2020年中考数学复习专题练:《一次函数综合 》(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学复习专题练:《一次函数综合》

1.如图,直线与x轴交于A点,与y轴交于B点,动点P从A点出发,沿AO方向向点O匀速运动,同时动点Q从B点出发,沿BA方向向点A匀速运动,P,Q两点的运动速度都是每秒1个单位,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s).

(1)求A,B两点的坐标;

(2)当t为何值时△AQP的面积为;

(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q 的坐标.

2.已知直线y=2x+b与x轴交于点A,与y轴交于点B,将线段BO绕着点B逆时针旋转90°得到线段BC,过点C作CD⊥x轴于点D,四边形OBCD的面积为36.

(1)求直线AB的解析式;

(2)点P为线段OD上一点,连接CP,点H为CP上一点,连接BH,且BH=BC,过点H 作CP的垂线交CD、OB于E、F,连接AE、AC,设点P的横坐标为t,△ACE的面积为S,求S与t的函数解析式;

(3)在(2)的条件下,连接OH,过点F作FK⊥OH交x轴于点K,若PD=PK,求点P 的坐标.

3.如图,已知直线y=kx+2与x轴、y轴分别相交于点A、点B,∠BAO=30°,若将△AOB沿直钱CD折叠,使点A与点B重合,折痕CD与x轴交于点C,与AB交于点D.(1)求k的值;

(2)求点C的坐标;

(3)求直线CD的表达式.

4.如图1,在平面直角坐标系中,OB=10,F是y轴正半轴上一点.

(1)若OF=2,求直线BF的解析式;

(2)设OF=t,△OBF的面积为s,求s与t的函数关系(直接写出自变量t的取值范围);

(3)如图3,在(2)的条件下,过点B作BA⊥x轴,点C在x轴上,OF=OC,连接AC,CD⊥直线BF于点D,∠ACB=2∠CBD,AC=13,OF=OC,AC.BD交于点E,求此时t的值.

5.如图,在平面直角坐标系中,点A 的坐标为(0,1),点B 的坐标为(﹣3,﹣1),将线段AB 向右平移m (m >0)个单位,点A 、B 的对应点分别为点A ′,B ′.

(1)画出线段AB ,当m =4时,点B ′的坐标是 ;

(2)如果点B ′又在直线x =上,求此时A ′、B ′两点的坐标;

(3)在第(2)题的条件下,在第一象限中是否存在这样的点P ,使得△A ′B ′P 是以A ′B ′为腰的等腰直角三角形?如果存在,直接写出点P 的坐标;如果不存在,试说明理由.

6.如图,在平面直角坐标系xOy 中,直线l 1:y =x +2与x 轴交于点A ,直线l 2:y =3x ﹣6与x 轴交于点D ,与l 1相交于点C .

(1)求点D 的坐标;

(2)在y 轴上一点E ,若S △ACE =S △ACD ,求点E 的坐标;

(3)直线l 1上一点P (1,3),平面内一点F ,若以A 、P 、F 为顶点的三角形与△APD 全等,求点F 的坐标.

7.如图,在平面直角坐标系中,长方形OABC的顶点O为坐标原点,顶点A,C分别在x轴正半轴和y轴正半轴上,顶点B的坐标为(12,8),直线y=kx+8﹣6k(k<0)交边AB 于点P,交边BC于点Q.

(1)当k=﹣1时,求点P,Q的坐标;

(2)若直线PQ∥AC,BH是Rt△BPQ斜边PQ上的高,求BH的长;

(3)若PQ平分∠OPB,求k的值.

8.如图,直线y=﹣x+4与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,点E是点B以Q为对称中心的对称点,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连结PQ,设P,Q两点运动时间为t秒(0<t≤1.5).(1)直接写出A,B两点的坐标.

(2)当t为何值时,PQ∥OB?

(3)四边形PQBO面积能否是△ABO面积的;若能,求出此时t的值;若不能,请说明理由;

(4)当t为何值时,△APQ为直角三角形?(直接写出结果)

9.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=,那么称点T是点A和B的融合点.例如:M(﹣1,8),N(4,﹣2),则点T(1,2)是点M和N的融合点.如图,已知点D(3,0),点E是直线y =x+2上任意一点,点T(x,y)是点D和E的融合点.

(1)若点E的纵坐标是6,则点T的坐标为;

(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:

(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.

10.已知:在平面直角坐标系中,点O为坐标原点,直线y=kx+8(k<0)分别交x轴,y 轴于点C,B,点A在第一象限,连接AB,AC,四边形ABOC是正方形.

(1)如图1,求直线BC的解析式;

(2)如图2,点D,E分别在AB,OC上,点E关于y轴的对称点为点F,点G在EF上,且EG=2FG,连接DE,DG,设点G的横坐标为t,△DEG的面积为S,求S与t之间的函数关系式,并直接写出自变量t的取值范围;

(3)如图3,在(2)的条件下,连接BE,BF,CD,点M在BF上,且FM=EG,点N在BE上,连接MN交DG于点H,∠BNM=∠BEF,且MH=NH,若CD=5BD,求S的值.

11.如图,在平面直角坐标系xOy中,直线l

:y=kx+b与x轴交于点A(﹣6,0),与y

1

轴交于点B(0,4),与直线l

:y=x相交于点C.

2

(1)求直线l

的函数表达式;

1

(2)求△COB的面积;

(3)在x轴上是否存在一点P,使△POC是等腰三角形.若不存在,请说明理由;若存在,请直接写出点P的坐标.

12.如图,直线y=x+4与x轴.y轴分别交于A.B两点直线BC与x轴交于点C(4,0).

(1)求直线BC的解析式;

(2)D(2,m)为线段BC上的点,作点D关于直线上x=﹣4的对称点E.CE交直线:x =﹣4于F,求线段CF的长;

(3)y轴上是否存在一点M.使得以A、B、M为顶点的三角形为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

相关文档
最新文档