一元二次方程根与系数的关系教学设计

合集下载

一元二次方程的根与系数的关系 优秀教学设计(教案)

一元二次方程的根与系数的关系  优秀教学设计(教案)

一元二次方程的根与系数的关系教学时间课题课型新授教学媒体多媒体教学目标知识技能1.熟练掌握一元二次方程的根与系数关系。

2.灵活运用一元二次方程的根与系数关系解决实际问题。

3.提高学生综合运用基础知识分析解决较复杂问题的能力。

过程方法学生经历探索,尝试发现韦达定理,感受不完全归纳验证以及演绎证明。

情感态度培养学生观察,分析和综合,判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神。

教学重点一元二次方程的根与系数关系。

教学难点对根与系数关系的理解和推导。

【教学过程】教学程序及教学内容师生行为设计意图一、复习引入导语:一元二次方程的根与系数有着密切的关系,早在16世纪法国的杰出数学家韦达发现了这一关系,你能发现吗?二、探究新知1.课本思考。

分析:将(x- x1)(x-x²)=0化为一般形式x²-( x1+x²)x+ x1x²=0与x²+px+ q=0对比,易知p=-( x1+x²),q= x1 x²。

即二次项系数是1的一元二次方程如果有实教师出示问题,引出课题学生初步了解本课所要研究的问题学生通过去括号、合并得到一般形式的创设问题情境,激发学生好奇心,求知欲通过思考问题,让学生知道二次项系数根,则一次项系数等于两根和的相反数,常数项等于两根之积。

2.跟踪练习。

求下列方程的两根x1、x²。

的和与积。

x²+3x+2=0; x²+2x-3=0; x²-6x+5=0; x²-6x-15=03.方程2x²-3x+1=0的两根的和、积与系数之间有类似的关系吗?分析:这个方程的二次项系数等于2,与上面情形有所不同,求出方程两根,再通过计算两根的和、积,检验上面的结论是否成立,若不成立,新的结论是什么?4.一般的一元二次方程a x²+bx+c=0(a≠0)中的a不一定是1,它的两根的和、积与系数之间有第3题中的关系吗?分析:利用求根公式,求出方程两根,再通过计算两根的和、积,得到方程的两个根x1、x²和系数a,b,c的关系,即韦达定理,也就是任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比。

《一元二次方程的根与系数的关系》 教学设计

《一元二次方程的根与系数的关系》 教学设计

《一元二次方程的根与系数关系》教学设计教材分析:本课是在学生已经学习了一元二次方程求根公式的基础上,对一元二次方程的根与系数之间的关系进行再探究,通过本课的学习,使学生进一步了解一元二次方程两根之和、两根之积与一元二次方程中系数之间的关系.教学目标:【知识与能力目标】1.掌握一元二次方程根与系数的关系;2.能运用根与系数的关系解决具体问题.【过程与方法】经历探索一元二次方程根与系数的关系的过程,体验观察→发现→猜想→验证的思维转化过程,培养学生分析问题和解决问题的能力.【情感态度与价值观】通过观察、归纳获得数学猜想,体验数学活动充满着探索性和创造性,理解事物间相互联系、相互制约的辩证唯物主义观点,掌握由“特殊——一般——特殊”的数学思想方法,培养学生勇于探索的精神.教学重难点:【教学重点】一元二次方程根与系数的关系及其应用.【教学难点】探索一元二次方程根与系数的关系.课前准备:多媒体教学过程:问题1:(1)一元二次方程的一般形式是什么?(2)一元二次方程有实数根的条件是什么?(3)当Δ>0,Δ=0,Δ<0时,一元二次方程根的情况如何?(4)一元二次方程的求根公式是什么?[师生活动]教师指导学生回忆知识,学生进行口答,教师指出重点.[答](1)一元二次方程一般形式为ax2+bx+c=0(a≠0);(2)当△≥0时,一元二次方程有两个实数根;(3)当△>0时,一元二次方程有两个不等实根;当△=0时,一元二次方程有两个相等实根;当△<0时,一元二次方程没有实根;(4)方程ax2+bx+c=0(a≠0)的求根公式为a acbbx24 2-±-=(△≥0).【设计意图】通过对一元二次方程相关知识的复习巩固旧知识,并为新知识的学习做铺垫。

问题2:请完成下面的表格观察、思考表格中方程两根之和与两根之积与系数有何关系,你能从中发现什么规律?你有什么发现?【设计意图】学生通过计算、观察、分析,发现一元二次方程中根与系数的关系,发展学生的感性认识,体会由特殊到一般的认识过程。

一元二次方程的根与系数的关系 优秀教学设计(教案)

一元二次方程的根与系数的关系  优秀教学设计(教案)

21.2 .4一元二次方程的根与系数的关系一、教材分析:《一元二次方程根与系数的关系》是人教版初中数学九年级上册第二十一章21.2节的内容,该内容是在在学生学习了一元二次方程的解法和根的判别式之后引入的。

它深化了两根与系数之间的关系,是今后继续研究一元二次方程根的情况的主要工具,是方程理论的重要组成部分。

利用这一关系可以解决许多问题,同时在高中数学的学习中有着更加广泛的应用。

因此本节课起着承上启下的作用。

二、学情分析:九年级阶段的学生,随着年龄的增长以及实验几何向论证几何的逐步推进,学生们的逻辑推理能力已有了较大提高。

因此在前面学习了一元二次方程的解法后,对根与系数的关系进行探究就比较容易。

三、教学目标:(一)知识与技能了解一元二次方程根与系数的关系,并利用根与系数关系求出两根之和、两根之积。

(二)过程与方法通过问题的引导,发现、证明并归纳一元二次方程根与系数的关系,在探究过程中,感受由特殊到一般地认识事物的规律。

(三)情感态度价值观在经历探索一元二次方程根与系数的关系的过程中,培养观察分析和综合判断的能力,激发学生发现规律的积极性,鼓励他们培养勇于探索的精神。

四、教学策略教学方法:讲授法、练习法、课堂合作探究法。

教学工具:ppt课件、白板笔。

五、重点难点:重点:一元二次方程根与系数关系的探索及简单应用难点:探索发现一元二次方程根与系数关系六、教学过程:教学环节教师活动学生活动设计意图(一)创设情境(3分钟)1、问:操场的长和宽满足一元二次方程2x2-400x +15000= 0的两个根,如果方程的两个根为x1、x2,你能用x1、x2表示操场的周长和面积并求出来么?2、用以前的方法解这个方程求出两个根很麻烦,是否还有别的方法---不解方程也能迅速求出操场的周长和面积?----要解决这学生能表示矩形周长=(x1+x2)×2,面积=x1x2,,并用以前的方法解方程,从而得出操场的周长和面积。

《一元二次方程根与系数的关系》教案

《一元二次方程根与系数的关系》教案

一元二次方程根与系数的关系教学目标:1、掌握一元二次方程根与系数的关系。

2、会利用定理求解一元二次方程两根之和与两根之积。

3、通过学生自己探索,发现根与系数关系,增强学生信心,激发学生对于数学的学习兴趣和探究欲望。

教学重点1、根与系数关系及运用 教学难点1、如何通过求根公式发现韦达定理。

2、如何运用韦达定理解决一些一元二次方程的求解问题。

过程一、复习提问(1)写出一元二次方程的一般式和求根公式。

ax 2+bx+c=0 (a ≠0) x= (b 2-4ac ≥0)(2)求一个一元二次方程,使它两根分别为①2和3;②-4和7;③3和-8;④-5和-2 二、新课讲解如果方程x 2+px+q=0有两个根是x 1,x 2 那么有x 1+ x 2=-p, x 1 •x 2=q猜想:2x 2-5x+3=0,这个方程的两根之和,两根之积是与各项系数之间有什么关系?问题2;对于一元二次方程的一般式是否也具备这个特征?设x 1 、x 2是一元二次方程ax 2+bx+c=0 (a ≠0)的两个根,则两根之和与两根之积与各项系数之间有什么样的关系? x 1+x 2= x 1·x 2=三、巩固练习a acb b 242-±-a b-ac口答下列方程的两根之和和与两根之积。

1)x 2-3x+1=0 2) x 2-2x=2 3) 2x 2-3x=0 4) 3x 2=1 判断对错,如果错了,说明理由。

1) 2x 2-11x+4=0两根之和11,两根之积4。

2) x 2+2=0两根之和0,两根之积2。

3) x 2+x+1=0两根之和-1,两根之积1。

四、能力提高例题1 已知方程x 2+kx+k+2=0的两个实数根是x 1,x 2且x 12+x 22=4求k 的值 解:(略)引申:(1、若ax 2+bx +c =0 (a ≠0 且 ∆≥0) (1)若两根互为相反数,则b =0; (2)若两根互为倒数,则a =c;(3)若一根为0,则c =0 ; (4)若一根为1,则a +b +c =0 ;(5)若一根为-1,则a -b +c =0; (6)若a 、c 异号,方程一定有两个实数根例题2 方程mx 2-2mx+m-1=0(m ≠0 ) 有一个正根,一个负根,求m 的取值范围。

一元二次方程的根与系数的关系》教案

一元二次方程的根与系数的关系》教案

一元二次方程的根与系数的关系》教案一元二次方程的根与系数的关系知识与技能】掌握一元二次方程根与系数的关系,能够使用关系定理求已知一元二次方程的两根之和及两根之积,并解决一些简单的问题。

过程与方法】通过探究一元二次方程根与系数的关系,培养学生的观察思考、归纳概括能力和解决问题的能力,渗透整体的数学思想和求简思想。

情感态度】通过学生自主探究,发现根与系数的关系,增强研究的信心,培养科学探究精神。

教学重点】根与系数的关系及运用。

教学难点】定理的发现及运用。

一、情境导入,初步认识我们知道生活中许多事物存在着一定的规律,有人发现并验证后就得到伟大的定理,而我们的数学学科中更蕴藏着大量的规律。

那么一元二次方程中是否也存在什么规律呢?今天我们一起去探究,感受一次当科学家的滋味。

二、思考探究,获取新知解下列方程,将得到的解填入下面的表格中,观察表中x1+x2,x1·x2的值,它们与对应的一元二次方程的各项系数之间有什么关系?从中你能发现什么规律?教学说明】通过让学生计算一些特殊的一元二次方程的两根之和与两根之积,引导学生从中发现存在的一般规律,渗透特殊到一般的思考方法。

归纳总结】一般地,对于关于x的一元二次方程ax2+bx+c=0(a≠0),用求根公式求出它的两个根x1、x2,由一元二次方程ax2+bx+c=0的求根公式可知:x1=(-b+√(b^2-4ac))/2a,x2=(-b-√(b^2-4ac))/2a则有以下结果:x1+x2=-b/a,x1·x2=c/a教学说明】让学生自己发现规律,找到成功感,再从理论上加以验证,让学生经历从特殊到一般的科学探究过程。

三、运用新知,深化理解1.求下列方程的两根之和与两根之积。

1)x2-6x-15=0;2)5x-1=4x2;3)x2=4;4)2x2=3x。

2.已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2.1)求k的取值范围;2)若|x1+x2|=x1x2-1,求k的值。

一元二次方程根与系数的关系式教案设计

一元二次方程根与系数的关系式教案设计

一元二次方程根与系数的关系式教案设计一、教学目标1.把握一元二次方程根与系数的关系式,能运用它由已知一元二次方程的一个根求出另一个根与未知系数;2.通过根与系数的教学,进一步培养学生分析、观看、归纳的能力和推理论证的能力;3.通过本节课的教学,向学生渗透由专门到一样,再由一样到专门的认识事物的规律。

教学重点和难点:二、重点难点疑点及解决方法1.教学重点:根与系数的关系及其推导。

2.教学难点:正确明白得根与系数的关系。

3.教学疑点:一元二次方程根与系数的关系是指一元二次方程两根的和,两根的积与系数的关系。

4.解决方法;在实数范畴内运用韦达定理,必须注意那个前提条件,而应用判别式的前提条件是方程必须是一元二次方程,即二次项系数,因此,解题时,要依照题目分析题中有没有隐含条件和。

三、教学步骤(一)教学过程1.复习提问(1)写出一元二次方程的一样式和求根公式。

(2)解方程①,②。

观看、摸索两根和、两根积与系数的关系。

在教师的引导和点拨下,由繁重得出结论,教师提问:所有的一元二次方程的两个根都有如此的规律吗?2.推导一元二次方程两根和与两根积和系数的关系。

设是方程的两个根。

由此得出,一元二次方程的根与系数的关系。

(一元二次方程两根和与两根积与系数的关系)结论1.假如的两个根是,那么。

假如把方程变形为。

我们就可把它写成的形式,其中。

从而得出:略写结论2.假如方程的两个根是,那么。

结论1具有一样形式,结论2有时给研究问题带来方便。

练习1.(口答)下列方程中,两根的和与两根的积各是多少?(1);(2);(3);(4);(5);(6)此组练习的目的是更加熟练把握根与系数的关系。

3.一元二次方程根与系数关系的应用。

(1)验根。

(口答)判定下列各方程后面的两个数是不是它的两个根。

验根是一元二次方程根与系数关系的简单应用,应用时要注意三个问题:(1)要先把一元二次方程化成一样形式,(2)不要漏除二次项系数,(3)还要注意中的负号。

21.2.4一元二次方程的根与系数的关系(教案)

21.2.4一元二次方程的根与系数的关系(教案)
此外,我也在思考如何更好地处理课堂上的难点问题。对于一些理解上的难点,如判别式的计算和应用,我可能需要设计更多的互动环节,让学生在实践中逐步消化这些难点。通过不断的重复和练习,我相信学生们能够逐渐克服这些困难。
4.培养合作交流意识:通过小组讨论、合作探究,培养学生与他人合作解决问题的能力,增强团队协作意识。
5.激发创新思维:鼓励学生在探索一元二次方程根与系数关系的过程中,勇于提出新观点、新方法,培养创新思维能力。
三、教学难点与重点
1.教学重点
(1)理解和掌握一元二次方程的根与系数之间的关系,特别是韦达定理的运用。
实践活动和小组讨论的环节,我看到了学生们积极参与的热情。他们在讨论中能够相互启发,共同解决问题。不过,我也观察到,有些小组在解决问题时还是倾向于使用公式,而不是深入理解背后的原理。这让我意识到,在今后的教学中,我需要更加注重培养学生对数学概念深层次的理解能力。
在学生小组讨论后,成果分享环节也让我有所反思。我意识到,学生们在表达自己的思考过程时,有时会显得不够自信。这可能是因为他们对知识的掌握还不够牢固,或者是对公开表达有所顾虑。因此,我打算在接下来的课程中,更多地给予学生鼓励和支持,帮助他们建立自信,勇于表达。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元二次方程的根与系数关系的基本概念。一元二次方程的根与系数关系是通过韦达定理来描述的,它揭示了方程的根与系数之间的内在联系。这个关系在数学理论和实际应用中都具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。通过解一个实际的一元二次方程,展示如何运用韦达定理来快速找到方程的根,并解决实际问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

八年级数学下册《一元二次方程的根与系数的关系》教案、教学设计

八年级数学下册《一元二次方程的根与系数的关系》教案、教学设计
三、教学重难点和教学设想
(一)教学重难点
1.重点:一元二次方程的根与系数的关系,求根公式的推导与应用,以及在实际问题中的运用。
2.难点:
-理解判别式的概念及其在一元二次方程根的性质判断中的应用。
-对求根公式的记忆和熟练运用,尤其是公式中各个符号的含义和它们之间的关系。
-将实际问题抽象成一元二次方程模型,运用数学知识解决实际问题。
-借助几何图形或动画,形象地展示求根公式的推导过程。
-通过实际例题,指导学生如何运用求根公式解题。
(三)学生小组讨论
1.将学生分成若干小组,针对以下问题进行讨论:
-一元二次方程的根与系数之间存在哪些关系?
-如何利用判别式判断方程的根的情况?
-求根公式在解题过程中的作用是什么?
2.各小组汇报讨论成果,老师进行点评和补充。
4.教学策略与方法:
-采用差异化教学,针对不同学生的学习风格和能力水平,提供个性化的指导和帮助。
-利用信息技术,如数学软件、在线平台等,为学生提供丰富的学习资源和工具,提高学习效率。
-定期进行学习反馈,通过作业、小测验等形式,及时了解学生的学习情况,调整教学进度和方法。
5.情感态度与价值观的培养:
-在教学过程中,注重鼓励学生,增强他们的自信心,培养面对困难的勇气和解决问题的毅力。
二、学情分析
八年级学生已经具备了一定的数学基础,掌握了一元一次方程的解法及其应用,对于一元二次方程也有初步的认识。在此基础上,学生对于本章节《一元二次方程的根与系数的关系》的学习,既有知识储备上的优势,也存在一定难度。大部分学生能够理解根与系数的关系,但可能在运用求根公式解题时,对公式的记忆和运用上存在困难。此外,学生在解决实际问题时,可能难以将问题抽象成一元二次方程模型。因此,在教学过程中,教师应关注以下几点:

一元二次方程的根与系数的关系教案

一元二次方程的根与系数的关系教案

一元二次方程的根与系数的关系教案一元二次方程的根与系数的关系教案一、教学目标(一)知识与技能通过观察、归纳、类比、讨论等活动,探索并掌握一元二次方程的根与系数的关系.(二)过程与方法通过对方程的求解过程进行回顾,渗透从特殊到一般的数学思想,并培养学生的观察、探究能力.(三)情感态度与价值观通过一元二次方程根与系数的关系的探究,培养学生初步形成对数学整体性的认识以及前后一致的逻辑推理能力.二、教学重难点教学重点:掌握一元二次方程的根与系数的关系.教学难点:将根的判别式由数值计算推广到字母运算,正确理解判别式的意义.三、教学过程(一)导入新课,明确目标师:同学们,上一节课我们学习了如何解一元二次方程,并且通过几道例题对解法进行了具体的阐述。

今天我们将在此基础上,探究一元二次方程的根与系数的关系。

那么什么是一元二次方程的根与系数呢?如何用数学语言描述呢?带着这些问题,我们一起学习今天的课题“一元二次方程的根与系数的关系”。

(二)自主探究,掌握新知定义一元二次方程的根与系数。

师:首先请同学们思考一下,一元二次方程的根是什么?系数又是什么?他们之间存在什么样的关系呢?现在我们一起来探讨一下。

假设ax²+bx+c=0(a≠0)是关于x的一元二次方程,那么x1,x2是它的两个实数根。

其中a、b、c分别是方程的系数。

那么,根与系数之间存在什么样的关系呢?我们可以通过以下步骤进行探究:(1)分别计算出x1+x2和x1x2的值;(2)根据计算结果,总结根与系数的关系。

通过实例探究根与系数的关系。

师:现在我们通过一个具体的实例来探究一元二次方程的根与系数的关系。

例如,方程2x²-4x-6=0的两个根分别为x1=x2=1,则x1+x2=2,x1x2=-3。

那么我们可以发现,对于任何一个一元二次方程ax²+bx+c=0(a≠0),它的根与系数之间都满足以下关系:x1+x2=-b/a,x1x2=c/a。

一元二次方程的根与系数的关系教案

一元二次方程的根与系数的关系教案

一元二次方程的根与系数的关系教案一、教学目标1、知识与技能目标:掌握一元二次方程根与系数的关系,利用根与系数关系求出两根之和、两根之积2、过程与方法经历一元二次方程根与系数关系的探究过程,培养学生的观察思考、归纳概括能力,解决问题的能力,渗透整体的数学思想、求简思想.3、情感态度价值观通过探索一元二次方程的根与系数的关系,激发发现规律的积极性,鼓励勇于探索的精神。

二、教学重难点1、教学重点:根与系数的关系及运用.三、教学难点:探究一元二次方程根与系数的关系的过程,运用一元一次方程的根与系数的关系解决问题四、教学过程1、导入新课(1)直接导入教师活动:回顾方程的求根公式,不仅表示可以由方程的系数a,b,c决定根的值,而且反应了根与系数的关系。

提问:那么一元二次方程根与系数之间的联系还有其他表现方式吗?顺势引出课题:一元二次方程根与系数的关系(2)情景导入教师复习一元二次方程,当时,;当时,方程有两个相等的实数根,为时,方程没有实数根小明同学在做课外习题时遇到这样一个问题∶已知方程2x²-4x-1=0,不解方程,求出方程的两根之和与两根之积。

解方程一向熟练的小明纳闷了,不解方程怎么求两根之和与两根之积呢?同学们,你们愿意帮助他吗?当你学完今天的内容就可以帮助他了。

今天我们来探讨一元二次方程的根与系数的关系。

2、讲授新课环节一:二次项系数为1的一元二次方程教师活动:教师通过多媒体展示思考问题提问:从因式分解法可知,方程(x-x1)(x-x2)=0(x1,x2为已知数)的两根为x1和x2,将方程化为x²+px+q=0的形式,你能看出x1,x2与p,q之间的关系么?组织学生根据目标问题四人一组进行讨论或同桌之间交流,教师进行巡视指导,交流结束后,找学生回答,教师进行评价学生活动:根据问题探究出结论,将(x-x1)(x-x2)=0展开成x²-(x1+x2)x+x1x2=0得出x1+x2=-p,x1x2=q教师总结:关于x的方程x²+px+q=0(p,q为常数,p2-4q≥0)的两个根x1,x2与系数p,q的关系是环节二、二次项系数为a(a≠0)的一元二次方程教师活动:借助多媒体呈现课本思考题提问:如果一元二次方程二次项的系数不为1,根与系数之间又有怎样的关系呢?形如ax²+bx+c=0(a≠0)的方程,如果b2-4ac≥0,两根为x1,x2,引导学生利用上面的结论猜想x1,x2与各项系数a、b、c之间有何关系。

《一元二次方程根与系数的关系》 教学设计

《一元二次方程根与系数的关系》 教学设计

《一元二次方程根与系数的关系》本节是对于一元二次方程的实际探究,对于方程能够从这里有更好的认识,对于自己对于问题的理解,起到重要的作用。

1.掌握一元二次方程的根与系数的关系并会初步应用. 2.培养学生分析、观察、归纳的能力和推理论证的能力. 3.渗透由特殊到一般,再由一般到特殊的认识事物的规律. 4.培养学生去发现规律的积极性及勇于探索的精神. 【教学重点】根与系数的关系及其推导 【教学难点】正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.教学过程一、复习提问 一元一次方程的概念。

二、导入新课1.已知方程x 2-ax -3a =0的一个根是6,则求a 及另一个根的值.2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系? 3.由求根公式可知,一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac 2a .观察两式右边,分母相同,分子是-b +b 2-4ac 与-b -b 2-4ac.两根之间通过什么计算才能得到更简洁的关系?三、讲授新课方程 x 1 x 2 x 1+x 2 x 1·x 2 x 2-2x =0 x 2+3x -4=0x 2-5x +6=012间有什么关系?(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根x 1,x 2与系数a ,b ,c 之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格: 小结:根与系数关系:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 的关系是:x 1+x 2=-p ,x 1¡¤x 2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)(2)形如ax 2+bx +c =0(a ≠0)的方程,可以先将二次项系数化为1,再利用上面的结论. 即:对于方程 ax 2+bx +c =0(a ≠0) ∵a ≠0,∴x 2+b a x +c a =0∴x 1+x 2=-b a ,x 1·x 2=ca(可以利用求根公式给出证明)例1 配方法解方程2x 2-34x-2=0应把它先变形为( ). A .(x-31)2=98B .(x-23)2=0C .(x-31)2=89 D .(x-13)2=109例2 下列方程中,一定有实数解的是( ). A .x 2+1=0 B .(2x+1)2=0C .(2x+1)2+3=0D .(12x-a )2=a四、随堂训练例1 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)例2 已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值.变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.五、小结1.根与系数的关系.2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.六、作业:1.不解方程,写出下列方程的两根和与两根积.(1)x2-5x-3=0(2)9x+2=x2(3)6x2-3x+2=0(4)3x2+x+1=02.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值.。

九年级数学上册《一元二次方程根与系数的关系》教案、教学设计

九年级数学上册《一元二次方程根与系数的关系》教案、教学设计
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对讲授新知部分的内容,进行讨论。讨论主题包括:判别式的应用、一元二次方程根与系数的关系等。
2.讨论要求:小组成员要积极参与,发表自己的观点,倾听他人的意见,共同探讨问题。每个小组选出一个代表,汇报本组讨论成果。
3.教师指导:在学生讨论过程中,教师巡回指导,关注学生的讨论进展,及时解答学生的疑问,引导他们深入探讨问题。
(五)总结归纳
1.学生自主总结:让学生回顾本节课所学内容,总结一元二次方程根与系数的关系及其应用,归纳解题方法。
2.教师点评:教师对学生的总结进行点评,强调重点知识点,指出易错点,提醒学生注意。
3.课堂小结:对本节课的教学内容进行梳理,形成知识结构,为学生后续学习奠定基础。
五、作业布置
为了巩固学生对一元二次方程根与系数关系的理解,提高他们运用数学知识解决实际问题的能力,特布置以下作业:
7.关注学生个体差异,针对不同学生的学习需求,给予个性化的指导。对学习困难的学生,要进行耐心辅导,帮助他们克服困难;对优秀生,要适当提高要求,激发他们的潜能。
8.定期组织课堂小结,让学生在总结中回顾所学知识,形成系统的知识结构。同时,鼓励学生提出问题,培养他们的批判性思维。
四、教学内容与过程
(一)导入新课
2.作业难度分层,满足不同学生的学习需求;
3.作业形式多样,注重培养学生的实践能力和团队合作精神;
4.教师及时批改作业,给予学生反馈,指导学生改进学习方法。
2.学会运用根与系数的关系解决实际问题,提高数学应用能力;
3.培养学生的逻辑思维能力和解决问题的策略。
(二)教学难点
1.判别式的推导及其与根的关系的理解;
2.在实际问题中,如何构建一元二次方程模型,并运用根与系数的关系进行求解;

初中数学初二数学下册《一元二次方程的根与系数的关系》教案、教学设计

初中数学初二数学下册《一元二次方程的根与系数的关系》教案、教学设计
初中数学初二数学下册《一元二次方程的根与系数的关系》教案、教学设计
一、教学目标
(一)知识与技能
1.理解一元二次方程的根的概念,了解一元二次方程的根与系数之间的关系。
2.学会使用根的判别式来判断一元二次方程的根的情况,并能根据判别式的值来确定方程的根的性质。
3.掌握一元二次方程的求解公式,能够运用公式法求解一元二次方程,并解决实际问题。
-激发学生的学习兴趣,通过表扬和鼓励,增强学生的学习信心。
-关注学习困难的学生,给予个别辅导,帮助他们克服学习中的困难。
四、教学内容与过程
(一)导入新课
1.创设情境:通过一个关于抛物线的实际例子,如“一个篮球在抛出后,其运动轨迹形成一个抛物线,假设我们知道篮球的初始速度和抛出角度,如何确定篮球落地的时间?”来引入一元二次方程的根与系数的关系。
-讲解:在学生探究的基础上,教师进行总结讲解,强调重难点,并配合典型例题进行解释。
-练习:设计梯度明显的练习题,让学生在课堂上即时巩固所学知识,并及时给予反馈。
-应用:结合实际生活情境,设计综合应用题,让学生运用所学知识解决问题,提高学生的数学应用能力。
3.教学评价:
-过程评价:关注学生在课堂上的参与度、合作探究能力和解决问题的策略。
-利用多媒体辅助教学,通过动态演示和图形展示,帮助学生形象地理解抽象的数学概念。
-实施分层次教学,针对不同水平的学生设计不同难度的练习题,使每个学生都能在课堂上得到有效的训练。
2.教学过程:
-导入:通过一个实际问题引入本节课的内容,激发学生的好奇心和学习兴趣。
-探索:引导学生通过小组合作、讨论的方式,探究一元二次方程根与系数的关系,总结根的判别式的使用方法。
4.能够运用一元二次方程的根与系数的关系解决一些简单的应用问题,提高数学应用能力。

一元二次方程根与系数的关系教案(完美版)

一元二次方程根与系数的关系教案(完美版)

一元二次方程根与系数的关系一、教学目标(一)知识与技能掌握一元二次方程的根与系数的关系并会初步应用.(二)过程与方法培养学生分析、观察、归纳的能力和推理论证的能力.(三)情感、态度与价值观1.渗透由特殊到一般,再由一般到特殊的认识事物的规律;2.培养学生去发现规律的积极性及勇于探索的精神.二、教学重点、难点、疑点及解决方法1.教学重点:根与系数的关系及其推导.2.教学难点:正确理解根与系数的关系.3.教学疑点:一元二次方程根与系数的关系是指一元二次方程两根的和,两根的积与系数的关系.三、教学过程(一)明确目标一元二次方程x2-5x+6=0的两个根是x1=2,x2=3,可以发现x1+x2=5恰是方程一次项系数-5的相反数,x1x2=6恰是方程的常数项.其它的一元二次方程的两根也有这样的规律吗?这就是本节课所研究的问题,利用一元二次方程的一般式和求根公式去推导两根和及两根积与方程系数的关系——一元二次方程根与系数的关系.(二)整体感知一元二次方程的求根公式是由系数表达的,研究一元二次方程根与系数的关系是指一元二次方程的两根的和,两根的积与系数的关系.它是以一元二次方程的求根公式为基础.学了这部分内容,在处理有关一元二次方程的问题时,就会多一些思想和方法,同时,也为今后进一步学习方程理论打下基础.本节先由发现数字系数的一元二次方程的两根和与两根积与方程系数的关系,到引导学生去推导论证一元二次方程两根和与两根积与系数的关系及其应用.向学生渗透认识事物的规律是由特殊到一般,再由一般到特殊,培养学生勇于探索、积极思维的精神.(三)重点、难点的学习及目标完成过程1.复习提问(1)写出一元二次方程的一般式和求根公式.(2)解方程①x2-5x+6=0,②2x2+x-3=0.观察、思考两根和、两根积与系数的关系.在教师的引导和点拨下,由学生得出结论,教师提问:所有的一元二次方程的两个根都有这样的规律吗?2.推导一元二次方程两根和与两根积和系数的关系.在线分享文档设x 1、x 2是方程ax 2+bx+c=0(a ≠0)的两个根.以上一名学生在板书,其它学生在练习本上推导.由此得出,一元二次方程的根与系数的关系.(一元二次方程两根和与两根积与系数的关系)结论1.如果ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么x 1我们就可把它写成x 2+px+q=0.结论2.如果方程x 2+px+q =0的两个根是x 1,x 2,那么x 1+x 2=-p ,x 1·x 2=q . 结论1具有一般形式,结论2有时给研究问题带来方便. 练习1.(口答)下列方程中,两根的和与两根的积各是多少? (1)x 2-2x +1=0;(2)x 2-9x +10=0; (3)2x 2-9x +5=0;(4)4x 2-7x +1=0;(5)2x 2-5x =0;(6)x 2-1=0此组练习的目的是更加熟练掌握根与系数的关系. 3.一元二次方程根与系数关系的应用.(1)验根.(口答)判定下列各方程后面的两个数是不是它的两个根.在线分享文档验根是一元二次方程根与系数关系的简单应用,应用时要注意三个问题:(1)要先把一元二次方程化成标准型,(2)不要漏除二次项系数,(3)还要注意-b/a的负号。

《一元二次方程根与系数的关系》教案.doc

《一元二次方程根与系数的关系》教案.doc

《一元二次方程根与系数的关系》教案教学目标:1、发现、了解一元二次方程的根与系数的关系,培养学生善于独立思考、合作交流的学习习惯。

2、探索、运用一元二次方程的根与系数关系,由一元二次方程的一个根求出另一个根及未知系数,提升学生的合作意识和团队精神。

3、在不解一元二次方程的情况下,会求直接(或变形后)含有两根积的代数式的值,并从中体会整体代换的数学思想,促进学生数学思维的养成。

教学重点:一元二次方程的根与系数的关系及简单应用。

教学难点:一元二次方程的根与系数的关系的推导。

数学思考与问题解决:通过创设一定的问题情境,注重由学生自己发现、探索,让学生参与“韦达定理”的发现、不完全归纳验证以及演绎证明等整个数学思维过程。

一、自学互研 探索发现(每小题10分,共30分)(自主完成,组长检查)【师生活动】:教师引导,巡视,随时发现问题、了解学生导学案完成情况并点拨;评价、鼓励、调动学生参与的主动性和积极性。

学生独立完成导学案,观察、对比、发现问题,逐步由易到难,探索出一元二次方程的根与系数的关系;小组长检查小组成员完成情况;分小组汇报自学成果。

【设计意图】:本环节为“一元二次方程的根与系数的关系”的发现过程,即感性认识过程。

通过几个具体的方程,经过观察、比较、分析、归纳,感性地得出一元二次方程的根与系数的关系的一般规律。

培养学生发现问题、探求规律的学习习惯和注重自主加合作的学习方式。

【学案内容】:1、方程:X 2+3X –4=0(1)二次项系数是_____ ,一次项系数是______ ,常数项是______。

(2)解得方程的根X 1=______ ,X 2=______ 。

(3)则X 1+X 2=_______, 方程中 ()二次项系数一次项系数=- (4) X 1·X 2=_______, 方程中 ()二次项系数常数项=2、方程3 X 2+X-2=0(1)二次项系数是_____,一次项系数是______ ,常数项是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程根与系数的关系教学设计
Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】
《一元二次方程的根与系数的关系》教学设计
单位:福田东湖学校执教者:陈武校
【教学目标】
1、知识目标:
掌握一元二次方程的根与系数的关系,并会初步应用。

2、能力目标:
通过学生探索一元二次方程的根与系数的关系,培养学生观察分析和综合判断的能力,提高学生推理论证的能力。

3、情感目标:
在探究中得出结论,获取成功的体验,激发学习热情,建立自信心。

激发学生发现规律的积极性,鼓励学生勇于探索的精神。

【教学重点和难点】
1.教学重点:一元二次方程根与系数的关系和应用。

2.教学难点:对根与系数的关系的理解和推导。

【教学过程】
一、复习提问,引入新知
教学内容:提问1:一元二次方程的一般形式、解法;
提问2:一元二次方程求根公式。

教师活动:提出问题,让学生进一步明确根与系数的概念,为后面的研究作铺垫。

学生活动:极思考回答,进入学习状态。

设计意图:通过学生回答加强一元二次方程一般形式的记忆强化,使学生明确方程的系数决定根的值,引出根与系数之间还有其它联系方式吗然后顺理成章进入“一元二次方程根与系数之间的关系”的探究学习。

二、自主探索,探究学习
探究1:填表,观察、猜想 问题:你发现什么
规律
①用语言叙述你发现的规律;

02=++q px x 的两根21,x x 用式子表示你发现的规律。

探究2:填表,观察、猜想
问题:上面发现的结论在这里成立吗请完善规律; ①用语言叙述发现的规律;
② 02=++c bx ax 的两根21,x x 用式子表示你发现的规律: 探究3.推断证明
02=++c bx ax (a ≠0)的两根为21,x x 则:a b x x -=+21 ,a
c
x x =21
教师活动:引导学生观察、分析、归纳;启发学生,求根公式是具有一般性的,利用求根公式进行证明。

学生活动:1、解方程,求值,再观察、分析、归纳;独立思考后与同桌交流 2、思考证明的方法,一名学生上板书,其他学生在学案上推导.
设计意图:通过学生探索一元二次方程的根与系数的关系,培养学生观察分析和综合判断的能力,提高学生推理论证的能力。

激发学生发现规律的积极性,鼓励学生勇于探索的精神。

三、达标检测,强化训练
练习1:根据一元二次方程的根与系数的关系,求下列方程的21,x x 的和与积 (1) 01562=--x x (2) 09732=-+x x (3) 2415x x =-
练习2:
1、如果-1是方程022=+-m x x 的一个根,则另一个根是 ,m = 。

2、设 21,x x 是方程0142=+-x x 的两个根,则 21x x + = ___ ,21x x ⋅ = ____,
2
22
1x x += 221)(x x +- = 221)(x x - = ( )2 - 214x x ⋅=
3、判断正误:
以2和-3为根的方程是062=--x x ( )
4、已知两个数的和是1,积是-2,则这两个数是 _____ 。

变式训练:
设21,x x 是方程03422=-+x x 03422=-+x x 的两个根,利用根与系数的关系,求下列各式的值。

(1) )1)(1(21++x x (2)
2
1
12x x x x + (3) 221)(x x - 教师活动:1、出示问题,启发点拨,引导学生解答
2、归纳利用根与系数的关系求出两根之和以及两根之积的步骤,培养学生选择最优算法。

学生活动:强化训练,巩固新知,思考用一元二次方程根与系数关系时要注意哪些问题 设计意图:过巩固练习,及时巩固定理,再次体会一元二次方程的根与系数的关系,培养学生对于知识点的灵活运用。

四、回顾总结、升华提高
教学内容:通过本节课的学习你学到了那些知识
教师活动:引导学生小结,提炼知识
学生活动:反思本节课所学内容,谈自己的收获 设计意图:养学生的学习习惯,及时总结所学 五、布置作业、巩固新知
1、不解方程,求下列方程的两根21,x x 的和与积。

(1)0532
=--x x (2)05522=-+x x
2、如果21,x x 是一元二次方程 0262
=--x x 的两个实数根,则21x x += .
3、已知x1、x2是一元二次方程
031222=-+-m x x 的两个实数根,且21,x x 满足不等式
0)(22121 x x x x ++ ,求实数m 的取值范围
4、已知实数a 、b 满足等式012,0122
2=-=--b b a a ,求 b a
a b + 的值。

【板书设计】
结论1:如果关于x 的方程2
0px q x ++=的两根是 21,x x 则:
p x x -=+21 q x x =21
结论2:如果方程02=++c bx ax (a ≠0)的两个根21,x x ,则:。

相关文档
最新文档