遥感影像各参数提取和运算
测绘技术中的遥感影像处理流程详解
测绘技术中的遥感影像处理流程详解引言:遥感技术在现代测绘领域中扮演着至关重要的角色,通过使用航空或卫星平台获取的遥感影像,可以提供全球范围的地表信息。
然而,这些原始的遥感影像需要经过一系列的处理步骤,才能够提供准确、可用的地理信息。
本文将详细介绍测绘技术中的遥感影像处理流程,并探讨其中的一些关键步骤和技术。
一、预处理遥感影像处理的第一步是预处理,主要目的是对原始影像进行校正和增强,以消除图像中的噪声、失真和其他不可避免的问题。
预处理包括几个子步骤:1. 几何校正几何校正是将原始影像与特定的地理坐标系统对应起来的过程。
通过地面控制点或现有的地理参考数据,可以计算出影像中各像素点的地理坐标。
这个过程涉及到地理坐标转换、投影变换等数学计算,确保遥感影像可以与地理坐标系统一致。
2. 辐射校正辐射校正是针对遥感影像中的辐射亮度值进行校正,以消除大气、地表反射率和传感器响应等因素引起的光谱失真。
这个过程涉及大气校正模型、辐射校正系数等参数的确定,确保影像中的亮度值具有可比性和可解释性。
3. 增强处理增强处理是通过调整影像的亮度、对比度、色彩等属性,以改善影像的可视化效果。
常见的增强处理技术包括直方图均衡化、空间滤波、波段合成等,通过这些技术可以突出目标特征、减弱干扰因素,使影像更易于解译和分析。
二、影像分类预处理完成后,接下来的步骤是影像分类,其目的是将遥感影像中的像素点划分为不同的类别,以提取出地物的信息。
影像分类可以基于不同的特征和方法进行,常见的分类方法包括:1. 监督分类监督分类是一种基于已知样本进行自动分类的方法。
首先,遥感影像中的一部分区域被标记为不同的类别,称为训练样本。
然后,根据这些训练样本,使用统计分类算法(如最大似然估计、支持向量机等)对整个影像进行分类。
监督分类方法可以提供较高的分类精度,但需要大量的标记样本和专业知识。
2. 无监督分类无监督分类是一种基于像素灰度值之间的相似性进行自动分类的方法。
遥感影像处理中的特征提取方法和应用
遥感影像处理中的特征提取方法和应用遥感影像是通过无人机、卫星等载体获取的地球表面的影像数据。
特征提取是遥感影像处理中的一项重要任务,旨在从遥感影像中提取出地物的特定特征,以实现对地物的分类、识别和监测等应用。
本文将介绍遥感影像处理中常用的特征提取方法及其应用。
一、特征提取方法1. 基于像素的特征提取方法基于像素的特征提取方法是从单个像素点的信息中提取特征。
常用的方法包括:(1)颜色特征提取:利用遥感影像中的颜色信息进行特征提取。
常用的方法包括二值化、RGB分量、HSV、归一化差异植被指数(NDVI)等。
(2)纹理特征提取:利用遥感影像中的纹理信息进行特征提取。
常用的方法包括灰度共生矩阵(GLCM)、灰度值标准差、平均灰度值等。
(3)形状特征提取:利用遥感影像中的形状信息进行特征提取。
常用的方法包括链码、Hu不变矩、区域面积等。
2. 基于目标的特征提取方法基于目标的特征提取方法是在已知地物目标的前提下,根据地物目标的特定特征进行特征提取。
常用的方法包括:(1)形状特征提取:利用地物目标的形状信息进行特征提取。
常用的方法包括面积、周长、伸长率等。
(2)纹理特征提取:利用地物目标的纹理信息进行特征提取。
常用的方法包括纹理能量、纹理熵、纹理对比度等。
(3)上下文特征提取:利用地物目标的上下文信息进行特征提取。
常用的方法包括边界连接、邻居分析、局部空间关系等。
二、特征提取应用1. 地物分类特征提取在地物分类中起到了关键作用。
通过提取不同地物的特定特征,可以将遥感影像中的地物进行分类,如水体、森林、建筑等。
特征提取方法可以通过训练分类器来实现自动分类。
2. 土地利用监测特征提取可以应用于土地利用监测。
通过提取遥感影像中地物的特定特征,可以实现对土地的类型和变化进行监测,如农田的扩张、森林的退化等,为土地规划和资源管理提供支持。
3. 城市规划特征提取在城市规划中具有重要意义。
通过提取遥感影像中的建筑、道路等特定特征,可以分析城市的发展趋势和扩张方向,为城市规划和交通规划提供数据支持。
遥感影像处理与分析
遥感影像处理与分析一、引言遥感影像处理与分析是一项用于获取和处理地球表面信息的技术,它对于了解自然环境变化、资源利用和环境保护方面提供了很多帮助,也对城市规划、农业生产、林业管理等方面起到支持作用。
在本文章中,我们将探讨遥感影像处理的方法、数据预处理、遥感影像分类、遥感影像变化检测等方面。
二、遥感影像处理的方法遥感影像处理的目的是将像元的属性信息转换为可视化的图片,以便人类观察和分析。
这种转换通常通过应用数字信号处理、图像处理和处理算法来完成。
常见的遥感影像处理方法包括:1. 图像增强:图像增强是使图像更清晰、更具对比度或缩放的过程。
增强可以使遥感图像适宜于不同的应用,如地貌分析和水文学。
2. 图像融合:图像融合是逐像素将多个源图像组合成单个输出图像的过程。
这种方法可以将不同传感器获得的多光谱或高光谱数据融合在一起,从而增加了遥感数据的可用性和可视化效果。
3. 估计:在一些应用场景下,需要从遥感数据中提取信息。
这需要估计各种地形和地貌信息,并将其处理成可视化的形式。
这种方法通常使用分类算法、回归方法或者机器学习技术来实现。
4. 遥感影像分割:遥感影像分割是将遥感影像分成不同的区域或对象。
这种方法通常使用基于像素的聚类或者基于拓扑的分割算法来实现。
三、数据预处理在进行遥感影像分析之前,需要对遥感数据进行预处理。
数据预处理过程通常包括数据预处理、噪声去除、解译标记和掩模制作。
1. 数据预处理:数据预处理通常包括校正、去噪和增强。
影像校正可以纠正遥感数据的几何校正和辐射校正,以减小图像中的拍摄偏差、纠正图片扭曲、消除不同地物物理反射和透射过程引起的影响,提高影像的精度和质量。
同时去噪和增强能使得仪器噪声降低,避免图像中的伪迹和干扰,在自然场景和高噪声环境中处理时具有显著的效果提升。
2. 噪声去除:噪声在遥感影像中是不可避免的,特别是图像的边缘部分容易被噪声干扰。
因此,必须使用合适的滤波器来去除噪声。
滤波技术可以分为线性和非线性滤波器两种,其中,线性滤波器采用加权平均法,非线性滤波器则更加注重对待图像中不同噪声的特殊处理,如中位数滤波、均值滤波等。
高分辨率卫星遥感立体影像处理模型与算法
高分辨率卫星遥感立体影像处理模型与算法一、本文概述随着空间技术和遥感科学的迅猛发展,高分辨率卫星遥感已成为地球观测与资源管理的重要手段。
高分辨率卫星遥感立体影像,以其高空间分辨率、高光谱分辨率和高时间分辨率的优势,为地表特征提取、环境监测、城市规划等领域提供了丰富而准确的信息源。
如何高效、精确地处理这些立体影像,以充分发挥其应用潜力,是当前遥感领域面临的重要挑战。
本文旨在探讨高分辨率卫星遥感立体影像处理模型与算法。
本文将回顾高分辨率卫星遥感立体影像处理技术的发展历程,分析现有技术的优缺点。
接着,本文将重点介绍几种先进的处理模型与算法,包括基于深度学习的立体匹配算法、多源数据融合算法以及变化检测算法等。
这些算法不仅提高了影像处理的精度和效率,还拓宽了高分辨率卫星遥感的应用范围。
本文还将探讨高分辨率卫星遥感立体影像处理技术在实践中的应用案例,如城市规划、灾害监测、环境评估等,以展示这些技术的实际应用价值和潜力。
本文将对未来高分辨率卫星遥感立体影像处理技术的发展趋势进行展望,指出可能的研究方向和挑战,以期为相关领域的研究和实践提供参考。
本文将对高分辨率卫星遥感立体影像处理模型与算法进行全面而深入的探讨,旨在推动遥感科学技术的发展,为地球观测与资源管理提供更有效的技术支持。
二、高分辨率卫星遥感技术概述高分辨率卫星遥感技术是指利用卫星搭载的遥感设备获取地球表面的高清晰度图像和数据的技术。
这种技术在地理信息系统、城市规划、农业监测、环境保护、灾害评估和军事侦察等领域具有广泛的应用。
高分辨率卫星遥感技术的关键在于其搭载的传感器和数据处理算法。
传感器必须具备高空间分辨率、高光谱分辨率和高时间分辨率,以确保获取到的图像清晰、详细。
同时,数据处理算法需要能够从这些高分辨率图像中提取有用的信息,进行分类、识别和分析。
立体影像处理是高分辨率卫星遥感技术中的一个重要方面,它涉及到从不同角度获取的两幅或多幅图像中重建地面的三维模型。
遥感影像的几何校正和特征提取方法
遥感影像的几何校正和特征提取方法遥感影像是通过遥感技术获取的地球表面信息的图像或图像组。
由于数据获取过程中存在各种误差,如地球自转、大气扰动、平台运动等,遥感影像在获取后需要进行几何校正以提高图像的质量和精度。
此外,为了进一步分析遥感影像中的信息,特征提取是必需的,可以帮助科学家从图像中提取有关地理特征的信息。
一、遥感影像的几何校正方法1. 大地控制点法:这是一种常用的几何校正方法,通过确定遥感影像上一系列具有已知地理坐标的地物进行配准。
通过收集大量的地面控制点,利用全球定位系统(GPS)等技术获取精确的地理坐标,然后将遥感影像转化为地理坐标系统,实现几何校正。
2. 特征点匹配法:该方法利用遥感影像与参考图像之间的特征点进行匹配。
通过提取遥感影像和参考图像的特征点,并使用特征匹配算法对两幅图像进行配准,从而实现几何校正。
3. 数字高程模型法:该方法利用数字高程模型(DEM)来进行几何校正。
DEM是一种用来表示地表地形高程信息的数学模型。
通过提取遥感影像上的地物高程信息,并结合DEM数据,可以实现对遥感影像的几何校正。
二、遥感影像的特征提取方法1. 阈值分割:该方法基于像素间的灰度差异来实现特征提取。
通过设置适当的阈值,将像素灰度值划分为不同的区域,从而提取出感兴趣的特征。
例如,可以利用阈值分割方法提取出水体、植被等特征。
2. 目标识别和分类:该方法通过使用机器学习算法来实现对遥感影像中的目标进行识别和分类。
常用的机器学习算法包括支持向量机(SVM)、随机森林(RF)等。
通过对已标记的训练样本进行训练,然后对遥感影像进行分类,可以实现对特定目标的提取和分类。
3. 特征融合:该方法通过将多个特征进行融合,提高特征提取的准确性和稳定性。
常用的特征融合方法包括主成分分析(PCA)、小波变换、人工神经网络等。
通过将多个特征进行组合和处理,可以提取出更具辨识度的特征。
4. 目标检测:该方法通过一系列图像处理和模式识别技术来实现对目标的检测。
遥感影像信息提取中的多尺度分割算法研究
遥感影像信息提取中的多尺度分割算法研究遥感技术在现代的资源管理、城市规划、农业等各个领域中已经广泛应用。
其中遥感影像信息提取是遥感技术应用中比较重要的一部分,它能够从遥感影像中提取出一些有价值的信息,如道路、建筑、水体等。
然而,由于遥感影像分辨率较高,单一分割算法往往难以有效地提取出有价值的信息。
多尺度分割算法的研究对于解决这一问题具有重要的意义。
一、多尺度分割算法的概念多尺度分割算法是一种利用不同的尺度对遥感影像进行分割的算法。
在进行图像分割时,往往需要对彩色或灰度图像中像素点进行聚类,以便提取出相似的像素点并将其归为一类。
随着遥感影像分辨率的提高,图像中的像素数目也随之增加,这就导致了聚类算法计算的复杂度增大。
而采用多尺度分割算法则可以在保持精度的前提下实现快速计算。
二、多尺度分割算法的主要应用1. 遥感影像分析与判读多尺度分割算法可以通过分析遥感影像,提取出其中的有用信息,如土地利用、土地覆盖、冰雪覆盖等。
这样就可以对地理环境进行诊断和监测,有效地优化资源管理。
2. 环境监测多尺度分割算法可以通过遥感影像提取水体、植被、土地利用等信息,为城市规划、土地利用规划等环境监测提供科学依据,为保护生态环境提供有力支持。
3. 地球科学研究多尺度分割算法可以将遥感影像中的类别分割得更加精确,从而为地球科学的研究提供可靠的基础数据,如洪水监测、气象预报等。
三、多尺度分割算法的实现原理目前常用的多尺度分割算法主要有基于小波变换、基于金字塔和基于局部自适应阈值(Local Adaptive Threshold, LAT)。
1. 基于小波变换基于小波变换的多尺度分割算法是一种对遥感影像进行多尺度分割的有效方法。
它可以将图像进行小波分解,然后根据不同的尺度进行分割,最终通过小波重构得到分割后的影像。
2. 基于金字塔基于金字塔的多尺度分割算法使用了一个多分辨率表示的图像金字塔,并依次分解到不同的尺度。
在不同的分辨率下,对图像进行分割,然后对每个尺度进行汇总,最终得到所有尺度的分割结果。
测绘技术遥感影像解译方法介绍
测绘技术遥感影像解译方法介绍近年来,随着遥感技术的快速发展和普及,其在测绘领域的应用也越来越广泛。
遥感影像解译作为一种重要的测绘技术手段,扮演着不可或缺的角色。
本文将介绍几种常用的遥感影像解译方法,帮助读者更好地了解和应用这一技术。
一、目视解译法目视解译法是最基础也是最常用的解译方法之一。
通过对遥感影像进行仔细观察,将不同的地物、特征和目标识别并进行分类。
这种解译方法需要解译员具备较高的专业知识和经验,并且对影像细节有较强的观察和辨别能力。
虽然目视解译法存在主观性和时间成本高等问题,但在一些小范围和特定场景的解译中仍然具有重要意义。
二、分类器解译法分类器解译法是利用计算机和数学方法对影像进行解译的一种常用方法。
其依靠事先建立的各类地物的光谱、纹理和形状特征等参数,通过计算和比对来确定影像中的地物类型和分布。
常见的分类器包括最大似然法、人工神经网络、支持向量机等,在实际应用中根据需要选择合适的分类器。
分类器解译法具有自动化程度高、效率高等优点,但也存在一定的误差和精度问题需注意。
三、特征提取法特征提取法是从遥感影像中筛选出有用的地物特征,然后对这些特征进行分类和解译。
这种方法基于对地物特征的深入研究和理解,结合遥感影像的优势,能够更精准地提取出相应地物的特征信息。
特征提取法可分为光谱特征提取、形状特征提取、纹理特征提取等,根据不同地物和任务需选择合适数学模型和算法进行特征提取和解译,从而得到更为准确的结果。
四、多源数据融合法多源数据融合法是将不同类型、不同分辨率、不同时间的遥感影像进行综合利用,以提高解译精度和信息获取能力。
通过多源数据的融合,可以更全面地展现地物的空间分布和时序变化,减少遥感影像解译的盲区和误差。
常见的多源数据包括多光谱影像、高光谱影像、雷达影像等,通过适当的数据融合方法和技术,可以获取更为全面和准确的地理信息。
综上所述,测绘技术遥感影像解译方法多种多样,每种方法都有其适用的场景和优势。
遥感影像处理具体操作步骤
遥感影像处理具体操作步骤遥感影像处理是利用遥感技术获取的遥感影像数据进行分析和处理的过程。
下面是遥感影像处理的具体操作步骤:1. 数据预处理:- 影像获取:通过卫星、航空器或者无人机等获取遥感影像数据。
- 影像校正:对获取的遥感影像进行几何校正和辐射校正,以消除影像中的几何畸变和辐射差异。
- 影像配准:将多个遥感影像进行配准,使其在同一坐标系下对齐,以便进行后续的分析。
- 影像切割:根据需要,将遥感影像切割成小块,方便后续处理。
2. 影像增强:- 直方图均衡化:通过调整影像的像素灰度分布,增强影像的对照度和细节。
- 滤波处理:利用滤波算法对影像进行平滑或者锐化处理,以去除噪声或者增强细节。
- 波段合成:将多个波段的影像合成为一幅彩色影像,以显示不同特征或者信息。
3. 影像分类:- 监督分类:根据已知样本进行训练,利用分类算法将遥感影像中的像素分为不同的类别。
- 无监督分类:根据像素的相似性进行聚类,将遥感影像中的像素分为不同的类别,不需要事先提供训练样本。
4. 特征提取:- 纹理特征:通过计算影像中像素的纹理统计量,提取纹理特征,用于地物分类和识别。
- 形状特征:通过计算影像中像素的形状参数,如面积、周长、圆度等,提取形状特征,用于地物分类和识别。
- 光谱特征:利用遥感影像中不同波段的反射率或者辐射值,提取光谱特征,用于地物分类和识别。
5. 地物提取:- 目标检测:利用目标检测算法,自动提取遥感影像中的目标物体,如建造物、道路等。
- 变化检测:通过比较不同时间的遥感影像,检测地物的变化情况,如城市扩张、土地利用变化等。
6. 结果评估:- 精度评估:通过对照遥感影像处理结果与实地调查数据或者高分辨率影像进行对照,评估处理结果的准确性和精度。
- 一致性检验:对处理结果进行一致性检验,确保处理结果的逻辑和合理性。
以上是遥感影像处理的具体操作步骤。
不同的任务和目标可能需要不同的处理方法和算法,具体操作步骤可能会有所不同。
遥感影像预处理的正确步骤
遥感影像预处理的正确步骤在遥感领域,影像预处理是遥感数据处理的重要环节,对于提高遥感影像的质量和后续分析具有重要意义。
以下是遥感影像预处理的正确步骤:一、数据获取与预处理1.数据获取:遥感影像数据来源于各种遥感卫星、航空遥感等,需要根据研究目的选择合适的数据源。
2.预处理:数据获取后,需要对数据进行预处理,以消除原始数据中的噪声、异常值等问题。
预处理方法包括去除噪声、裁剪、缩放等。
二、几何校正与图像配准1.几何校正:由于遥感影像在采集过程中可能受到传感器本身、地球曲率、大气折射等因素的影响,导致影像几何变形。
几何校正旨在消除这些变形,提高影像质量。
常见的方法有传感器模型校正、基于控制点的几何校正等。
2.图像配准:图像配准是将多幅遥感影像(如多光谱影像和单波段高分辨率影像)进行空间对齐,使其在同一坐标系统下。
配准方法有基于像素的配准、基于变换的配准等。
三、图像融合1.图像融合是将不同分辨率、不同光谱的遥感影像融合为高分辨率、多光谱的影像。
常见的图像融合方法有:(1)IHS变换融合:将高分辨率全色影像与亮度进行直方图匹配,然后去掉亮度,用预处理的高分辨率全色影像代替。
与色度H、饱和度S一起,利用逆变换式变换至RGB系统,得到融合后的影像。
(2)小波变换融合:利用人眼对局部对比度变化敏感的特性,根据一定的融合规则,在多幅原图像中选择最显著的特征(如边缘、线段等),并将这些特征保留在融合后的图像中。
四、影像增强与分割1.影像增强:通过调整亮度、对比度、色彩平衡等参数,提高遥感影像的视觉效果。
常见的增强方法有:直方图均衡化、自适应直方图均衡化、色彩空间转换等。
2.影像分割:将融合后的遥感影像划分为不同的区域,以便进行后续分析。
常见的分割方法有:基于阈值的分割、基于区域的分割、基于边缘的分割、基于深度学习的分割等。
五、特征提取与分析1.特征提取:从遥感影像中提取有意义的特征,如纹理、颜色、形状等。
常见的特征提取方法有:灰度共生矩阵、局部二值模式(LBP)、HOG特征等。
遥感影像解译中的纹理特征提取方法与实践指南
遥感影像解译中的纹理特征提取方法与实践指南引言:纹理特征是遥感影像解译中的重要信息之一,可以提供有关地物和地表类型的详细信息。
纹理特征提取是利用图像处理和分析技术来定量描述和分析纹理特征的过程。
本文将介绍一些常用的纹理特征提取方法,并提供一些实践指南,以帮助研究人员和从业人员在遥感影像解译中更好地运用纹理特征。
一、纹理特征提取的方法1.统计特征提取法:统计特征提取法是最常用的纹理特征提取方法之一、它基于对图像区域的像素值统计进行分析,包括均值、标准差、方差、最值等统计量。
这些统计特征可以用来描述纹理的均匀性、粗糙度和细节等信息。
2.结构特征提取法:结构特征提取法是基于图像的空间结构进行分析的方法。
其中,灰度共生矩阵(GLCM)和灰度差异共生矩阵(GLDM)是常用的结构特征提取方法。
GLCM通过计算灰度级之间的相对位置关系,描述纹理的对比度、方向、平滑度等特性;GLDM则描述不同灰度级之间的寻找熵、对比度等特性。
3.频域特征提取法:频域特征提取法是将图像转换到频域进行分析的方法。
其中最常用的方法是对图像进行傅里叶变换,并计算其频谱特征。
频域特征能够提供关于纹理重复性和变化的信息。
4.模型特征提取法:模型特征提取法是利用数学模型对纹理进行建模,并从模型中提取特征。
其中,小波变换是常用的模型特征提取方法之一、小波变换能够捕捉到图像中的局部特征,提供更详细的纹理信息。
二、纹理特征提取的实践指南1.数据选择:选择与研究目标相关的高质量遥感影像数据进行分析。
确保数据清晰、分辨率适中,以获取更准确的纹理特征。
2.区域选择:选取具有代表性的区域进行分析。
遥感影像往往包含大量的信息,为了减少冗余和噪声,可以选择感兴趣的区域进行特征提取。
3.特征选择:根据研究目标选择适当的纹理特征。
不同的纹理特征可以提供不同的信息,因此需要根据需求进行选择。
4.参数设置:为提取特定纹理特征,需要根据实际情况设置合适的参数。
这些参数包括窗口大小、灰度级数量、邻域距离等。
简述光学遥感影像预处理的大概过程
光学遥感影像预处理是指对获取的遥感影像进行一系列的处理,以便更好地应用于后续的遥感信息提取和分析。
其大概过程可以分为以下几个步骤:1. 数据获取在光学遥感影像预处理的过程中,首先需要获取遥感影像数据。
这些数据可以来自于卫星、飞机、无人机等评台获取的遥感影像数据。
在数据获取的过程中,需要注意遥感影像的分辨率、波段数量等参数,以便后续的处理和分析。
2. 数据预处理数据预处理是光学遥感影像预处理的重要步骤之一。
在这一步中,需要对原始的遥感影像数据进行校正和去噪。
校正包括大气校正、辐射校正等,去噪则是为了减少影像中的噪声对后续分析的影响。
3. 影像配准影像配准是指将获取的多幅遥感影像数据进行配准,使得它们能够在同一坐标系下进行分析。
这一步可以通过地面控制点配准、影像匹配等方法来实现。
4. 影像切割在光学遥感影像预处理中,有时需要将大块的遥感影像数据进行切割,以便更好地应用于特定的分析需求。
影像切割可以根据不同的地物类型、研究区域等进行划分。
5. 特征提取特征提取是光学遥感影像预处理的关键环节之一。
在这一步中,需要针对特定的分析目标提取出影像中的特征信息,如植被覆盖度、土地利用类型等。
这一步可以通过图像分类、目标检测等方法来实现。
光学遥感影像预处理是遥感领域中的重要环节,它能够提高后续遥感信息提取和分析的准确性和可靠性。
通过对遥感影像数据进行一系列的处理,可以更好地挖掘出影像中蕴含的丰富信息,为地球观测和环境监测等领域提供有力的支持。
在本次文章中,我们简要介绍了光学遥感影像预处理的大概过程,包括数据获取、数据预处理、影像配准、影像切割和特征提取等步骤。
这些步骤为后续遥感信息提取和分析打下了重要的基础,同时也为遥感数据的应用提供了可靠的数据支撑。
在未来的研究和实践中,我们需要进一步深入地探讨每个环节的具体方法和技术,以更好地应对复杂的遥感数据分析需求。
希望通过本次文章的介绍,读者能够对光学遥感影像预处理有一个初步的了解,并对其重要性有所认识。
遥感影像处理中的分类算法使用技巧
遥感影像处理中的分类算法使用技巧遥感影像分类是提取和划分遥感影像中不同地物类型的过程。
通过分类算法,可以将遥感影像中的像素点分成不同的类别,如陆地、水体、建筑物等。
遥感影像分类在土地利用、环境监测、城市规划等领域具有重要应用。
在遥感影像分类中,选择适当的分类算法并应用合适的技巧,对于得到准确的分类结果至关重要。
本文将介绍一些常用的遥感影像分类算法及其使用技巧。
一、最大似然分类算法最大似然分类算法(Maximum Likelihood Classification)是一种基于统计学原理的分类方法。
该方法通过计算每个像素点属于不同类别的概率,并选择概率最大的类别作为分类结果。
最大似然分类算法在处理多光谱遥感影像时通常表现较好。
在使用最大似然分类算法时,需要注意以下几点技巧:1. 选择合适的训练样本:训练样本的选择对分类结果有着重要影响。
应选择代表各类别的样本,并尽量覆盖不同地物类型和光谱特征。
2. 分析影像直方图:在进行最大似然分类之前,应先对遥感影像进行直方图分析,了解各类别的光谱特征分布情况。
这有助于选择合适的分类概率密度函数。
3. 考虑波段相关性:在处理多光谱遥感影像时,不同波段之间可能存在相关性,即某些波段的光谱特征信息冗余。
可以通过主成分分析等方法来降低光谱维度,减少冗余信息。
二、支持向量机分类算法支持向量机分类算法(Support Vector Machine Classification)是一种基于机器学习的分类方法。
该方法通过构建超平面,将不同类别的样本点最大程度地分开。
支持向量机分类算法在处理高维遥感影像时通常具有较好的分类效果。
在使用支持向量机分类算法时,需要注意以下几点技巧:1. 选择合适的核函数:支持向量机分类算法中的核函数用于将低维特征映射到高维特征空间。
常用的核函数包括线性核函数、多项式核函数和径向基函数等。
应根据实际情况选择合适的核函数。
2. 调整参数:支持向量机分类算法中有一些参数需要进行调整,如惩罚因子C和核函数的参数。
遥感影像数据在测绘中的处理与分析方法
遥感影像数据在测绘中的处理与分析方法引言在当今信息化时代,遥感技术的快速发展为测绘工作带来了前所未有的机遇和挑战。
遥感影像数据是一种重要的测绘数据源,能够提供大范围、高分辨率的地表信息。
本文将介绍遥感影像数据在测绘中的处理与分析方法。
一、影像预处理影像预处理是遥感影像数据处理的第一步,其目的是排除无用信息,提取有用信息。
常见的预处理方法包括辐射校正、大气校正、几何校正等。
1. 辐射校正辐射校正是将原始遥感影像数据转换为标准辐射度的过程。
该过程包括辐射矫正和亮度均衡化两个步骤。
辐射矫正通过校正反射率、发射率等参数,将原始数据转换为地物的辐射度。
亮度均衡化用于增强影像的对比度,使得地物边界更加清晰。
2. 大气校正遥感影像在传输过程中受大气影响,导致图像亮度和颜色的变化。
大气校正的目标是恢复图像中地物表面的真实反射率。
常用的大气校正方法有大气逐点校正法、模型法和图像增强法等。
3. 几何校正几何校正是将遥感影像数据的像素坐标转换为地理坐标,使得影像与地球表面几何关系一致。
几何校正包括地面控制点标定、几何变换等操作。
二、影像分类与解译影像分类与解译是遥感影像数据处理的关键步骤,其目的是将影像中的像元分为不同的类别,并解释其含义。
常用的影像分类与解译方法包括有监督分类、无监督分类、目标检测、变化检测等。
1. 有监督分类有监督分类是一种基于训练样本的分类方法。
它通过事先提供一些已知类别的样本,并根据这些样本进行分类判别。
常见的有监督分类方法有最大似然法、支持向量机、人工神经网络等。
2. 无监督分类无监督分类是一种不需要提供样本的分类方法。
它通过对影像像素进行聚类分析,将相似像素聚为一类。
常见的无监督分类方法有聚类分析、K-means算法等。
3. 目标检测目标检测是通过分析遥感影像数据中的某些特征,识别出目标物体的位置和属性。
常用的目标检测方法有边缘检测、纹理分析、形状分析等。
4. 变化检测变化检测是通过比较不同时刻的遥感影像数据,检测出地表发生的变化。
如何进行高分辨率遥感影像处理和特征提取—操作指南
如何进行高分辨率遥感影像处理和特征提取—操作指南随着遥感技术的不断发展,高分辨率遥感影像的获取和处理已经成为现代地理信息科学和遥感应用的重要组成部分。
本文将介绍如何进行高分辨率遥感影像处理和特征提取,并提供一些实用的操作指南。
一、数据获取与预处理在进行高分辨率遥感影像处理和特征提取之前,我们首先需要获取合适的遥感数据。
这可以通过卫星或无人机获取。
对于特定的研究领域或项目需求,选择合适的遥感影像数据非常重要。
常见的高分辨率遥感影像数据包括Landsat、Sentinel、QuickBird等。
一旦获取到了所需的影像数据,我们就可以进行预处理来优化数据质量。
预处理的步骤包括去除影像中的云和阴影、大气校正、辐射校正等操作。
二、影像增强与分割高分辨率遥感影像通常包含大量的信息,但这些信息往往被掩盖在噪声和杂散信息中。
因此,在特征提取之前,我们需要对影像进行增强和分割,以凸显目标特征。
影像增强可以通过直方图均衡化和滤波等技术实现。
而影像分割则将影像划分为一组连续的区域,以便更好地提取各个区域的特征。
这些区域可以通过基于像素的分割算法或基于区域的分割算法来获取。
三、特征提取与分类特征提取是高分辨率遥感影像处理的关键步骤。
提取准确的特征可以为后续的分类和分析提供重要的基础。
常用的特征包括形状、纹理、光谱和空间特征等。
形状特征可以通过计算目标的各类几何特征来获取,如周长、面积、紧凑性等。
纹理特征可以通过灰度共生矩阵和小波变换等方法进行提取。
光谱特征则利用影像的不同波段之间的差异来表达目标的光谱信息。
空间特征则关注目标之间的相对位置和空间关系。
提取到的特征常常需要进行分类和识别。
分类是将影像中的不同目标分配到指定类别的过程。
常用的分类算法包括马尔可夫随机场、支持向量机和人工神经网络等。
这些算法可以利用一些已知类别的样本数据进行训练,然后将训练得到的模型应用到未知数据中。
这样,我们就可以实现对影像中各个目标进行自动识别和分类的工作。
利用遥感影像进行测绘数据提取的方法
利用遥感影像进行测绘数据提取的方法近年来,随着遥感技术的不断发展,越来越多的测绘工作开始依赖遥感影像进行数据提取。
遥感影像具有高分辨率、广覆盖等优势,能够为测绘工作提供丰富的数据来源。
本文将介绍利用遥感影像进行测绘数据提取的一些常见方法,包括图像分类、目标检测和高程提取。
一、图像分类图像分类是利用计算机对遥感影像进行自动分类的方法。
通过对图像进行光谱分析和空间特征提取,可以将图像中的各类地物分割出来,并进行分类操作。
图像分类的步骤包括预处理、特征提取、分类器训练和分类结果验证等。
在图像分类中,特征提取是一个关键的环节。
常见的特征包括光谱特征、纹理特征和形状特征等。
光谱特征是指地物在不同波段上的反射率或亮度值,通过对光谱曲线进行分析,可以获得地物的光谱特征。
纹理特征是指地物的细节和纹理特点,通过对图像进行纹理分析,可以提取出地物的纹理特征。
形状特征是指地物的形状特点,通过对地物的边界进行分析,可以提取出地物的形状特征。
二、目标检测目标检测是利用遥感影像进行目标识别和定位的方法。
目标检测可以用于自然资源调查、城市规划和环境监测等领域。
目标检测的关键是找到目标在图像中的位置,并进行标注和分类。
常见的目标检测方法包括目标区域提取、特征描述和目标分类等。
在目标检测中,目标区域提取是一个重要的步骤。
目标区域提取可以通过阈值分割、边缘检测和区域生长等方法实现。
阈值分割是指利用像素的灰度值进行分割,将灰度值大于阈值的像素设置为目标像素,灰度值小于阈值的像素设置为背景像素。
边缘检测是指通过计算像素间的差值来检测目标的边缘。
区域生长是指从某个种子点开始,根据像素的灰度值相似性来扩展目标区域。
三、高程提取高程提取是利用遥感影像来获取地表的高程信息。
高程提取可以用于地形测量、地形分析和地貌研究等方面。
高程提取的方法主要包括影像匹配和立体视觉等。
影像匹配是利用影像对中的像点对进行配对,从而获取地点的三维坐标。
常见的影像匹配方法包括基于特征点的匹配和基于区域的匹配。
卫星遥感影像处理中的地物提取技术与算法
卫星遥感影像处理中的地物提取技术与算法近年来,随着卫星遥感技术的飞速发展,人们对地球表面的各种地物进行准确提取的需求也越来越迫切。
卫星遥感影像处理中的地物提取技术和算法因此应运而生,并逐渐成为遥感领域的研究热点之一。
本文将围绕这一主题展开讨论,介绍几种常见的地物提取技术和算法。
一、基于像元分类的地物提取技术基于像元分类的地物提取技术是目前应用最广泛的一种方法。
该方法通过将遥感影像中的像元根据其数值特征进行分类,从而实现不同地物的提取。
其中最常用的分类算法包括支持向量机(SVM)、最大似然法(ML)和决策树等。
将基于像元分类的技术应用于地物提取时,首先需要对遥感影像进行预处理,以提高分类的准确性。
预处理包括辐射校正、几何校正和大气校正等。
经过预处理后,可以采用像元分类算法对遥感影像进行分类。
例如,对于植被提取,可以通过选择合适的特征参数,如NDVI(归一化植被指数)或者Greenness指数来进行分类;对于水体提取,可以通过选择合适的波段组合,如NDWI(归一化水体指数)来进行分类。
二、基于对象识别的地物提取技术基于对象识别的地物提取技术相比基于像元分类的方法,更加注重对地物形状、纹理和上下文信息的利用。
该方法通过将遥感影像中的像元组合成具有一定形状和大小的对象,然后识别这些对象来提取地物。
在基于对象识别的地物提取技术中,首先需要对遥感影像进行分割,将像元组合成对象。
常用的分割算法包括基于阈值的分割、基于区域生长的分割和基于水平集的分割等。
分割完成后,可以采用特征提取和分类算法对对象进行识别和提取。
常用的特征包括形状特征、纹理特征和上下文特征等。
例如,对于建筑物提取,可以通过形态学操作和纹理特征提取来识别建筑物边缘,并通过上下文信息来进一步确定建筑物的位置和形状。
三、基于深度学习的地物提取技术近年来,随着深度学习的迅猛发展,基于深度学习的地物提取技术逐渐崭露头角。
深度学习技术以其强大的特征学习能力和良好的泛化能力,成为地物提取领域的一大利器。
如何使用遥感技术进行地表物理参数提取和分析
如何使用遥感技术进行地表物理参数提取和分析地表物理参数是指地表上的各种物理特征,例如地表温度、植被覆盖度、土壤湿度等。
通过遥感技术,我们可以获取地表物理参数的数据,并进行分析和应用。
本文将介绍如何使用遥感技术进行地表物理参数提取和分析。
一、遥感技术简介遥感技术是利用航空器、卫星等远距离传感器获取地物信息的一种技术。
它可以获取地表物理参数的数据,而不需要直接接触地面。
遥感技术可以利用电磁波的反射、辐射等特性来感知地物,并将其转化为数字数据。
遥感技术广泛应用于地质勘探、环境监测、农业等领域。
二、遥感数据的获取与处理1. 遥感数据的获取遥感数据可通过卫星遥感、航空遥感等方式获取。
卫星遥感可以利用地球观测卫星获取大范围的覆盖数据,而航空遥感则可以提供更高分辨率的数据。
选择合适的遥感数据源是进行地表物理参数提取和分析的首要步骤。
2. 遥感数据的预处理遥感数据在获取后需要进行预处理,以提高数据的质量和可用性。
预处理包括大气校正、几何校正、辐射校正等。
大气校正可以消除大气对遥感数据的干扰,而几何校正可以校正遥感数据的几何形态。
辐射校正则可以将遥感数据转换为地表反射率或辐射率数据。
三、地表物理参数的提取方法1. 温度参数的提取地表温度是描述地表热状态的重要物理参数。
可以通过热红外遥感数据来获取地表温度信息,利用热辐射定律将遥感数据转换为地表温度数据。
地表温度的提取可以用于城市热岛效应研究、气候变化监测等领域。
2. 植被参数的提取植被覆盖度是指地表被植被覆盖的程度。
可以利用植被指数来表征植被覆盖度,常用的植被指数有归一化差异植被指数(NDVI)、植被指数(EVI)等。
通过计算遥感数据中的植被指数,可以获取地表的植被覆盖度信息。
植被参数的提取可以用于农作物生长监测、森林资源调查等领域。
3. 土壤参数的提取土壤湿度是描述土壤水分状况的重要指标。
可以通过微波遥感数据来获取土壤湿度信息,利用微波辐射与土壤湿度之间的关系建立模型,将遥感数据转换为土壤湿度数据。
遥感影像处理与测绘数据提取技术详解
遥感影像处理与测绘数据提取技术详解引言:自工业化时代开始以来,人类对于地球的了解与探索不断加深,在这一过程中,遥感影像处理和测绘数据提取技术起着重要的作用。
遥感影像处理技术通过获取和分析地球表面上的图像数据,为我们提供全球范围内的地理信息。
而测绘数据提取技术则从地面上获取的各种数据中提取有关地理特征的信息。
本文将详细介绍遥感影像处理和测绘数据提取技术的原理和应用。
一、遥感影像处理技术1. 遥感影像获取技术遥感影像是通过卫星、飞机等远离地球表面的平台获取的地球表面图像。
这些图像可以提供宽广的视野,从而获得地球不同部位的图像数据。
遥感影像获取技术包括多光谱影像、高光谱影像、合成孔径雷达影像等。
其中,多光谱影像通过记录地表不同波段的电磁波信息,可以提供更为详细的地表信息。
而高光谱影像则通过记录地表众多的光谱波段,可以提供更加精细的地表信息。
合成孔径雷达影像则基于雷达信号,可以在夜晚或天气恶劣的情况下获取地表图像。
2. 遥感影像处理技术的原理遥感影像处理技术主要包括预处理、特征提取和信息提取三个步骤。
预处理步骤包括辐射校正、大气校正、几何校正等,主要是为了将原始数据转换为可用的标准化数据。
特征提取步骤则针对不同的地物特征进行分析,以提取出地表的不同要素,如水体、道路、建筑等。
信息提取步骤则是将特征提取的结果整合并分析,以获得一定规模的遥感影像数据集。
3. 遥感影像处理技术的应用遥感影像处理技术在许多领域都有广泛的应用。
例如,在农业领域,可以通过遥感影像处理技术监测作物的生长状况和土壤湿度等重要指标,以便农民及时采取相应的措施。
在城市规划与管理方面,遥感影像处理技术可以用于快速提取城市建筑物、道路和绿化带等信息,在城市规划与管理中起到重要的作用。
此外,遥感影像处理技术还可用于环境保护、自然资源调查与管理等诸多领域。
二、测绘数据提取技术1. 测绘数据获取技术测绘数据的获取通常通过测量和观测来实现。
地面测量是最常见的方式之一,通过使用测量仪器,如全站仪、测距仪等,可以测量地面上各种特征的位置和形状等信息。
遥感影像预处理的正确步骤
遥感影像预处理的正确步骤遥感影像预处理是遥感技术中非常重要的一步,它能够提取出影像中所需的信息并减少干扰因素,为后续的数据分析和应用提供清晰的数据基础。
下面将介绍遥感影像预处理的正确步骤。
1. 数据获取遥感影像预处理的第一步是获取原始遥感影像数据。
可以通过卫星遥感、航空遥感或无人机遥感等方式获取。
获取到的原始数据可能包含噪声、失真等问题,需要进行预处理来提高数据质量。
2. 辐射校正遥感影像中的像素值受到辐射条件的影响,辐射校正是将像素值转换为能反映地物表面特征的物理量。
辐射校正的方法包括大气校正、辐射定标等,目的是消除大气、地表反射率等因素对影像的影响。
3. 几何校正几何校正是将遥感影像的像素与地理坐标系相对应,使得像素位置准确地对应于真实地物位置。
几何校正的主要工作包括影像配准、地面控制点获取和校正模型建立等过程。
4. 噪声去除遥感影像中常常存在各种噪声,如斑点噪声、椒盐噪声等。
噪声去除的方法包括滤波、插值等,以提高影像的质量和清晰度。
5. 影像增强影像增强是通过改变影像的对比度、亮度等参数,使得地物特征更加明显。
常用的影像增强方法有直方图均衡化、滤波增强等。
6. 影像融合影像融合是将多个不同波段或不同分辨率的遥感影像融合为一幅影像,以获取更全面、准确的信息。
融合方法包括基于像素级的融合和基于特征级的融合。
7. 尺度转换遥感影像通常具有不同的空间分辨率和时间分辨率,为了方便数据分析和应用,需要进行尺度转换。
常见的尺度转换方法有降尺度和升尺度等。
8. 数据裁剪根据具体应用需求,对遥感影像进行裁剪,提取感兴趣的区域或特定的地物信息。
9. 影像格式转换遥感影像通常有多种格式,如TIFF、JPEG、ENVI等,为了方便数据存储和共享,需要将影像格式进行转换。
10. 数据存储经过预处理的遥感影像需要进行数据存储,以备后续的数据分析和应用。
遥感影像预处理的正确步骤包括数据获取、辐射校正、几何校正、噪声去除、影像增强、影像融合、尺度转换、数据裁剪、影像格式转换和数据存储等。
遥感图像ENVI水体提取步骤
数据要求:1.下载的影像数据,尽量为同日期或者尽量靠近,不能相差时间太长,提供的影像为2004年第259天,1994年第295天,2004年第268天。
其中1994年的影像肯定不行2.下载的影像数据,尽量没有云层覆盖类似这种研究区域中水体部分存在云层时,该影像不能用,需用接近该日期的影像替代。
水体提取步骤如下(一)7个单波段合并成一个文件1.ENVI软件中File-Open Image File,弹出以下对话框,选择文件夹下b1-b7影像并打开,如下:2.将7个波段合成一个影像文件,操作如下图:3.点击Import File,选择所有波段5.点击Reorder Files鼠标拖动,确保波段1-7序号,从b1-b7,排序如下:6.右边窗口设置坐标系如下:UTM,WGS-84,49N7.定义文件名后,生成一个整的影像文件同理,依次将其他文件夹下的7个波段合并成各自文件。
(二)多个文件镶嵌拼接成一个整的文件注意:该步操作比较复杂,拼接文件可能存在色差不均衡问题,具体请多网上查些资料;1.基于地理坐标进行拼接,操作如下:2.Import Files将上步生成的三个文件导入进来3.分别右键文件名,选择Edit Entry(三个文件操作一致)4.设置Data Value to Ignore背景值为0,羽化距离根据需要设置(不固定);Color Balancing(颜色平衡参数,其中Fixed为以该文件为标准,其他影像进行调整,可对其中一个文件设置为Fixed,其他两个文件设置为Adjust)5.File-Apply,影像拼接拼接结果如下:(三)水体区域提取1.Envi中波段运算,如下:2.输入以下表达式(b2*1.0-b4)/(b2+b4) gt 0 (可用其他方法,依实际情况而定)3.分别设置算法中各个变量对应的波段,b2表示第3个波段,b4为第5个波段4.根据研究区域进行裁剪,并统计其中为1的像元个数,影像加载显示后,加载矢量文件:5.加载区域shp文件,第一次加载时后缀选择.shp会自动生成一个evf文件,下次打开直接加载evf即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遥感影像各参数提取和运算
一.实验目的
1.1 熟悉使用ENVI软件的一些常用功能;
1.2 学会利用ENVI软件对遥感影像的NDVI和NDWI进行计算,对典型地物的参数信息进行提取和分析。
二.实验内容
2.1 计算可见光至短波红外波段的7个波段的TOA反射率数据和热红外的2个波段的亮度温度值;
2.2 计算NDVI和NDWI;
2.3 选择水体、土壤、植被和人工建筑等典型地物,每种典型地物至少选择50个样点,提取各个样点的7个TOA反射率值、2个亮温值和2个光谱指数值;
2.4 针对各个典型地物的遥感参数进行统计分析,至少计算各个参数的Minimum, Maximum, Range and Standard Deviation,利用图表的形式对其进行专业分析。
三.实验数据与实验平台
数据:LANDSAT 7 ETM+影像、p125r053_7t20001106.met
平台:ENVI 4.7软件
四.实验过程与结果分析
4.1. 计算可见光至短波红外波段的7个波段的TOA反射率数据和热红外的1个波段的亮度温度值。
实验步骤:
(1)计算可见光至短波红外波段的7个波段的TOA反射率:
Main menu →Basic Tools →Preprocessing
→Calibration Utilities →Landsat
Calibration→选择波段数为6的,点击
OK →Reflectance →Edit Calibration
Parameters→输出文件名
图4.1.1 反射率参数设置
图4.1.2反射率转换结果图与原图对比
(7,4,3波段,左图为结果图,右图为原图)
(2)转换成亮度温度值步骤:
Main menu →Basic Tools →Preprocessing →Calibration Utilities →Landsat Calibration →选择波段数为2的,点击OK →Radiance →Edit Calibration Parameters→输出文件名
图4.1.3 亮度温度值参数设置
图4.1.4 热红外的1个波段的亮度温度值影像
4.2 计算NDVI和NDWI
(1) NDVI计算步骤:Transform →NDVI →选择新生成的6波段反射率文件→OK→输出文件名
(2) NDWI计算步骤:Transform →NDVI →选择新生成的6波段反射率文件→OK →NDVI Bands:Red:4;Near IR:2 →输出文件名
图 4.2.1 对植被和水体的提取影像对比
左图是对水体的提取,水体部分高亮度显示,亮度值为1,其他地物为暗色,亮度值为0;右图是对植被的提取,植被部分高亮度显示,亮度值为1,其他地物为暗色,亮度值为0;
4.3 典型地物遥感参数提取
参数提取步骤:
① Main menu →Basic Tools →Resize Data →选择生成的亮温值波段→Set Output Dims by Pixel Size:Output X/Y by Pixel Size设置为28.5 →OK →输出文件名
② Main menu→File →Save File As →ENVI Standard →Import File:分别选择:6波段反射率文件、改变像素后的亮温值波段文件、6波段的ndvi文件、6波段的ndwi文件→文件输出
③建立ROI区域采样:打开上个步骤的汇总文件6、4、3波段→右击图像,选择ROI Tools →ROI_Type:Point →Window:Zoom;→选取不同地物的点→File →Output ROIs to ASCII →选择汇总文件→Select ALL Items →输出
文件名
图4.3.1 建立ROI区域采样
4.4 各个典型地物的遥感参数统计分析(利用ENVI中的spectral Library Builder)
步骤:
首先打开6波段的反射率影像→Spectral →Spectral Libraries →spectral Library Builder →first input spectrum → i mport →form ROI/EVF form input file →6波段的反射率影像→Select All Items →OK
所提取地物的光谱曲线展示如下图(在旁边标识曲线时,如果用中文名会显示不出来,所以可以在建立光谱库后要改成英文名)
4.5 对应影像比较分析地物的波谱曲线
①完成上个步骤的光谱库后,选中所要打开的地物光谱曲线,点击plot即可显示
②导入野外测试的ASD光谱:import →from ASD binary file →ASD文件相对应地物的野外观测光谱数据
标准光谱库植被光谱:import →from Spectral library file → s pectral library →相对应的标准地物光谱曲线
图4.5.1 不同测量手段植被光谱曲线的对比
(x轴表示波段范围,y轴表示反射率)
结果分析:通过对ETM+遥感影像、野外观测以及标准光谱库中植被光谱曲线的对比可以看出,几种方法处理得出的曲线趋势相似,在ETM+遥感影像中的植被光谱曲线与野外观测的植被光谱曲线比较接近,但ASD光谱仪野外观测的光谱曲线与ETM+遥感影像上的光谱曲线这两种曲线在近红外波段与标准植被光谱反射率大小相差较大,原因在于在野外观测过程中和利用遥感手段获取的影像过程中,会受到天气情况以及大气层反射折射的影响。
图4.5.2 不同测量手段水体光谱曲线的对比
结果分析:通过对ETM+遥感影像、野外观测以及标准光谱库中水体光谱曲线的对比可以看出,ETM+遥感影像中的水体光谱曲线与野外观测的水体光谱曲线很相似,但海水的反射率在0.5nm-1.6nm之间都接近于0,在1.6nm之后才渐渐回升,与前两种观测手段得出的水体光谱曲线有很大的差别。
五.实验体会
在进行实验之前,我们对ASD光谱仪器的操作方法一无所知,对ENVI软件的大部分功能都没有深入了解。
通过这次实验,我们基本上每个人都熟悉了地物光谱的测量以及处理,达到了预期的效果。
只是在光谱分析这方面,由于知识水平有限,分析得不全面,做的还不是很好,希望在经过一些专业的训练后,能够弥补这一空缺。