.3.2时钟配置寄存器(RCC_CFGR) 526.3.3时钟中断寄存器 (RCC_CIR) 546.3.4APB2外设复位寄存器 (RCC_APB2RSTR) 566.3.5APB1外设复位寄存器 (RCC_APB1RSTR) 586.3.6AHB外设时钟使能寄存器 (RCC_AHBENR) 606.3.7APB2外设时钟使能寄存器(RCC_APB2ENR) 616.3.8APB1外设时钟使能寄存器(RCC_APB1ENR) 626.3.9备份域控制寄存器 (RCC_BDCR) 656.3.10控制/状态寄存器 (RCC_CSR) 666.3.11RCC寄存器地址映像 68 7通用和复用功能I/O(GPIO和AFIO) 697.1GPIO功能描述697.1.1通用I/O(GPIO) 707.1.2单独的位设置或位清除 717.1.3外部中断/唤醒线 717.1.4复用功能(AF) 717.1.5软件重新映射I/O复用功能 717.1.6GPIO锁定机制 717.1.7输入配置 717.1.8输出配置 727.1.9复用功能配置 737.1.10模拟输入配置 737.2GPIO寄存器描述 757.2.1端口配置低寄存器(GPIOx_CRL) (x=A..E) 757.2.2端口配置高寄存器(GPIOx_CRH) (x=A..E) 757.2.3端口输入数据寄存器(GPIOx_IDR) (x=A..E) 767.2.4端口输出数据寄存器(GPIOx_ODR) (x=A..E) 767.2.5端口位设置/清除寄存器(GPIOx_BSRR) (x=A..E) 777.2.6端口位清除寄存器(GPIOx_BRR) (x=A..E) 777.2.7端口配置锁定寄存器(GPIOx_LCKR) (x=A..E) 777.3复用功能I/O和调试配置(AFIO) 787.3.1把OSC32_IN/OSC32_OUT作为GPIO 端口PC14/PC15 787.3.2把OSC_IN/OSC_OUT引脚作为GPIO端口PD0/PD1 787.3.3CAN复用功能重映射 797.3.4JTAG/SWD复用功能重映射 797.3.5ADC复用功能重映射 807.3.6定时器复用功能重映射 807.3.7USART复用功能重映射 817.3.8I2C 1 复用功能重映射 827.3.9SPI 1复用功能重映射 827.4AFIO寄存器描述 837.4.1事件控制寄存器(AFIO_EVCR) 837.4.2复用重映射和调试I/O配置寄存器(AFIO_MAPR) 837.4.3外部中断配置寄存器1(AFIO_EXTICR1) 867.4.4外部中断配置寄存器2(AFIO_EXTICR2) 867.4.5外部中断配置寄存器3(AFIO_EXTICR3) 877.4.6外部中断配置寄存器4(AFIO_EXTICR4) 877.5GPIO 和AFIO寄存器地址映象 88 8中断和事件 898.1嵌套向量中断控制器 898.1.1系统嘀嗒(SysTick)校准值寄存器 898.1.2中断和异常向量 898.2外部中断/事件控制器(EXTI) 918.2.1主要特性 918.2.2框图928.2.3唤醒事件管理 928.2.4功能说明 928.2.5外部中断/事件线路映像 948.3EXTI 寄存器描述 958.3.1中断屏蔽寄存器(EXTI_IMR) 958.3.2事件屏蔽寄存器(EXTI_EMR) 958.3.3上升沿触发选择寄存器(EXTI_RTSR) 968.3.4下降沿触发选择寄存器(EXTI_FTSR) 968.3.5软件中断事件寄存器(EXTI_SWIER) 978.3.6挂起寄存器(EXTI_PR) 978.3.7外部中断/事件寄存器映像 98 9DMA 控制器(DMA) 999.1DMA简介999.2DMA主要特性999.3功能描述1009.3.1DMA处理 1009.3.2仲裁器1009.3.3DMA 通道 1019.3.4可编程的数据传输宽度,对齐方式和数据大小端 1029.3.5错误管理 1039.3.6中断1039.3.7DMA请求映像 1049.4DMA寄存器1079.4.1DMA中断状态寄存器(DMA_ISR) 1079.4.2DMA中断标志清除寄存器(DMA_IFCR) 1089.4.3DMA通道x配置寄存器(DMA_CCRx)(x = 1…7) 1089.4.4DMA通道x传输数量寄存器(DMA_CNDTRx)(x = 1…7) 1109.4.5DMA通道x外设地址寄存器(DMA_CPARx)(x = 1…7) 1109.4.6DMA通道x存储器地址寄存器(DMA_CPARx)(x = 1…7) 1109.4.7DMA寄存器映像 111 10模拟/数字转换(ADC) 11310.1ADC介绍11310.2ADC主要特征11310.3ADC功能描述11410.3.1ADC开关控制 11510.3.2ADC时钟 11510.3.3通道选择 11510.3.4单次转换模式 11510.3.5连续转换模式 11610.3.6时序图11610.3.7模拟看门狗 11610.3.8扫描模式 11710.3.9注入通道管理 11710.3.10间断模式 11810.4校准11910.5数据对齐11910.6可编程的通道采样时间 12010.7外部触发转换12010.8DMA请求12110.9双ADC模式12110.9.1同步注入模式 12210.9.2同步规则模式 12310.9.3快速交替模式 12310.9.4慢速交替模式 12410.9.5交替触发模式 12410.9.6独立模式 12510.9.7混合的规则/注入同步模式 12510.9.8混合的同步规则+交替触发模式 12510.9.9混合同步注入+交替模式 12610.10温度传感器12610.11ADC中断12710.12ADC寄存器描述 12810.12.1ADC状态寄存器(ADC_SR) 12810.12.2ADC控制寄存器1(ADC_CR1) 12910.12.3ADC控制寄存器2(ADC_CR2) 13110.12.4ADC采样时间寄存器1(ADC_SMPR1) 13310.12.5ADC采样时间寄存器2(ADC_SMPR2) 13310.12.6ADC注入通道数据偏移寄存器x (ADC_JOFRx)(x=1..4) 13410.12.7ADC看门狗高阀值寄存器(ADC_HTR) 13410.12.8ADC看门狗低阀值寄存器(ADC_LRT) 13410.12.9ADC规则序列寄存器1(ADC_SQR1) 13510.12.10ADC规则序列寄存器2(ADC_SQR2) 13510.12.11ADC规则序列寄存器3(ADC_SQR3) 13610.12.12ADC注入序列寄存器(ADC_JSQR) 13610.12.13ADC 注入数据寄存器x (ADC_JDRx) (x= 1..4) 13710.12.14ADC规则数据寄存器(ADC_DR) 13710.12.15ADC寄存器地址映像 138 11数字/模拟转换(DAC) 14011.1DAC简介14011.2DAC主要特征14011.3DAC功能描述14111.3.1使能DAC通道 14111.3.2使能DAC输出缓存 14111.3.3DAC数据格式 14211.3.4DAC转换 14211.3.5DAC输出电压 14311.3.6选择DAC触发 14311.3.7DMA请求 14411.3.8噪声生成 14411.3.9三角波生成 14511.4双DAC通道转换 14511.4.1无波形生成的独立触发 14511.4.2带相同LFSR生成的独立触发 14611.4.3带不同LFSR生成的独立触发 14611.4.4带相同三角波生成的独立触发 14611.4.5带不同三角波生成的独立触发 14611.4.6同时软件启动 14711.4.7不带波形生成的同时触发 14711.4.8带相同LFSR生成的同时触发 14711.4.9带不同LFSR生成的同时触发 14711.4.10带相同三角波生成的同时触发 14711.4.11带不同三角波生成的同时触发 14811.5DAC寄存器14911.5.1DAC控制寄存器(DAC_CR) 14911.5.2DAC软件触发寄存器(DAC_SWTRIGR) 15111.5.3DAC通道1的12位右对齐数据保持寄存器(DAC_DHR12R1) 15211.5.4DAC通道1的12位左对齐数据保持寄存器(DAC_DHR12L1) 15211.5.5DAC通道1的8位右对齐数据保持寄存器(DAC_DHR8R1) 15211.5.6DAC通道2的12位右对齐数据保持寄存器(DAC_DHR12R2) 15311.5.7DAC通道2的12位左对齐数据保持寄存器(DAC_DHR12L2) 15311.5.8DAC通道2的8位右对齐数据保持寄存器(DAC_DHR8R2) 15311.5.9双DAC的12位右对齐数据保持寄存器(DAC_DHR12RD) 15411.5.10双DAC的12位左对齐数据保持寄存器(DAC_DHR12LD) 15411.5.11双DAC的8位右对齐数据保持寄存器(DAC_DHR8RD) 15411.5.12DAC通道1数据输出寄存器(DAC_DOR1) 15511.5.13DAC通道2数据输出寄存器(DAC_DOR2) 15511.5.14DAC寄存器映像 156 12高级控制定时器(TIM1和TIM8) 15712.1TIM1和TIM8简介 15712.2TIM1和TIM8主要特性 15712.3TIM1和TIM8功能描述 15812.3.1时基单元 15812.3.2计数器模式 16012.3.3重复计数器 16712.3.4时钟选择 16812.3.5捕获/比较通道 17112.3.6输入捕获模式 17312.3.7PWM输入模式 17412.3.8强置输出模式 17412.3.9输出比较模式 17512.3.10PWM模式 17612.3.11互补输出和死区插入 17812.3.12使用刹车功能 17912.3.13在外部事件时清除OCxREF信号 18012.3.14产生六步PWM输出 18112.3.15单脉冲模式 18212.3.16编码器接口模式 18312.3.17定时器输入异或功能 18512.3.18与霍尔传感器的接口 18512.3.19TIMx定时器和外部触发的同步 18712.3.20定时器同步 19012.3.21调试模式 19012.4TIM1和TIM8寄存器描述 19112.4.1控制寄存器1(TIMx_CR1) 19112.4.2控制寄存器2(TIMx_CR2) 19212.4.3从模式控制寄存器(TIMx_SMCR) 19312.4.4DMA/中断使能寄存器(TIMx_DIER) 19512.4.5状态寄存器(TIMx_SR) 19612.4.6事件产生寄存器(TIMx_EGR) 19712.4.7捕获/比较模式寄存器1(TIMx_CCMR1) 19812.4.8捕获/比较模式寄存器2(TIMx_CCMR2) 20012.4.9捕获/比较使能寄存器(TIMx_CCER) 20212.4.10计数器(TIMx_CNT) 20312.4.11预分频器(TIMx_PSC) 20412.4.12自动重装载寄存器(TIMx_ARR) 20412.4.13重复计数寄存器(TIMx_RCR) 20412.4.14捕获/比较寄存器1(TIMx_CCR1) 20512.4.15捕获/比较寄存器2(TIMx_CCR2) 20512.4.16捕获/比较寄存器3(TIMx_CCR3) 20512.4.17捕获/比较寄存器(TIMx_CCR4) 20612.4.18刹车和死区寄存器(TIMx_BDTR) 20612.4.19DMA控制寄存器(TIMx_DCR) 20812.4.20连续模式的DMA地址(TIMx_DMAR) 20812.4.21TIM1和TIM8寄存器图 209 13通用定时器(TIMx) 21113.1TIMx简介21113.2TIMx主要功能21113.3TIMx功能描述21213.3.1时基单元 21213.3.2计数器模式 21313.3.3时钟选择 22113.3.4捕获/比较通道 22313.3.5输入捕获模式 22513.3.6PWM输入模式 22513.3.7强置输出模式 22613.3.8输出比较模式 22613.3.9PWM 模式 22713.3.10单脉冲模式 22913.3.11在外部事件时清除OCxREF信号 23113.3.12编码器接口模式 23113.3.13定时器输入异或功能 23313.3.14定时器和外部触发的同步 23313.3.15定时器同步 23513.3.16调试模式 23913.4TIMx寄存器描述 24013.4.1控制寄存器1(TIMx_CR1) 24013.4.2控制寄存器2(TIMx_CR2) 24113.4.3从模式控制寄存器(TIMx_SMCR) 24213.4.4DMA/中断使能寄存器(TIMx_DIER) 24313.4.5状态寄存器(TIMx_SR) 24413.4.6事件产生寄存器(TIMx_EGR) 24513.4.7捕获/比较模式寄存器1(TIMx_CCMR1) 24613.4.8捕获/比较模式寄存器2(TIMx_CCMR2) 24913.4.9捕获/比较使能寄存器(TIMx_CCER) 25113.4.10计数器(TIMx_CNT) 25213.4.11预分频器(TIMx_PSC) 25213.4.12自动重装载寄存器(TIMx_ARR) 25213.4.13捕获/比较寄存器1(TIMx_CCR1) 25213.4.14捕获/比较寄存器2(TIMx_CCR2) 25313.4.15捕获/比较寄存器3(TIMx_CCR3) 25313.4.16捕获/比较寄存器4(TIMx_CCR4) 25313.4.17DMA控制寄存器(TIMx_DCR) 25413.4.18连续模式的DMA地址(TIMx_DMAR) 25413.4.19TIMx寄存器图 255 14基本定时器(TIM6和TIM7) 25714.1TIM6和TIM7简介 25714.2TIM6和TIM7的主要特性 25714.3TIM6和TIM7的功能 25814.3.1时基单元 25814.3.2计数模式 25914.3.3时钟源26114.3.4调试模式 26214.4TIM6和TIM7寄存器 26214.4.1控制寄存器1(TIMx_CR1) 26214.4.2控制寄存器2(TIMx_CR2) 26314.4.3DMA/中断使能寄存器(TIMx_DIER) 26314.4.4状态寄存器(TIMx_SR) 26414.4.5事件产生寄存器(TIMx_EGR) 26414.4.6计数器(TIMx_CNT) 26414.4.7预分频器(TIMx_PSC) 26514.4.8自动重装载寄存器(TIMx_ARR) 26514.4.9TIM6和TIM7寄存器图 266 15实时时钟(RTC) 26715.1RTC简介26715.2主要特性26715.3功能描述26715.3.1概述26715.3.2复位过程 26815.3.3读RTC寄存器 26815.3.4配置RTC寄存器 26915.3.5RTC标志的设置 26915.4RTC寄存器描述 27015.4.1RTC控制寄存器高位(RTC_CRH) 27015.4.2RTC控制寄存器低位(RTC_CRL) 27015.4.3RTC预分频装载寄存器(RTC_PRLH/RTC_PRLL) 27115.4.4RTC预分频器余数寄存器(RTC_DIVH / RTC_DIVL) 27215.4.5RTC计数器寄存器 (RTC_CNTH / RTC_CNTL) 27215.4.6RTC闹钟寄存器(RTC_ALRH/RTC_ALRL) 27315.4.7RTC寄存器映像 275 16独立看门狗(IWDG) 27616.1简介27616.2IWDG主要性能27616.3IWDG功能描述27616.3.1硬件看门狗 27616.3.2寄存器访问保护 27616.3.3调试模式 27616.4IWDG寄存器描述 27716.4.1键寄存器(IWDG_KR) 27716.4.2预分频寄存器(IWDG_PR) 27816.4.3重装载寄存器(IWDG_RLR) 27816.4.4状态寄存器(IWDG_SR) 27916.4.5IWDG寄存器映像 279 17窗口看门狗(WWDG) 28017.1WWDG简介28017.2WWDG主要特性 28017.3WWDG功能描述 28017.4如何编写看门狗超时程序 28117.5调试模式28217.6寄存器描述28217.6.1控制寄存器(WWDG_CR) 28217.6.2配置寄存器(WWDG_CFR) 28317.6.3状态寄存器(WWDG_SR) 28317.6.4WWDG寄存器映像 284 18灵活的静态存储器控制器(FSMC) 28518.1FSMC功能描述28518.2框图28518.3AHB接口28618.3.1支持的存储器和操作 28618.4外部设备地址映像 28718.4.1NOR和PSRAM地址映像 28818.4.2NAND和PC卡地址映像 28818.5NOR闪存和PSRAM控制器 28918.5.1外部存储器接口信号 29018.5.2支持的存储器及其操作 29118.5.3时序规则 29118.5.4NOR闪存和PSRAM时序图 29118.5.5同步的成组读 30418.5.6NOR闪存和PSRAM控制器寄存器 30818.6NAND闪存和PC卡控制器 31318.6.1外部存储器接口信号 31318.6.2NAND闪存/PC卡支持的存储器及其操作 31418.6.3NAND闪存、ATA和PC卡时序图 31418.6.4NAND闪存操作 31518.6.5NAND闪存预等待功能 31618.6.6NAND闪存的纠错码ECC计算(NAND闪存) 31718.6.7NAND闪存和PC卡控制器寄存器 31718.7FSMC寄存器地址映象 324 19SDIO接口(SDIO) 32519.1SDIO主要功能32519.2SDIO总线拓扑32519.3SDIO功能描述32819.3.1SDIO适配器 32919.3.2SDIO AHB接口 33619.4卡功能描述33619.4.1卡识别模式 33619.4.2卡复位33619.4.3操作电压范围确认 33719.4.4卡识别过程 33719.4.5写数据块 33819.4.6读数据块 33819.4.7数据流操作,数据流写入和数据流读出(只适用于多媒体卡) 33819.4.8擦除:成组擦除和扇区擦除 33919.4.9宽总线选择和解除选择 34019.4.10保护管理 34019.4.11卡状态寄存器 34219.4.12SD状态寄存器 34419.4.13SD I/O模式 34719.4.14命令与响应 34819.5响应格式35019.5.1R1(普通响应命令) 35119.5.2R1b 35119.5.3R2(CID、CSD寄存器) 35119.5.4R3(OCR寄存器) 35119.5.5R4(快速I/O) 35219.5.6R4b 35219.5.7R5(中断请求) 35219.5.8R6(中断请求) 35319.6SDIO I/O卡特定的操作 35319.6.1使用SDIO_D2信号线的SDIO I/O读等待操作 35319.6.2使用停止SDIO_CK的SDIO读等待操作 35319.6.3SDIO暂停/恢复操作 35419.6.4SDIO中断 35419.7CE-ATA特定操作 35419.7.1命令完成指示关闭 35419.7.2命令完成指示使能 35419.7.3CE-ATA中断 35419.7.4中止CMD61 35419.8硬件流控制35419.9SDIO寄存器35519.9.1SDIO电源控制寄存器(SDIO_POWER) 35519.9.2SDIO时钟控制寄存器(SDIO_CLKCR) 35519.9.3SDIO参数寄存器(SDIO_ARG) 35619.9.4SDIO命令寄存器(SDIO_CMD) 35619.9.5SDIO命令响应寄存器(SDIO_RESPCMD) 35719.9.6SDIO响应1..4寄存器(SDIO_RESPx) 35719.9.7SDIO数据定时器寄存器(SDIO_DTIMER) 35819.9.8SDIO数据长度寄存器(SDIO_DLEN) 35819.9.9SDIO数据控制寄存器(SDIO_DCTRL) 35819.9.10SDIO数据计数器寄存器(SDIO_DCOUNT) 36019.9.11SDIO状态寄存器(SDIO_STA) 36019.9.12SDIO清除中断寄存器(SDIO_ICR) 36119.9.13SDIO中断屏蔽寄存器(SDIO_MASK) 36219.9.14SDIO FIFO计数器寄存器(SDIO_FIFOCNT) 36419.9.15SDIO数据FIFO寄存器(SDIO_FIFO) 36419.9.16SDIO寄存器映像 365 20USB全速设备接口(USB) 36620.1USB简介36620.2USB主要特征36620.3USB功能描述36720.3.1USB功能模块描述 36820.4编程中需要考虑的问题 36920.4.1通用USB设备编程 36920.4.2系统复位和上电复位 36920.4.3双缓冲端点 37220.4.4同步传输 37320.4.5挂起/恢复事件 37420.5USB寄存器描述 37520.5.1通用寄存器 37520.5.2端点寄存器 38020.5.3缓冲区描述表 38220.5.4USB寄存器映像 385 21控制器局域网(bxCAN) 38721.1bxCAN简介38721.2bxCAN主要特点 38721.2.1总体描述 38821.3bxCAN工作模式 38921.3.1初始化模式 39021.3.2正常模式 39021.3.3睡眠模式(低功耗) 39021.3.4测试模式 39021.3.5静默模式 39021.3.6环回模式 39121.3.7环回静默模式 39121.4bxCAN功能描述 39221.4.1发送处理 39221.4.2时间触发通信模式 39321.4.3接收管理 39321.4.4标识符过滤 39521.4.5报文存储 39821.4.6出错管理 39921.4.7位时间特性 40021.5bxCAN中断40221.6CAN 寄存器描述 40321.6.1寄存器访问保护 40321.6.2控制和状态寄存器 40321.6.3邮箱寄存器 41121.6.4CAN过滤器寄存器 41521.6.5bxCAN寄存器列表 419 22串行外设接口(SPI) 42222.1SPI简介42222.2SPI和I2S主要特征 42222.2.1SPI特征42222.2.2I2S功能42322.3SPI功能描述42422.3.1概述42422.3.2SPI从模式 42622.3.3SPI主模式 42722.3.4单工通信 42822.3.5状态标志 42822.3.6CRC计算 42922.3.7利用DMA的SPI通信 42922.3.8错误标志 43022.3.9关闭SPI 43022.3.10SPI中断43022.4I2S功能描述43122.4.1I2S功能描述 43122.4.2支持的音频协议 43222.4.3时钟发生器 43722.4.4I2S主模式 43822.4.5I2S从模式 43922.4.6状态标志位 44022.4.7错误标志位 44122.4.8I2S中断44122.4.9DMA功能 44122.5SPI和I2S寄存器描述 44222.5.1SPI控制寄存器1(SPI_CR1)(I2S模式下不使用) 44222.5.2SPI控制寄存器2(SPI_CR2) 44322.5.3SPI 状态寄存器(SPI_SR) 44422.5.4SPI 数据寄存器(SPI_DR) 44522.5.5SPI CRC多项式寄存器(SPI_CRCPR) 44622.5.6SPI Rx CRC寄存器(SPI_RXCRCR) 44622.5.7SPI Tx CRC寄存器(SPI_TXCRCR) 44622.5.8SPI_I2S配置寄存器(SPI_I2S_CFGR) 44722.5.9SPI_I2S预分频寄存器(SPI_I2SPR) 44822.5.10SPI 寄存器地址映象 449 23I2C接口45023.1I2C简介45023.2I2C主要特点45023.3I2C功能描述45123.3.1模式选择 45123.3.2I2C从模式 45223.3.3I2C主模式 45423.3.4错误条件 45623.3.5SDA/SCL线控制 45723.3.6SMBus 45723.3.7DMA请求 45923.3.8包错误校验(PEC) 46023.4I2C中断请求46123.5I2C调试模式46223.6I2C寄存器描述46223.6.1控制寄存器1(I2C_CR1) 46223.6.2控制寄存器2(I2C_CR2) 46423.6.3自身地址寄存器1(I2C_OAR1) 46523.6.4自身地址寄存器2(I2C_OAR2) 46523.6.5数据寄存器(I2C_DR) 46523.6.6状态寄存器1(I2C_SR1) 46623.6.7状态寄存器2 (I2C_SR2) 46823.6.8时钟控制寄存器(I2C_CCR) 46923.6.9TRISE寄存器(I2C_TRISE) 47023.6.10I2C寄存器地址映象 471 24通用同步异步收发器(USART) 47224.1USART介绍47224.2USART主要特性 47224.3USART功能概述 47324.3.1USART 特性描述 47424.3.2发送器47524.3.3接收器47724.3.4分数波特率的产生 48024.3.5多处理器通信 48124.3.6校验控制 48224.3.7LIN(局域互联网)模式 48324.3.8USART 同步模式 48524.3.9单线半双工通信 48724.3.10智能卡48724.3.11IrDA SIR ENDEC 功能块 48824.3.12利用DMA连续通信 49024.3.13硬件流控制 49124.4USART中断请求 49224.5USART模式配置 49324.6USART寄存器描述 49424.6.1状态寄存器(USART_SR) 49424.6.2数据寄存器(USART_DR) 49524.6.3波特比率寄存器(USART_BRR) 49624.6.4控制寄存器1(USART_CR1) 49624.6.5控制寄存器2(USART_CR2) 49824.6.6控制寄存器3(USART_CR3) 49924.6.7保护时间和预分频寄存器(USART_GTPR) 50124.6.8USART寄存器地址映象 502 25器件电子签名 50325.1存储器容量寄存器 50325.1.1闪存容量寄存器 50325.2产品唯一身份标识寄存器(96位) 503 26调试支持(DBG) 50526.1概况50526.2ARM参考文献50626.3SWJ调试端口(serial wire and JTAG) 50626.3.1JTAG-DP和SW-DP切换的机制 50726.4引脚分布和调试端口脚 50726.4.1SWJ调试端口脚 50726.4.2灵活的SWJ-DP脚分配 50726.4.3JTAG脚上的内部上拉和下拉 50826.4.4利用串行接口并释放不用的调试脚作为普通I/O口 50826.5STM32F10xxx JTAG TAP 连接 50926.6ID 代码和锁定机制 50926.6.1微控制器设备ID编码 50926.6.2边界扫描TAP 51026.6.3Cortex-M3 TAP 51026.6.4Cortex-M3 JEDEC-106 ID代码 51126.7JTAG调试端口51126.8SW调试端口51226.8.1SW协议介绍 51226.8.2SW协议序列 51226.8.3SW-DP状态机(Reset, idle states, ID code) 51326.8.4DP和AP读/写访问 51326.8.5SW-DP寄存器 51326.8.6SW-AP寄存器 514 26.9对于JTAG-DP或SWDP都有效的AHB-AP (AHB 访问端口) 514 26.10内核调试515 26.11调试器主机在系统复位下的连接能力 515 26.12FPB (Flash patch breakpoint) 515 26.13DWT(data watchpoint trigger) 516 26.14ITM (instrumentation trace macrocell) 51626.14.1概述51626.14.2时间戳包,同步和溢出包 516 26.15MCU调试模块(MCUDBG) 51726.15.1低功耗模式的调试支持 51726.15.2支持定时器、看门狗、bxCAN和I2C的调试 51826.15.3调试MCU配置寄存器 518 26.16TPIU (trace port interface unit) 52026.16.1导言52026.16.2跟踪引脚分配 52026.16.3TPUI格式器 52226.16.4TPUI帧异步包 52226.16.5同步帧包的发送 52226.16.6同步模式 52226.16.7异步模式 52326.16.8TRACECLKIN在STM32F10xxx内部的连接 52326.16.9TPIU寄存器 52326.16.10配置的例子 524 26.17DBG寄存器地址映象 5241 文中的缩写1.1 寄存器描述表中使用的缩写列表在对寄存器的描述中使用了下列缩写:read / write (rw) 软件能读写此位。

stm32看门狗时间计算 独立看门狗和窗口看门狗的特性是什么

stm32看门狗时间计算 独立看门狗和窗口看门狗的特性是什么

stm32看门狗时间计算独立看门狗和窗口看门狗的特性是什么STM32看门狗时间计算(TWDG):1.STM32看门狗的例子IWDG的时限定为280微秒。

这个时限可能会随着LSI(内部低速时钟)的频率漂移而产生微小的变化。

/* IWDG TImeout equal to 280 ms (the TImeout may varies due to LSI frequency dispersion) -------------------------------------------------------------*//* Enable write access to IWDG_PR and IWDG_RLR registers */IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);/* IWDG counter clock: 40KHz(LSI) / 32 = 1.25 KHz */IWDG_SetPrescaler(IWDG_Prescaler_32);/* Set counter reload value to 349 */IWDG_SetReload(349);/*该参数允许取值范围为0 0x0FFF */* Reload IWDG counter */IWDG_ReloadCounter();/* Enable IWDG (the LSI oscillator will be enabled by hardware) */IWDG_Enable();2.独立看门狗(IWDG)由专用的40kHz 的低速时钟为驱动; 因此,即使主时钟发生故障它也仍然有效。

窗口看门狗由从APB1 时钟分频后得到的时钟驱动,通过可配置的时间窗口来检测应用程序非正常的过迟或过早的行为。

可通过IWDG_SetPrescaler(IWDG_Prescaler_32); 对其时钟进行分频,4-256,通过以下方式喂狗:/* Reload IWDG counter */IWDG_ReloadCounter();3. 1.25KHz 即每周期为0.8ms共计时350 个周期,即350*0.8ms=280ms综合以上,STM32看门狗时间(时限)与频率计算公式为:看门狗定时时限= IWDG_SetReload()的值/ 看门狗时钟频率看门狗时钟频率=LSI(内部低速时钟)的频率(40KHz)/ 分频数stm32独立看门狗和窗口看门狗特性、区别:总结起来,两者大概有以下几点特性和区别:1)独立看门狗没有中断,窗口看门狗有中断2)独立看门狗有硬件软件之分,窗口看门狗只能软件控制3)独立看门狗只有下限,窗口看门狗又下限和上限4)独立看门狗是12位递减的。

EnergyMicro+EFM32系列微控制器看门狗定时器(WDOG)

EnergyMicro+EFM32系列微控制器看门狗定时器(WDOG)

厦门办事处
E-mail:sales.xiamen@
沈阳办事处
E-mail:sales.shenyang@
产品应用笔记
©2012 Guangzhou ZLG MCU Technology Co., Ltd. ii
广州周立功单片机科技有限公司
看门狗定时器
EFM32 系列微控制器
2.1
基本操作 ................................................................................................................... 4
2.1.1 看门狗使能...........................................................................................................4
广州专卖店
地址:广州市天河区新赛格电子城 203-204 室 电话:(020)87578634 87569917 传真:(020)87578842
南京周立功
地址:南京市珠江路 280 号珠江大厦 1501 室 电话:(025) 68123901 68123902 传真:(025) 68123900
北京周立功
2.1.2 喂狗.......................................................................................................................4
2.2
配置........................................................................................................................... 4

STM32学习资料

STM32学习资料

STM32学习心得赫丛奎主要内容STM32基础功能和涉及到的库函数功能简介➢1、GPIO➢2、时钟➢3、ADC➢4、USART、➢5、TIM/PWMGPIOGPIO 是STM32最常用的设备之一。

STM32可以提供最多达80个双向IO 口(视型号而定),他们分别布在A到E 这5个端口中。

每个端口有16个GPIO。

每个GPIO口都可以承受最大5V的管压降。

通过GPIO配置寄存器,开发人员可以把GPIO口配置成想要的工作模式,一共8 种可能的配置:(4 输入+2 输出+2复用输出)➢①浮空输入_IN_FLOATING➢②带上拉输入_IPU➢③带下拉输入_IPD➢④模拟输入_AIN➢⑤开漏输出_OUT_OD➢⑥推挽输出_OUT_PP➢⑦复用功能的推挽输出_AF_PP➢⑧复用功能的开漏输出_AF_OD硬件电路硬件电路如图,LED0和LED1分别通过一个1K的限流电阻连接在STM32的GPIO.2和GPIO.3上,另一端接GND程序设计要点1、配置RCC寄存器组,使用PLL输出72MHz时钟;2、配置GPIOA.2和GPIOA.3为推挽输出,最大翻转频率为50MHz3、通过在GPIOA.2和GPIOA.3上输出高电平点亮LED,反之输出低电平熄灭LEDGPIO试验工程文件组详情试验流程图时钟1、时钟源在STM32中,共有5个时钟源:HSI、HSE、LSI、LSE、PLL。

①、HSI是高速内部时钟,RC振荡器,频率为8MHz。

②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。

③、LSI是低速内部时钟,RC振荡器,频率为40kHz。

④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。

⑤、PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。

倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。

40kHz的LSI供独立看门狗IWDG使用,或实时时钟RTC的时钟源。

一文读懂STM32f030c8t6单片机ADC模拟看门狗的使用

一文读懂STM32f030c8t6单片机ADC模拟看门狗的使用

一文读懂STM32f030c8t6单片机ADC模拟看门狗的使用
STM32f030c8t6单片机ADC模拟看门狗使用
根据st官方手册提供描述不难看出,ADC模拟看门狗其实就是用户可以设置一个AD值上下限值,然后打开此模拟看门狗中断开关,那么就会在检测到当IO输入转换AD值小于下限值或大于上限值时进入相应的中断函数。

大致就是这么一个功能实现过程。

根据表63可以看出,模拟看门狗可以设置为多通道和单通道模式,即可以通过设置相应的寄存器位来选择某一通道或多通道打开模拟看门狗检测。

那么明白了以上这些基础规则,那么我就要根据官方提供的库文件及里面的使用说明来配置相应函数来使用模拟看门狗。

打开此文件后下一步:
看!在这个官方提供的.c文件里面已经有介绍关于模拟看门狗使用的详细介绍的,只要理解了英文描述的意义,结合之前看数据手册关于ADC模拟看门狗的描述就会很快的完成模拟看门狗的配置程序。

下面即是完成的模拟看门狗配置函数:
最后还不要忘记加入打开看门狗中断的函数:
ADC_ITConfig(ADC1,ADC_IT_AWD,ENABLE);
完整的配置过程如下:
voidNVIC_Config(void)
{
NVIC_InitTypeDefNVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannelPriority=3;//先占优先级1级。

【6-06】Stm32寄存器--ADC and DAC

【6-06】Stm32寄存器--ADC and DAC
ห้องสมุดไป่ตู้
4位(STRT--Regular channel Start flag):规则通道开始(硬件在开始转换时置位,软件清0)。定义:0(规则通道未开始转换),1(规则通道已开始转换) 3位(JSTRT--Injected channel Start flag):注入通道开始(硬件在开始转换时置位,软件清0)。定义:0(规则通道未开始转换),1(规则通道已开始转换) 2位(JEOC--Injected channel End of Conversion):注入通道转换结束(硬件在所有注入通道转换结束时设置,由软件清0)。 定义:0(转换未完成),1(转换完成) 1位(EOC--End of Conversion):转换结束。(该位由硬件在(规则或注入)通道组转换结束时设置,由软件清除或由读取ADC_DR时清除。 定义:0(转换未完成),1(转换完成) 0位(AWD--Analog watchdog flag):模拟看门狗标志,该位在硬件转换的电压值超出了ADC_LTR和ADC_HTR寄存器定义的范围时置位,由软件清0。 定义:0(没事件),1(有事件)
23位(TSVREFE--Temperature Sensor and V REFINT Enable): 温度传感器和V refint使能(手动)。在多余1个ADC的器件中该位仅出现在ADC1中。 定义:0(禁止),1(开启)。【注】Vrefint :Internal Reference Voltage = 内部参考电压。 22位(SWSTART--SoftWare Start conversion of regular channels): 开始转换规则通道。(软件启动该位,转换后硬件马上清除此位) 如果在EXTSEL[2:0]位中选择了SWSTART为触发事件,该位用于启动一组规则通道的转换。定义:0(复位状态),1(开始转换规则通道)

STM32调试方法

STM32调试方法

STM32调试方法STM32是一款非常受欢迎的单片机系列,广泛应用于各种嵌入式系统中。

在开发STM32项目时,调试是一个非常重要的环节,它能帮助开发者检测和解决程序中的问题。

本文将介绍STM32的调试方法,包括硬件调试和软件调试。

一、硬件调试硬件调试是通过硬件工具来实现的,通常使用的工具有JTAG、SWD和UART等。

下面将详细介绍这些调试工具的使用方法。

1.JTAG调试JTAG是一种用于测试和调试电子系统的接口标准,它能够提供对目标设备的非侵入式访问。

在STM32项目中,JTAG接口一般用于调试目的,下面是使用JTAG调试STM32的步骤:步骤1:连接JTAG调试器和目标设备。

将JTAG调试器的TCK、TMS、TDI、TDO和GND引脚分别连接到目标设备的相应引脚上。

步骤2:配置STM32的调试模式。

在STM32的配置文件中,将调试模式设置为JTAG模式。

步骤3:使用调试工具进行调试。

使用JTAG调试工具,如OpenOCD或J-Link等,连接到JTAG调试器,然后启动调试器进行调试。

调试工具会与STM32建立连接,并允许开发者对程序进行单步调试、断点设置等操作。

2.SWD调试SWD(Serial Wire Debug)是一种单线(加地线)调试接口,它是ARM公司推出的一种调试接口标准。

SWD相比JTAG接口更简洁、更省引脚,因此在STM32项目中被广泛应用。

下面是使用SWD调试STM32的步骤:步骤1:连接SWD调试器和目标设备。

将SWD调试器的SWCLK、SWDIO和GND引脚分别连接到目标设备的相应引脚上。

步骤2:配置STM32的调试模式。

在STM32的配置文件中,将调试模式设置为SWD模式。

步骤3:使用调试工具进行调试。

使用SWD调试工具,如ST-Link或J-Link等,连接到SWD调试器,然后启动调试器进行调试。

调试工具会与STM32建立连接,并允许开发者对程序进行单步调试、断点设置等操作。

STM32单片机ADC的模拟看门狗的测试

STM32单片机ADC的模拟看门狗的测试

STM32单片机ADC的模拟看门狗的测试ADC的模拟看门狗用于检查电压是否越界。

他又上下两个边界,可分别在寄存器ADC_HTR和ADC_LTR中设置。

库函数是使用ADC_AnalogWatchdogThresholdsConfig设置的,无论是常规通道还是注入通道,都非常简单。

当模拟看门狗检测到电压高于上限或者低于下限时将会产生看门狗中断。

捕获这个中断,可以做出一些应对措施。

数据手册上特别之处的一个东西:模拟看门狗说使用的比较数据与ADC_CR2寄存器中设置的数据对齐方式无关。

看门狗比较是在数据对齐之前完成的。

先进行看门狗比较,再将数据放入ADC_DR数据寄存器。

在ST的库中,只有简单的三个与看门狗相关的函数:void ADC_AnalogWatchdogCmd(ADC_TypeDef* ADCx,uint32_t ADC_AnalogWatchdog); void ADC_AnalogWatchdogThresholdsConfig(ADC_TypeDef* ADCx,uint16_t HighThreshold,uint16_t LowThreshold);void ADC_AnalogWatchdogSingleChannelConfig(ADC_TypeDef* ADCx,uint8_t ADC_Channel);使用ADC_AnalogWatchdogThresholdsConfig设置触发看门狗的上下限使用ADC_AnalogWatchdogSingleChannelConfig配置要使用模拟看门狗的通道配置完成后使用ADC_AnalogWatchdogCmd启动模拟看门狗。

我写的函数很简单,就这么三行。

将模拟看门狗加在ADC1的CH1上。

代码如下:void ADC_WatchdogConfig(void){ADC_AnalogWatchdogSingleChannelConfig(ADC1,ADC_Channel_0);ADC_AnalogWatchdogThresholdsConfig(ADC1,1500,0xFFF);ADC_AnalogWatchdogCmd(ADC1,ADC_AnalogWatchdog_SingleRegEnable);。

STM32F103系列单片机最实用看门狗的详细资料概述

STM32F103系列单片机最实用看门狗的详细资料概述

STM32F103系列单片机最实用看门狗的详细资料概述为什么使用看门狗事情很简单先前做的一款采集数据的产品不知道为何异常,陷入死循环然后“死机”,分析了很多次,没发现原因,但是每次重新上点后就能正常采集到数据。

后来找到了解决方法:看门狗!目的是当程序走入死循环或者硬件异常时,可以自动复位,这样就可以得到跟重新上电后差不多的效果了。

使用的平台:stm32f103系列单片机使用的烧写调试模式:Jlink SWD 模式。

使用STM32官方模板库。

ST系列单片机看门狗分为两种:1.独立看门狗,2.窗口看门狗。

独立看门狗:可参看RM(reference Manual)的Independent watchdog (IWDG)当然,只是简要查看下RM中的介绍(至于寄存器的操作,我们可以略过,因为我们使用库的开发,但是基本流程一定要了解!)。

在这里我们要抓住几个关键点:a、stm32f10x系列有两个看门狗,看门狗主要用于检测由于软件出错的问题,并触发系统自动复位,或者触发一个中断(窗口看门狗才有)。

b、独立看门狗的时钟源为LSI,尽管主时钟出错,它还是能保持激活状态。

窗口看门狗的时钟源为APB1时钟,并且可以修改分频值。

c、独立看门狗:有独立时钟(内部低速时钟LSI),所以不受系统硬件影响的系统故障探测器。

主要用于监视硬件错误。

精确度要求比较低。

d、窗口看门狗:时钟与系统相同。

如果系统时钟不走了,这个狗也就失去作用了,主要用于监视软件错误。

精确度要求更高。

看门狗原理简介:有某个寄存器按照时钟源不断的递减(有只狗,不断的消耗能量),当该。

STM32_RM_CH_V10_1中文参考手册

STM32_RM_CH_V10_1中文参考手册

●●●●●●●●●●
●●●●●●●●●●



●●●●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●

●●●●●●●●●●
●●●●●●●●●●
提示:点击上表中的章节名字可以直接跳转到对应的章节。
参照2009年12月 RM0008 Reference Manual 英文第10版 本译文仅供参考,如有翻译错误,请以英文原稿为准。请读者随时注意在ST网站下载更新版本
串 行 总 线
器 局 域 网
外 设 总 线
间 总 线 接 口
同 步 异 步 收
串 行 总 线

(RTC)




(BKP)
(ETH)
OTG(OTG_FS)
(I2C)
(SPI)
(bxCAN)
(USB)
(FSMC)
( WWDG)
(IWDG)
(TIMx(x=1…8))
(DAC)
(ADC)
(USART)
(GPIO)
请读者随时注意在st网站下载更新版本目录stm32f10xxx参考手册727时钟安全系统css83728rtc时钟83729看门狗时钟847210时钟输出8473rcc寄存器85731时钟控制寄存器rcccr85732时钟配置寄存器rcccfgr86733时钟中断寄存器rcccir88734apb2外设复位寄存器rccapb2rstr91735apb1外设复位寄存器rccapb1rstr92736ahb外设时钟使能寄存器rccahbenr94737apb2外设时钟使能寄存器rccapb2enr95738apb1外设时钟使能寄存器rccapb1enr97739备份域控制寄存器rccbdcr997310控制状态寄存器rcccsr1007311ahb外设时钟复位寄存器rccahbrstr1017312时钟配置寄存器2rcccfgr21017313rcc寄存器地址映像103通用和复用功能iogpio和afio10581gpio功能描述105811通用iogpio106812单独的位设置或位清除107813外部中断唤醒线107814复用功能af107815软件重新映射io复用功能107816gpio锁定机制107817输入配置107818输出配置108819复用功能配置1098110模拟输入配置1098111外设的gpio配置11082gpio寄存器描述113821端口配置低寄存器gpioxcrlxa

STM32看门狗实验

STM32看门狗实验
实验目的:
1.分析和学习固件库 2.理解固件库的结构 3.通过 stm32f10x_iwdg.c/.h 文件,熟悉 IWDG(独立看门狗)的控制和工作原理 4.复习按键中断的使用方法
实验要求:
1.使用 LED 灯 LED1 来指示程序是否重启(IWDG) 2.使用按键 WAKEUP 来不断地喂狗,并用 LED4 灯指示
最适合应用于要求看门狗运行时,完全独立与主应用之外的项目
硬件电路分析:
这里的核心是在 STM32 内部进行,并不需要外部电路。但是考虑到指示当前状态和喂狗等操作,我们需要 2 个 IO 口,一 个用来输入喂狗信号,另外一个用来指示程序是否重启。喂狗我们采用板上的 WAKEUP 键来操作,而程序重启,则是通过 LED4 来指示的。LED4 和 WAKEUP 的连接在前面跑马灯实验已经介绍了,这里我们不再多说
/* Check the parameters */ assert_param(IS_IWDG_WRITE_ACCESS(IWDG_WriteAccess)); IWDG->KR = IWDG_WriteAccess; } 可以看出,该函数的作用就是把输入参数传递到 IWDG_KR 中去. 在 stm32f10x.h 中我们找到输入参数的定义,如下所示 #define IWDG_WriteAccess_Enable ((uint16_t)0x5555) #define IWDG_WriteAccess_Disable ((uint16_t)0x0000) #define IS_IWDG_WRITE_ACCESS(ACCESS) (((ACCESS) == IWDG_WriteAccess_Enable) || \
STM32 的独立看门狗由内部专门的 40Khz 低速时钟驱动,即使主时钟发生故障,它也仍然有效。这里需要注意独立看门狗 的时钟并不是准确的 40Khz,而是在 30~60Khz 之间变化的一个时钟,只是我们在估算的时候,以 40Khz 的频率来计算, 看门狗对时间的要求不是很精确,所以,时钟有些偏差,都是可以接受的。 通过对 LSI 进行校准可获得相对精确的看门狗超时时间。有关 LSI 校准的问题,详见数据手册 LSI 时钟一节。

stm32f103中文手册[1]

stm32f103中文手册[1]

STM32F103中文手册概述32位ARM® Cortex®-M3内核,最高运行频率72 MHz从16 KB到1 MB的闪存,从6 KB到96 KB的SRAM从36到144个引脚的不同封装,支持LQFP、BGA、TFBGA、UFBGA和V FQFPN等从1.65 V到3.6 V的宽电源电压范围,支持低功耗模式和电池供电从-40°C到+105°C的工作温度范围多达11个通信接口,包括3个USART、2个UART、2个I2C、2个SPI、1个CAN和1个USB 2.0全速多达15个定时器,包括7个16位通用定时器、2个16位基本定时器、2个16位高级定时器、2个32位定时器和2个看门狗定时器多达3个12位模数转换器(ADC),每秒可采样1.2 M次两路12位数模转换器(DAC)多达80个外部中断/事件源多达112个GPIO端口,支持5 V耐压CRC计算单元,用于检测数据传输错误实时时钟(RTC),支持日历功能和闹钟功能嵌入式内存保护单元(MPU),用于增强应用程序安全性嵌入式调试支持,包括串行线调试(SWD)和JTAG接口7层DMA控制器,支持所有外设数据传输可选的双银行闪存模式,支持实时软件更新存储器映射STM32F103系列单片机的存储器映射如下图所示:![存储器映射]代码区:包括闪存和系统存储器。

闪存用于存储用户程序代码和数据。

系统存储器用于存储引导加载程序(bootloader)和设备标识符。

SRAM区:包括SRAM1和SRAM2。

SRAM1用于存储用户程序数据和堆栈。

SRAM2用于存储备份寄存器和备份域。

外设区:包括APB1外设、APB2外设和AHB外设。

APB1外设和APB2外设是通过两个高速总线矩阵连接到内核的低速外设。

AHB外设是通过一个高速总线矩阵连接到内核的高速外设。

外部设备区:包括FSMC区域、NOR/PSRAM区域和NAND/CF区域。

STM32H7模拟比较器(COMP)应用说明书

STM32H7模拟比较器(COMP)应用说明书

模拟比较器COMP在STM32H7上的应用前言STM32H7集成了运算放大器(COMP),可与模拟信号进行比较来进行电压检测,内置的COMP节省了MCU外接COMP 的硬件成本。

本文档将介绍STM32H7的片内COMP的不同工作模式,并提供配置COMP的例程。

STM32H7模拟比较器(COMP)特性以下是STM32H7模拟比较器主要特性:•两个独立的比较器COMP1和COMP2可以组合在一起来创建一个窗口比较器•可编程的比较器迟滞•可编程的速度和功耗•可配置的正和负输入•多路复用I/O引脚,DAC通道1和2,内部参考电压和三个因数值•输出重定向o配置 I/Oso计时器——打断事件给快速PWM关闭,逐周期电流控制,输入捕获给时间测量o输出 blanking 源•比较两个模拟信号,并提供数字输出指示哪个大•有能力从停止模式唤醒CPUSTM32H7模拟比较器(COMP)特性工作模式COMP窗口模式窗口比较器的目的是指示,如果模拟电压比阈值电压更低或更高,应用于每一个比较器的反相输入。

两个非反相输入端可以在内部连接,通过启用WINMODE,可以节省一个IO口,用作其它的用途。

COMP打断信号生成比较器(COMP1/COMP2) 输出值能产生打断输入信号给定时器 (TIM1 & TIM8) 在输入脚 TIMx_BKIN or TIMx_BKIN2 通过配置 GPIO alternate function。

COMP Blanking防止在PWM周期的开始由于短周期电流峰值,电流调节跳闸。

掩码COMP输出重定向到定时器打断输入。

应用实例硬件环境本文档硬件环境基于STM32H743I_EVAL。

CN6的第29引脚(PB0)作为COMP1模拟电压的输入引脚。

软件配置虽然STM32H7系列中的 ADC 可用作模拟看门狗,看门狗的阈值上限和下限均可编程,但是由于 ADC 在停机模式下会断电,因此 MCU 必须保持在运行模式下才能监视输入端的模拟电压。

7.看门狗实验

7.看门狗实验

IWDG_SetReload(rlr);
IWDG_ReloadCounter(); IWDG_Enable(); }
3.3 独立看门狗主程序
回到主界面,在 main.c 文件里面编写如下代码:
#include "led.h" #include "delay.h"
#include "sys.h"
#include "wdg.h"
2.5 预分频寄存器IWDG_PR(STM32参考手册 P318)
2.6 重装寄存器IWDG_RLR(STM32参考手册 P318)
2.7 独立看门狗超时时间
溢出时间计算: Tout=((4×2^prer) ×rlr) /40 时钟频率LSI=40K, 一个看门狗时钟周期就是最短超时时间。 最长超时时间= (IWDG_RLR寄存器最大值)X看门狗时钟周期
delay_ms(100);
PBout(0)=0;
while(1);
}
#include "sys.h"
#include "wdg.h"
int main(void)
{ delay_init(); LED_Init();
5.3 窗口看门狗主程序
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); WWDG_Init(0X7F,0X5F,WWDG_Prescaler_8);
void WWDG_Init(u8 tr,u8 wr,u32 fprer);
void WWDG_Set_Counter(u8 cnt); void WWDG_NVIC_Init(void); #endif

【单片机】CH32V103C8T6——窗口看门狗

【单片机】CH32V103C8T6——窗口看门狗

【单⽚机】CH32V103C8T6——窗⼝看门狗本章教程通过串⼝调试助⼿打印显⽰程序运⾏状态,具体现象如下:若计数器值在上窗⼝值和下窗⼝值0X40之间的时候,进⾏喂狗操作,计数器重新计数,程序正常运⾏,串⼝打印显⽰:The program runs normally;若程序在快要减到0X3F时候通过中断函数进⾏喂狗操作,则串⼝打印显⽰:Execute interrupt function The program runs normally;若程序没有在窗⼝时间内进⾏喂狗操作,则程序会不停进⾏复位。

1、WWDG简介及相关函数介绍窗⼝看门狗(WWDG)通常⽤来监测系统运⾏的软件故障,例如外部⼲扰、不可预见的逻辑错误等情况。

其需要在⼀个特定的窗⼝时间(有上下限)内进⾏计数器刷新(喂狗),否则早于或者晚于这个窗⼝时间看门狗电路都会产⽣系统复位。

CH32V103的窗⼝看门狗具有可编程的7位⾃减型计数器;具有双条件复位,当计数器值⼩于0X40,或者计数器值在窗⼝时间外被重装载;具有唤醒提前通知功能(EWI),⽤于及时喂狗动作防⽌系统复位。

CH32V103的窗⼝看门狗运⾏基于⼀个可编程的7 位的⾃减型计数器,其挂载在 APB1 总线下,计数时基 WWDG_CLK 来源(PCLK1/4096)时钟的分频,分频系数在配置寄存器 WWDG_CFGR 中的 WDGTB[1:0]域设置。

递减计数器处于⾃由运⾏状态,⽆论看门狗功能是否开启,计数器⼀直循环递减计数。

关于CH32V103窗⼝看门狗具体信息,可参考CH32V103应⽤⼿册。

本章教程通过调⽤窗⼝看门狗库函数中相关函数进⾏程序编写,关于库函数相关介绍如下:void WWDG_DeInit(void);void WWDG_SetPrescaler(uint32_t WWDG_Prescaler);void WWDG_SetWindowValue(uint8_t WindowValue);void WWDG_EnableIT(void);void WWDG_SetCounter(uint8_t Counter);void WWDG_Enable(uint8_t Counter);FlagStatus WWDG_GetFlagStatus(void);void WWDG_ClearFlag(void);1.1、void WWDG_DeInit(void)功能:将WWDG外围寄存器初始化为其默认重置值输⼊:⽆1.2、void WWDG_SetPrescaler(uint32_t WWDG_Prescaler)功能:设置WWDG预分频器输⼊:WWDG_预分频器:指定WWDG预分频器。

【青风带你学stm32f051系列教程】第4课看门狗WDG爱板网

【青风带你学stm32f051系列教程】第4课看门狗WDG爱板网

【青风带你学stm32f051系列教程】第4课看门狗WDG爱板网【青风带你学stm32f051系列教程】第4课看门狗WDG2012年12月10日 ? 教程 ? 暂无评论 ? 被围观 1,034+第4课看门狗WDG在stm32f051系列CORTEX M0中内置两个看门狗,提供了更高的安全性、时间的精确性和使用的灵活性。

两个看门狗设备( 独立看门狗和窗口看门狗)可用来检测和解决由软件错误引起的故障;当计数器达到给定的超时值时,触发一个中断(仅适用于窗口型看门狗)或产生系统复位。

独立看门狗(IWDG) 由专用的低速时钟(LSI)驱动,即使主时钟发生故障它也仍然有效。

窗口看门狗由从APB1时钟分频后得到的时钟驱动,通过可配置的时间窗口来检测应用程序非正常的过迟或过早的操作。

IWDG 最适合应用于那些需要看门狗作为一个在主程序之外,能够完全独立工作,并且对时间精度要求较低的场合。

WWDG最适合那些要求看门狗在精确计时窗口起作用的应用程序。

这里面我们举一个例子,设置IWDG的实验,也就是独立看门狗。

我们演示了独立看门狗重导计数器如何在一个常规周期内升级并且在设定周期内通过模拟软件错误产生MCU的独立看门狗复位。

正常情况向程序在实现无限循环,当通过外部中断模拟一个软件错误,就要进行喂狗,整个循环中断跳出,看门狗进行系统复位。

这就是我们需要达到的效果。

下面就通过软硬件方面进行分析:软件准备:打开keil编译环境,设置系统工程树如下图所示:如上图所示,我们需要配置的就是IWDG和定时器TIM14的设置,库函数调用stm32f0xx_iwdg.c,中断函数在stm32f0xx_it.c函数内。

独立看门狗的整个系统结构如下图所示:在设置定时器时我们主要配置TIM14去测量LSI振荡频率,在中断中,写一个无效地址产生一个硬故障异常使得无法回到主程序(这时IWDG从导计数器没有被更新),设置代码如下:上面同时设定了定时器TIM14的嵌套中断,中断函数中我们要计算出 LsiFreq ,也就是LSI 的时钟频率,可以按照下面方式进行设定:然后我们需要确定定时器的工作方式:上面的工作做完后,我们就可以通过TIM14定时器来确定LIS的工作频率,那么IWDG需要通过LSI的工作频率驱动装载值,试验中,我们设240ms的循环时间,250ms为超时时间,当超过250ms的时候认为出现了软件错误,需要喂狗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

STM32单片机的模拟看门狗的库函数设置
ADC的模拟看门狗用于检查电压是否越界。

他又上下两个边界,可分别在寄存器ADC_HTR和ADC_LTR中设置。

库函数是使用ADC_AnalogWatchdogThresholdsConfig设置的,无论是常规通道还是注入通道,都非常简单。

当模拟看门狗检测到电压高于上限或者低于下限时将会产生看门狗中断。

捕获这个中断,可以做出一些应对措施。

数据手册上特别之处的一个东西:模拟看门狗说使用的比较数据与ADC_CR2寄存器中设置的数据对齐方式无关。

看门狗比较是在数据对齐之前完成的。

先进行看门狗比较,再将数据放入ADC_DR数据寄存器。

在ST的库中,只有简单的三个与看门狗相关的函数:
void ADC_AnalogWatchdogCmd(ADC_TypeDef* ADCx, uint32_t ADC_AnalogWatchdog);void ADC_AnalogWatchdogThresholdsConfig(ADC_TypeDef* ADCx, uint16_t HighThreshold,uint16_t LowThreshold);void ADC_AnalogWatchdogSingleChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel); 使用ADC_AnalogWatchdogThresholdsConfig设置触发看门狗的上下限
使用ADC_AnalogWatchdogSingleChannelConfig配置要使用模拟看门狗的通道
配置完成后使用ADC_AnalogWatchdogCmd启动模拟看门狗。

我写的函数很简单,就这么三行。

将模拟看门狗加在ADC1的CH1上。

代码如下:
void
ADC_WatchdogConfig(void){ ADC_AnalogWatchdogSingleChannelConfig(ADC1,ADC_Chan nel_0); ADC_AnalogWatchdogThresholdsConfig(ADC1,1500,0xFFF); ADC_AnalogWatchdogCmd(ADC1,ADC_AnalogWatchdog_SingleRegEnable);}
NVIC中初始化模拟看门狗:
void NVIC_Config(void){ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置中断优先级分组NVIC_InitStructure.NVIC_IRQChannel = ADC_IRQn; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;。

相关文档
最新文档