自动控制原理之根轨迹

合集下载

自动控制原理 第四章根轨迹

自动控制原理 第四章根轨迹

第四章根轨迹法4-1 根轨迹法的基本概念4-2 常规根轨迹的绘制法则4-3 广义根轨迹4-1 根轨迹法的基本概念一、根轨迹的概念根轨迹:系统中某个参数从零到无穷变化时,系统闭环特征根在s平面上移动的轨迹。

根指的是闭环特征根(闭环极点)。

根轨迹法是根据开环传递函数与闭环传递函数的关系,通过开环传递函数直接分析闭环特征根及系统性能的图解法。

K =0 s 1=0 s 2=-40 < K <1s 1 s 2为不等的负实根K =1s 1=-2 s 2=-21 < K < ∞s 1s2 实部均为-2由根轨迹可知:1)当K =0时,s 1=0,s 2=-1,这两点恰是开环传递函数的极点,同时也是闭环特征方程的极点.2)当0<K < 1 时,s 1,2都是负实根,随着k 的增长,s 1从s 平面的原点向左移,s 2从-1点向右移。

3) 当K = 1时, s 1,2= -2,两根重合在一起,此时系统恰好处在临界阻尼状态。

4) 1 <K <∞,s 1,2为共轭复根,它们的实部恒等于-2,虚部随着K 的增大而增大,系统此时为欠阻尼状态。

★在s平面上,用箭头标明K增大时,闭环特征根移动的方向,以数值表明某极点处的增益大小。

有了根轨迹图就可以分析系统的各种性能:(1)稳定性:根轨迹均在s的左半平面,则系统对所有K>0都是稳定的。

(2)稳态性能:如图有一个开环极点(也是闭环极点)s=0。

说明属于I型系统,阶跃作用下的稳态误差为0。

在速度信号V0t作用下,稳态误差为V0/K,在加速度信号作用下,稳态误差为∞。

(3)动态性能:过阻尼临界阻尼欠阻尼K越大,阻尼比ξ越小,超调量σ%越大。

由此可知:1、利用根轨迹可以直观的分析K的变化对系统性能的影响。

2、根据性能指标的要求可以很快确定出系统闭环特征根的位置;从而确定出可变参数的大小,便于对系统进行设计。

由以上分析知:根轨迹与系统性能之间有着密切的联系,但是,高阶方程很难求解,用直接解闭环特征根的办法来绘制根轨迹是很麻烦的。

自动控制原理第5章根轨迹分析法

自动控制原理第5章根轨迹分析法

04
CATALOGUE
根轨迹分析法的限制与挑战
参数变化对根轨迹的影响
参数变化可能导致根轨迹的形状和位置发生变化 ,从而影响系统的稳定性和性能。
对于具有多个参数的系统,根轨迹分析可能变得 复杂且难以预测。
需要对参数变化进行细致的监测和控制,以确保 系统的稳定性和性能。
复杂系统的根轨迹分析
对于复杂系统,根轨 迹分析可能变得复杂 且难以实现。
02
CATALOGUE
根轨迹的基本概念
极点与零点
极点
系统传递函数的极点是系统动态 特性的决定因素,决定了系统的 稳定性、响应速度和超调量等。
零点
系统传函数的零点对系统的动 态特性也有影响,主要影响系统 的幅值和相位特性。
根轨迹方程
根轨迹方程是描述系统极点随参数变 化的关系式,通过求解根轨迹方程可 以得到系统在不同参数下的极点分布 。
05
CATALOGUE
根轨迹分析法的改进与拓展
引入现代控制理论的方法
状态空间法
将根轨迹分析法与状态空间法相结合,利用状态空间法描述系统的动态行为,从而更全 面地分析系统的稳定性。
最优控制理论
将根轨迹分析法与最优控制理论相结合,通过优化系统的性能指标,提高系统的稳定性 和动态响应。
结合其他分析方法
根轨迹方程的求解方法包括解析法和 图解法,其中图解法是最常用的方法 。
根轨迹的绘制方法
手工绘制
通过选取不同的参数值,计算对应的极点,然后绘制极点分布图。这种方法比较繁琐,但可以直观地了解根轨迹 的形状和变化规律。
软件绘制
利用自动控制系统仿真软件,如MATLAB/Simulink等,可以方便地绘制根轨迹图,并分析系统的动态特性。

自动控制原理 根轨迹法

自动控制原理 根轨迹法

n
i
|
注意
• 相角方程是决定系统闭环根轨迹的充分 必要条件 • 用相角方程绘制根轨迹; • 模值方程主要用来确定已知根轨迹上某 一点的K*值 • 例4-1,4-2
4.2 根轨迹绘制的基本法则
• 法则1: 根轨迹的分支数:根轨迹在[s]平面上的分支数 等于闭环 特征方程的阶数n,也就是分支数与闭环极点的 数目相同。
q
h
f
l
结论:1 零点、 2 极点、3 根轨迹增益
b0 ( s z1 )(s z 2 ) ( s zm ) G( s) H ( s ) K* a0 ( s p1 )(s p2 ) ( s pn )
• 根轨迹增益:
(s z ) (s p )
• 法则6: 根轨迹的起始角(从极点pk)和终止角(到零点zk) :
起始角:
例2 证2
m n
pk ( 2k 1) ( pk z j ) ( pk pi )
j 1 i 1 i k
终止角:
zk ( 2k 1) ( z k p i ) ( z k z j )
i
nm

0 ( 1) ( 2) 1 30
a
(2k 1)π π π , , π nm 3 3
d1 0.42, d 2 1.58(舍去)
s j
1 1 1 0 d d 1 d 2
1 G(s)H(s) 0即(s 3 3s 2 2s K * ) j 3 3 2 2 j K * 0
s2

0
常规根轨迹的绘制法则(P138) 终止于开环零点或。 1 根轨迹起始于开环极点或, 根轨迹对称实轴 2 根轨迹的条数为特征根的个数, 3 ∣n-m∣条渐近线对称于实轴,均起于实轴上的σa 点,

自动控制原理-第4章 根轨迹

自动控制原理-第4章 根轨迹

又 ∵ 根轨迹方程
n
n
(spi) sn( pi)sn 1L
n
m
Kim 1
i 1 m
snm( pi zj)snm 1L
(szj) sm( zj)sm 1L
i 1
j 1
j 1
j 1
n
m
∴ sn-m-1项系数对应相等
(nm)(a) pi zj
n
m
i1
j1
(2k 1) ,
nm
pi zi
闭环零、极点与开环零、极点的关系
闭环传递函数 (s) G(s)
1G(s)H(s)
开环传递函数 Gk(s)G(s)H(s)
f
l
(s zi)
(s z j)
G (s) KG
i 1 q
H
(s)
K
H
j 1 h
(s pi)
(s p j)
i 1
j 1
f
l
(szi)(szj)
Gk(s)G(s)H(s)K
如何应用根轨迹方程在[s]平面上找到闭环极点。
解: G ( s ) K 0 .5 K K * s(2 s 1) s(s 0.5) s(s 0.5)
K * 0.5 K 开 环 极 点 p1 0, p2 0.5 无开环零点 根据相角方程
s2
p2 4 5 o -0.5 s1
135o
p1 0
m
(s z j)
K j1 n
1
(s pi)
i1
m
n
(szj) (spi)(2k1)
j1
i1
k0,1,2,L
(1)相角条件是决定闭环根轨迹的充要条件; 在测量相角时,规定以逆

自动控制原理第四章 根轨迹

自动控制原理第四章  根轨迹
S ( S 2 )( S 4 )
① ∵有三个极点,根轨迹 有三条分支 ② ∵n=3, m=2 ∴有3-2=1条根 轨迹→∞, 2条终止于开环零点。 ③在实轴上不同段上取试 验点
-4 -3 -2 -1

×
o
×
o ×
σ
§4-2绘制根轨迹的基本规则
五.根轨迹的渐近线
1.根轨迹中(n-m)条趋向无穷远处的分支的 渐近线的倾角为
1 1
在根轨迹与虚轴的交点处,在系统中出现 虚根。因此可以根据这一特点确定根轨迹与虚 轴的交点。可以用 s j 代入特征方程求解, 或者利用劳斯判据确定。
§4-2绘制根轨迹的基本规则 续例4-2,将 s j 代入特征方程。
j ( j 1 )( j 2 ) K j ( j
§4-1根轨迹的基本概念 将开环传递函数写成下列标准的因子式
K1 G (S )H (S )

j 1 n
m
(s z
j
)

i 1
(s pi )
注意这个形式和求 稳态误差的式子不 同,需变换成这种 形式.
z j -开环零点.
p i -开环极点.
此时,幅值条件和相角条件可写成
K
1

j 1 n

s 2 .3
2 . 3 0 . 7 1 . 64 1 . 64 4 . 33
6.求根轨迹在
p3
的出射角
p 180 ( 135 90 26 . 6 ) 431 . 6
( 减去 360 ,为 71 . 6 )
§4-3反馈控制系统的根轨迹分析 7.求根轨迹与虚轴的交点.
K1=6

自动控制原理第四章-根轨迹分析法

自动控制原理第四章-根轨迹分析法

×
p4 z 2
×
p3
×
×
p 2 z1 p1
σ
规则4:根轨迹的分会点(分离点和会合点)d。 (1)定义:分会点是指根轨迹离开实轴进入复平面的点(分 离点)或由复平面进入实轴的点(汇合点),位于相邻两极点 或两零点之间。
(2)位置:大部分的分会点在实轴上,若出现在复平面内时,则 成对出现。
(3)特点:分会点对应于闭环特征方程有重根的点;根轨迹离开
(4)与虚轴的交点:
方法1:闭环特征方程为s3 + 6s2 + 8s + K*= 0 令s = jω得:-jω3 -6ω2 + j8ω + K* = 0
-6ω2 + K* = 0 即
-ω3 + 8ω= 0
K* = 48 ω= 2.8 s-1
方法2:闭环特征方程为 s3 + 6s2 + 8s + K*= 0 列劳斯表如下:
规则1:根轨迹的起点和终点。 根轨迹起始于开环极点,终止开环零点或无穷远。
m
i 1
s
zi
n
s
l 1
pl
1 K
K
K
0 s pl
s s
zi , m条 (, n
m)条
规则2: 根轨迹的条数和对称性。 n阶系统有n条根轨迹。根轨迹关于实轴对称。
规则3: 实轴上的根轨迹分布。
由实数开环零、极点将实轴分为若干段,如某段右边 开环零、极点(包括该段的端点)数之和为奇数,则该段就 是根轨迹,否则不是。如下图所示。
又因为开环传函的零极点表达式为:
m
GK (s)
G(s)H(s)
K
n
(s

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法

i 1
j 1
开环极点到此被测零点 (终点)的矢量相角
8. 根轨迹的平衡性(根之和) ( n-m 2)
特征方程 Qs KPs 0
sn an1sn1 a1s a0 K sm bm1sm1 b1s b0 0
n
Qs KPs s p j sn cn1sn1 c1s c0 0 j 1
i 1
j1
k 0,1,2,
s zoi i 开环有限零点到s的矢量的相角
s poj j 开环极点到s的矢量的相角
矢量的相角以逆时针方向为正。
幅值条件:
s
m
m
s zoi
li
A s
i 1 n
i 1 n
s poj
Lj
j 1
j1
li αi
-zoi
Lj βj
×
-poj
开 环 有 限 零 点 到s的 矢 量 长 度 之 积 开环极点到s的矢量长度之积
, 2 2
c 2k 11800 2
由此可推理得到出射角:
其余开环极点到被测极 点(起点)的矢量相角
n1
m
c 2k 1180o j i
j 1
i 1
有限零点到被测极点
(起点)的矢量相角
同理入射角:
其余开环有限零点到被测 零点(终点)的矢量相角
m1
n
r 2k 1180o i j
1 GsHs 0
m
GsHs
KPs Qs
K
i 1
n
s
s
zoi
poj
j 1
P s sm bm1sm1 b1s b0
Q s sn an1sn1 a1s a0
于是,特征方程

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法

第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)

自动控制原理第4章根轨迹法精

自动控制原理第4章根轨迹法精
上式称为根轨迹开环传递函数的标准形式。所以,绘制根轨迹图 时,首先要把开环传递函数改写成这种标准形式。
m
( zj )
K K*
J 1 n
( pi )
i 1
zj
1
j
(j
1,2,, m);
pi
1 Ti
(i
1,2,, n)
可写出幅值方程与相角方程,即
G(s)H (s) 1
G(s)H(s) 1
开环零点: z1 1.5; z2,3 2 j
(1)实轴(0~1.5)和( 2.5 ~ )有根轨迹。
(2)渐近线n=4 m=3,故只有一条根轨迹趋向无穷远。由实根
轨迹可知 180 。
(3)根轨迹出射角与入射角。
出射角
3
4
p2 ( 2K 1) ( p2 zi ) ( p2 pi )
d= -3.7
s2 4s 1 0
解法2 用公式有
1 1 1
d 1 j 2 d 1 j 2 d 2
解此方程 d1 3.7, d2 0.3
d1在根轨迹上,即为所求的分离点,d2不在根轨迹上舍去。 因为
z1 2, p1,2 1 j 2 n=2,m=1
系统有两条根轨迹,一条消失于零点,另一条趋于负无穷远 在实轴(-2,-∞)区段有根轨迹。 出射角
4.1根轨迹与根轨迹方程
什么是时域分析? 指控制系统在一定的输入下,根据输出量的时
域表达式,分析系统的稳定性、瞬态和稳态性能。
4.1.1 根轨迹 4.1.2 根轨迹方程
4.1.1 根轨迹
[根轨迹定义]:系统开环传递函数增益K(或某一参数)由零到 无穷大变化时,闭环系统特征根在S平面上移动的轨迹。
例:如图所示二阶系统,

自动控制原理根轨迹

自动控制原理根轨迹

等效为:
D( s ) = ∏ ( s + p j ) = 0
j =1
n
得:s = − p j
说明当 Kg = 0时,根轨迹始于各开环极点。
22
根轨迹终点条件: Kg = ∞ 当 Kg =∞时,闭环系统的特征方程
等效为:
N ( s) = ∏ ( s + z i ) = 0
i =1
m
得:s = − zi
24
3. 实轴上的根轨迹
判断准则: 实轴上若有根轨迹分布的线段,则该线段右侧的 开环有限零极点个数之和必为奇数。否则不存在根轨迹。 可用相角条件证明此规则,基于以下事实:
■ 复平面上的所有零、极点是共轭的,它们到实轴上根轨迹
(任意试验点)的矢量辐角之和总为零。
■ 根轨迹(任意试验点)左侧的实数零、极点到根轨迹的矢量
θ p = 180 − [∑ ∠( pk − p j ) − ∑ ∠( pk − zi )]
k
n
m
j =1 j≠k
i =1
= 180 − [∑ β j −∑ α i ]
j =1 i =1
36
n −1
m
终止角计算公式(第K个零点的入射角):
θ z = 180 + [∑ ∠( z k − p j ) − ∑ ∠( z k − zi )]
整理为:
(µ为自然数)
( N z + N z − N z )π − N pπ = 2 N zπ − ( N z + N p )π = ±π (1 + 2 µ )
所以,实轴上存在根轨迹的条件应满足:
N z + N p = 1 + 2µ
即实轴上根轨迹右侧的开环有限零、极点的个数之和为奇数.

自动控制原理根轨迹

自动控制原理根轨迹

自动控制原理根轨迹自动控制系统的根轨迹是描述系统稳定性和性能的重要工具之一。

根轨迹是以闭环传递函数的极点和零点的运动轨迹形状为基础绘制而成的。

在绘制根轨迹时,假设系统的闭环传递函数为G(s),其极点和零点分别为p1, p2, ..., pn和z1, z2, ..., zm。

根轨迹将从零点或者无穷远点开始,经过一系列的线段和曲线,最终到达极点或无穷远点。

根轨迹的演变与系统的开环传递函数有关,而开环传递函数可以表示为G(s) = K(s + z1)(s + z2)...(s + zm)/(s + p1)(s + p2)...(s + pn),其中K是系统的增益。

根轨迹的绘制规则如下:1. 根轨迹总是从系统的零点(实部为负的零点或倾角为奇数倍的复的零点)或者无穷远点开始。

2. 根轨迹图的总数等于系统的开环极点数和零点数之差。

3. 根轨迹的虚轴交点总数等于零点数和极点数之差的绝对值。

4. 根轨迹总是对称于实轴。

5. 根轨迹总是在实轴的左半平面。

通过绘制根轨迹,可以分析系统的稳定性和性能。

当根轨迹与虚轴相交时,系统就有可能发生震荡或振荡。

当根轨迹与实轴相交时,可以得到系统的过渡过程、稳态误差以及系统的稳定性等信息。

绘制根轨迹可以通过手绘或者使用计算机辅助工具进行。

一般来说,使用计算机辅助工具可以更加方便和准确地绘制根轨迹,并且可以对参数和增益进行调整来观察系统的性能变化。

常用的计算机辅助工具有MATLAB、Simulink等。

总之,根轨迹是描述自动控制系统稳定性和性能的重要工具,可以通过绘制闭环传递函数的极点和零点的运动轨迹来得到。

绘制根轨迹可以用于分析系统的震荡性质、过渡过程、稳定性和稳态误差等,并可以通过调整参数和增益来改善系统的性能。

自动控制原理--根轨迹法

自动控制原理--根轨迹法
3
1. 参数根轨迹
以非开环增益为可变参数绘制的根轨 迹为参数根轨迹,以区别以开环增益K*为 可变参数的常规根轨迹。
绘制参数根轨迹的法则与绘制常规根 轨迹的完全相同。只要在绘制参数根轨迹 之前,引入等效单位反馈系统和等效传递 函数概念,则常规根轨迹的所有绘制法则, 均适用于参数根轨迹的绘制。
4
为此,需要对闭环特征方程 1 G(s)H(s) 0 做如下等效变换,变成下面形式:
1 s(5s 1)
C(s)
1
C(s)
5
s(5s 1)
1 Td s
10
11
例:
设单位反馈系统的开环传递函数为
G(s)
K
s(s 1)(Ta s 1)
其中开环增益 K 可自行选定。分析时间常数 Ta 对 系统性能的影响。
解:闭环特征方程
s(s 1)(Ta s 1) K 0 1 Ta s 2 (s 1) 0
s(s 1) K
[s(s 1) K ] Ta s 2 (s 1) 0
G1 (s)

Ta s 2 (s 1) s(s 1) K
12
等效开环极点:
p1,2


1 2

1 K 4
注:若分母多项式为高次时,无法解析求解等效开环极 点,则运用根轨迹法求解。如本例,求解分母特征根的 根轨迹方程为:
G(s)H(s) 5(1 Ta s) 以 Ta 为 变 量 绘 制 s(5s 1) 参数根轨迹。
解: 1 G(s)H(s) 0
(5s 1)s 5(1 Ta s) 0 5s2 s 5 5Tas 0
7
5s2 s 5 5Tas 0
同除 5s2 s 5

第八章 根轨迹法

第八章 根轨迹法
nm =3
p3 -2
p2 -1
σα
0
p1
故三条根轨迹趋向无穷远处,其渐近线与实 -60° 轴交点的坐标为 (0) +(1) +(2) (0) σα = =1 3 (2k + 1)π 取 k = 0, α = 60° α = 渐近线与实轴正方向的夹角 3 k = 1, α = 180° k = 1, α = 60° 三条渐近线如图所示。
自动控制原理
利用以上原则求例 8-1 的根轨迹图: 已知开环极点为0,-2。首先应用幅角条件,即
(∠s + ∠(s + 2)) = ±180°(2k + 1)
用试探的方法可找出满足上述条件的 s 点。 由幅角条件分析可知,实轴上根轨迹位于(-2,0)区间,实 轴之外根轨迹为0,-2两点的中垂线。 用幅值条件可算出根轨迹上各点对应的 K* 值。 如对(-1+j) 点,有 K = s i s + 2 / 2 = ( 2i 2)/ 2 = 1 得 K* = 2
自动控制原理
五、根轨迹的渐近线
* 如果开环零点数 m 小于开环极点数 n,则K → ∞ 时,趋向无 穷远处的根轨迹共有 (n-m) 条,这些根轨迹趋向于无穷远处的方向 角可由渐近线决定。
渐近线与实轴交点坐标公式 该式的分子是开环极点之和减零点之 和,分母是开环极点数减零点数。
∑ p ∑z
σα =
i =1 i j =1
∏ (s z )
由根轨迹方程知,
m
∏ (s p )
j =1 i
i =1 n
i
=
1 K*
K * → ∞ 时,s – zi = 0
所以,根轨迹终止于开环零点。 又,若 n>m ,则 s →∞ 时,上式可写成 即有 (n-m) 条根轨迹趋向于无穷远处。

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法

第四章 根轨迹法反馈系统的稳定性由系统的闭环极点确定。

研究系统参数变化对闭环系统特性的影响,是分析系统和设计控制器的重要内容。

参数变化的作用,体现在对闭环极点的影响上。

对于高阶系统,用解析方法说明这种影响,很困难,且不易理解。

图解法是一种方便的近似方法。

l 、基本内容和要点 (l )根轨迹的基本概念根轨迹的定义。

以二阶系统为例说明什么是根轨迹,怎样从根轨迹分析闭环零、极点与系统的性能。

(2)绘制根轨迹的基本规则根轨迹的特点和性质。

绘制以系统开环增益K 为变量的根轨迹的规则与方法。

常见的几种典型系统的根轨迹图。

(3)参数根轨迹参数根轨迹的定义。

多参变量根轨迹。

多环系统的根轨迹。

(4)非最小相位系统的根轨迹最小相位和非最小相位系统的定义和特点。

非最小相位系统根轨迹的特点和绘制规则。

(5)含有延迟环节的系统的根轨迹有延迟环节的系统的极轨迹特点及绘制规则。

延迟环节的近似表达式及使用条件。

(6)基于根轨迹分析系统的响应根轨迹的形状,零极点的位置与系统时域响应性能指标间的关系。

几种常见的典型系统的零、极点分布与其暂态响应性能指标。

2、重点(l )最小相位系统的以开环增益K 为变量的根轨迹的特点及其绘制的规则和方法。

(2)系统根轨迹的形状,零、极点的分布与其时域响应性能指标的关系。

3、难点对“根轨迹上所有的点只是可能的闭环极点”的理解以及非最小相位系统中含最高次冥项系数为负的因子时根轨迹的绘制。

4-1 根轨迹法的基本概念1. 根轨迹概念根轨迹法:根据参数变化∞→0,研究系统闭环极点变化轨迹的一种图解方法。

即在参数变化时图解特征方程。

近似作图;重要区域,如与虚轴的交点与实轴的交点等,根轨迹要准确;依据根轨迹图,可以确定合适的系统参数,为设计控制器提供依据。

例图4-1,研究系统的开环增益K 的变化∞→0, 对闭环极点的影响。

开环传递函数)15.0()(+=s s Ks G ,闭环传递函数Ks s K s 222)(2++=Φ,特征方程0222=++K s s ,根轨迹方程1)2(-=+s s k ,∞→=0,2K k 。

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法
仿真与实验研究
根轨迹法可用于仿真和实验研究,通过模拟和实验 验证系统的性能和稳定性,为实际系统的设计和优 化提供依据。
根轨迹法的历史与发展
历史
根轨迹法最早由美国科学家威纳于1940年提出,经过多年的 发展与完善,已经成为自动控制领域中一种重要的分析和设 计方法。
发展
随着计算机技术和数值分析方法的不断发展,根轨迹法的应 用范围和精度得到了进一步拓展和提高。未来,根轨迹法有 望与其他控制理论和方法相结合,形成更加完善和高效的控 制系统分析和设计体系。
根轨迹的性能分析
根轨迹的增益敏感性和鲁棒性
通过分析根轨迹在不同增益下的变化情况,可以评估系统的性能和鲁棒性。
根轨迹与性能指标的关系
通过比较根轨迹与某些性能指标(如超调量、调节时间等),可以评估系统的 性能。
04
根轨迹法与其他控制方法的比较
根轨迹法与PID制根轨迹图,直观地分析系统的稳定性、响应速度和超调量等性
特点
根轨迹法具有直观、简便、易于掌握等优点,特别适合用于分析 开环系统的稳定性和性能。
根轨迹法的应用场景
控制系统设计
根轨迹法可用于控制系统设计,通过调整系统参数 ,优化系统的性能指标,如稳定性、快速性和准确 性等。
故障诊断与排除
根轨迹法可用于故障诊断与排除,通过观察系统根 轨迹的变化,判断系统是否出现故障,以及故障的 类型和程度。
在绘制根轨迹时,需要遵循一定 的规则,如根轨迹与虚轴的交点 、根轨迹的分离点和汇合点等。
03
根轨迹分析方法
根轨迹的形状分析
根轨迹的起点和终点
根轨迹的起点是开环极点的位置,而 终点是闭环极点的位置。通过分析起 点和终点的位置,可以判断根轨迹的 形状。
根轨迹的分支数

自动控制原理第4章-根轨迹

自动控制原理第4章-根轨迹

zl
1800
m
( zl
j 1 jl
zj)
n
( zl
j 1
p
j
)
第四章 根轨迹法
4.2.3 绘图示例
G(s)H (s)
K
s(s 1)(s 2)
闭环特征方程 : s3 3s2 2s K 0
按7个基本规则绘制根轨迹图:
首先,系统有三个无穷远
零点,有三个开环极点:
p1=0,p2=-1,p3=-2,将它们 标在复平面上。
第四章 根轨迹法
7、 根轨迹的出射角和入射角
根轨迹从某个开环极点出发时的切线与正实轴的夹角称
为出射角,根轨迹从开环极点pi出发的出射角为:
pi
1800
m
( pi
j 1
zj)
n
( pi
j 1
p
j
)
ji
根轨迹进入某个开环零点的切线与正实轴的夹角称为 入射角,根轨迹进入开环零点Zl的入射角为:
根据规则1)和2),根轨
迹将有3支,分别开始于这
三个开环极点,趋向无穷
远。
第四章 根轨迹法
根据规则3),根轨迹有3根渐近线,它们与实轴的夹角是:
k
(2k
1)1800 3
,
k 0,1,2
0 600 ,1 1800 ,2 3000
所有渐近线交于实轴上 的一点,其坐标为:
0 1 2 1
3
1 K (s z1 )(s z2 )....(s zm ) 0 (s p1 )(s p2 )....(s pn )
m
上式变形: K (s zl )
l 1 n
1 0 ——典型根轨迹方程
(s pi )

自动控制原理第四章 根 轨 迹 法

自动控制原理第四章    根 轨 迹 法

K=2.5
-2
>0.5时,特征根为共轭复根,欠阻尼系 统,响应为衰减振荡;可根据性能要求
K
设置闭环极点。
当特征方程>2阶时无法求解,如何绘制根轨迹图?
4-2. 绘制根轨迹的基本依据和条件
特征方程为: 1+G(s)H(s)=0
即: G(s)H(s)= -1
R(s)
Y(s)
G(s)
-
H(s)
G( s )H( s ) 1
4-1. 根轨迹基本概念
根轨迹的定义:
开环传递函数的某一参数从0变到∞时,闭环系 统特征方程式的根在s平面上的变化轨迹。
R(s)
-
E(s) G1(s)
D1(s) G 2(s)
H(s)
Y(s) D2(s)

G1( s )G2 ( s )H ( s )
Kg s( s 1 )( s 2 )
常规根轨迹
求解:设 Gk ( s ) KgG1( s ),则对于1 KgG1( s ) 0,有
dK g ds
d [G11( s )] ds
0 (Kg在根轨迹的分离点上取极值)
或 dG1( s ) 0 (特征式满足 d( s ) 0)
ds
ds
注:只须用其中之一,且只是必要条件
续前例:求分离点上的坐标。
幅值条件
G( s )H( s ) 180( 2k 1 ), k 0,1,2,
相角条件
零极点表达形式下的幅值条件和相角条件:
m
n
K g (s zi )
(s pi )
G(s)H(s)
i1 n
1 ,或
Kg
i1 m
,
(s pi )
(s zi )

自动控制原理-第四章-根轨迹

自动控制原理-第四章-根轨迹

snm 1 p1 1 pn

s
s
0
s z1 s zm
1 z1 1 zm
s
s
s pi i 1, 2, n
K*
s p1 s pn
snm 1 p1 1 pn

s
s

s z1 s zm
1 z1 1 zm

s(0.5s 1) s(s 2)
通过系统的根轨迹图,可以很方便地对系统的动态性能和稳态性能进行 分析。不足之处是用直接解闭环特征方程根的办法,来绘出系统的根轨 迹图,这对高阶系统将是很繁重的和不现实的。
为了解决这个问题,依据反馈系统中开环、闭环传递函数的确定关系,通过开环传递函 数直接寻找闭环根轨迹正是我们下面要研究的内容。
① (s1 p2 ) 、(s1 p3 ) 两向量对称于实轴,引起的相角大小 相等、方向相反; (s1 z2 ) 、(s1 z3 ) 两向量也对称于实轴,引起的相角大 小相等、方向相反;
∴ 判断 s1是否落在根轨迹上,共轭零、极点不考虑。
② 位于s1左边的实数零、极点:(s1 z1) 、(s1 p4) 向量引起的相
GK
(s)

kg s(s 1)
解:判断某点是否在根轨迹上,应使用相角条件。求某点对应的根轨迹增益值,应使用 幅值条件。
s1 : m (s zi ) n (s p j ) 0 (s1 p1) (s1 p2 )
i 1
j 1
s1 (s1 1) 135 90 225
s2: 0 (s2 p1) (s2 p2) (116.6 ) (63.4 ) 180

自动控制原理 第四章 根轨迹

自动控制原理  第四章 根轨迹
自动控制原理
第四章 根轨迹分析法
输入
偏差
+-
控制器
输出 被控对象
反馈元件
4.1.1 自动控制系统的根轨迹
什么是根轨迹? 根轨迹是系统开环传递函数某一参数或某几
个参数从零变化到无穷大时,闭环系统特征根
在s平面上变化的轨迹。
用时域分析法,每次系统的参数发生变化都 要重新计算闭环传递函数和闭环极点。计算量 大且难以看出系统性能指标的变化趋势。
1 Gk (s) 0
根轨 迹方
m

s zi
K i1 gn
1s pjj 1源自根轨迹方程可以分解成幅值条件和相角条 件两个方程,即
幅值条件
Gk s 1
相角条件
Gk (s) 180 (2k 1)
k 0,1, 2,
幅值条件方程为
m
s zi
K i1 gn
1
s pj
j 1
相角条件方程为
或无穷远处。
m
s zi
i 1
n
s pj
1 Kg
j 1
根轨迹分支的起点是指当Kg=0时的闭环极点。当 s=pj ,即开环极点。
根轨迹分支的终点是指当Kg→∞时的闭环极点。
•当s=zi,即开环零点。
m
•当s→∞,方程左边趋于0.
s zi
lim i1
sm lim 0
s n
s pj
s s n
b0 )
Kg
n
(s pj )
sn an1sn1 a0
snm (an1 bm1 )snm1
j 1
当s模值很大时,可以在分母中只保留前两项,即
G(s)H (s)
snm

自动控制原理根轨迹

自动控制原理根轨迹

D( s ) 1 G( s ) H ( s ) 0 G( s ) H ( s ) 1
根轨迹方程
G ( s)
C (s)
H (s)
(i 0,1, 2)
m
G( s) H ( s) e jG( s ) H ( s ) 1 e j ( 180 i360 )
1、幅值条件
1、根轨迹分支数等于4;
-2.73 0
2、根轨迹起点和终点;
3、根轨迹的渐近线:n=4,m=0,四条
n m

a
p z
i 1 i j 1
j
nm
0 1 j 1 j 2.73 1.18 4
渐近线与实轴正向夹角分别是
(2l 1) a ,( l 0,1, 2, 3), 45,135, 135, 45 nm
G( s ) H ( s ) 1
即 |G(s)H(s)|
k | s zi | | s pi |
i 1 i 1 n
1
2、相角条件
G( s ) H ( s ) 180 i 360
G(s)H(s) (s-zi )- (s-pi )
i 1 i 1 m n
同样s3点也不是根轨迹上的点。
结论
实轴上某段区域右边的开环实数零点和开环实数极点总 数为奇数时,这段区域必为根轨迹的一部分。
p3
j
0
p2
°
z2
p1
°
z1 p4

六.根轨迹与实轴的交点
分离点(或会合点):根轨迹在S平面某一点相遇后又立即分开。 分离点 会合点
K 0

d
K 0

K
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 G(s)H(s)=k(2s+1)/s(s+5)
写出根轨迹方程,求出对应的零点和极点。
k(2s +1)
1+
= 0,
s(s + 5)
系统2: 零点:-0.5 极点为0, -5 Kg=2k
1+ 2k(s + 0.5) = 0 s(s + 5)
第四章 线性系统的根轨迹法
4.2 根轨迹的绘制法则
【 根轨迹性质 1】 根轨迹是连续的 【 根轨迹性质 2】 根轨迹关于实轴是对称的
4
将特征根画在 s平面上
s1 -0.005 -0.4 -1 -1+j1.73 -1+j3.87
s2 -1.995 -1.6 -1 -1-j1.73 -1-j3.87
将特征根随增益的变化在s平 面上轨迹称为根轨迹
K=2 K=0.1 k=1
-2j
j k=0.1
-2
-1
0
-j
-2j
第四章 线性系统的根轨迹法
2个无穷远的零点
同理,对于 G(s)H (s) = k(s +1)(s + 2) s
1个无穷远的极点
第四章 线性系统的根轨迹法
【法则一】根轨迹的渐近线
根轨迹的渐近线限定了当根轨迹趋向于无穷远时,根轨 迹的走向与形状。即根轨迹沿一组渐近线趋向于无穷远
处的开环零点。
与正实轴的夹角记为 φa
2k +1 φa = n − m π (k = 0,1,..., n − m −1)
3
d1,2 =
2×3
= −1± 3
d1,2=-1.577,-0.422
d1 d2 是否均为分离点吗?
第四章 线性系统的根轨迹法
(2) 重根法
D(s) =1+G(s)H(s) = 0 dD(s) = 0
ds
d [1+
ds
kg
M(s)] N(s)
=
0
M ′(s)N(s) − N′(s)M (s) = 0
第四章 线性系统的根轨迹法
用重根法求例 4-1的根轨迹的分离点
G(s)H (s) =
K
s(s +1)(s + 2)
解:方法1 M(s)=1; N(s)=s(s+1)(s+2)=s 3+3s2+2s

M ′(s)N (s) − N ′(s)M (s) = 0

3s2 + 6s + 2 = 0
62 − 4×3× 2
第四章 线性系统的根轨迹法
【法则二】实轴上的根轨迹分布
S平面
s右方的实数极点与实数零点的总和为奇 数时, s就是根轨迹上的点。
-3 -2
-1 0
m
n
∑∠(s − zi ) − ∑∠(s − pj ) = (2k +1)π...
i=1
j =1
第四章 线性系统的根轨迹法
例4-1 设某负反馈系统的开环传递函数为
第四章 线性系统的根轨迹法
【法则五】根轨迹的入射角和出射角 px , px+1 为一对共轭开环复数极点,在
该极点处根轨迹的出射角为
px
-j
m
n
-2
∑ ∑ θ px = 1800 + ∠( px − zi ) − ∠( px − p j )
i =1
j =1
j≠x
θ px+1 = −θ px
-1
p x +1
j=1
对于物理可实现系统,一般满足 ,因此有n-m条根轨迹终止于无穷远处
n
∏ s− pj
li m K g =
j =1 m
∏ s → ∞
s − zi
i =1
= lim s→∞
s n−m = ∞
n-m个无穷远的零点
第四章 线性系统的根轨迹法
例如:
G(s)H (s) =
k
s(s +1)(s + 2)
有三条根轨迹,开环的零点 z=-1, 极点p=0,-2,-3,
G(s)H (s) =
K
s(s +1)(s + 2)
第四章 线性系统的根轨迹法
解:由 得
∑ ∑ m 1
n1
=
i=1 d − z i j=1 d − p j
11 +
+
1
=0
d d +1 d +2
3d 2 + 6d + 2 =0
d (d +1)(d + 2) 3d 2 + 6d + 2 = 0
62 − 4× 3× 2
第四章 线性系统的根轨迹法
模值条件 幅角条件
n
∏ s− pj
Kg =
j=1 m
∏ s − zi
i=1
m
n
∑ ∑ ∠ ( s − zi ) − ∠ ( s − p j ) = −1800 + 2kπ
i =1
j =1
k = 0, ±1, ±2, ...
根轨迹的幅角方程是确定 s平面上根轨迹的充分必要条件 ,这就是说,绘 制根轨迹时,只需用使用幅角方程即可;而当需要确定根轨迹上各点的 Kg值时,才需要使用模值方程。
d 1,2 = − 2 ± 2
概略画出下列系统的根轨迹
G (s )H (s ) = k (s + 1) s2 + 2s + 2
d1 d2 是否均为分离点吗?
根轨迹示例1
j
j
j
j
00
00
同学们,头昏了吧?
j
j
j
0
00
j j
00
j j
0
第四章 线性系统的根轨迹法
【法则四】根轨迹与虚轴的交点 1) 在D(s)=0中,令s=jw,
G(s)H (s) =
K
s(s +1)(s + 2)
试确定系统根轨迹的条数、起点和终点、渐近线及实轴上的根轨迹 分布。
解 三条根轨迹,分别起始于 0,-1,-2,沿渐近线区域无穷远
渐进线与实轴交点坐标
n
m
-2
-1
0
∑ ∑ σa
=
i =1
pi − zj
j =1
n-m
= 0 −1−2 3−0
= −1
2k +1 1 5
第四章 线性系统的根轨迹法
4.1.2 闭环零极点与开环零极点的关系
(1)系统的闭环零点由前向通道G(s)的零点和反馈通道 H(s)的极点两部分组成。单位反馈系统的闭环零点就是其开 环零点。 (2)系统的闭环根轨迹增益等于其前向通道的根轨迹增益。 对于单位反馈系统,系统的闭环根轨迹增益等于其开环根轨 迹增益。 (3)闭环极点与开环零点、开环极点以及根轨迹增益有关。
第四章 线性系统的根轨迹法
z x , z x+1 为一对共轭开环复数零点,在
该极点处根轨迹的入射角为
zx
-j
mnຫໍສະໝຸດ -2∑ ∑ φzx = 1800 − ∠(zx − zi ) + ∠(z x − p j )
i =1
j =1
i≠x
φzx +1 = −φzx
-1
z x +1
第四章 线性系统的根轨迹法
求图示系统 1+j和1-j的出射角
得 z1 = −2 p1 = 0, p2 = −1
渐近线与实轴正方向的夹角为 1800, 即渐近线沿负实轴趋于无穷远
第四章 线性系统的根轨迹法
G(s)H (s) = k(s + 2) s(s +1)
画出实轴上的根轨迹。
解: 存在分离点,为 d,满足


11
1
+=
d d +1 d +2
d 2 + 4d + 2 = 0
S平面 Im
Re
-2
-1
0
第四章 线性系统的根轨迹法
4.2 根轨迹的绘制法则
首先: 写出特征方程并化成零极点的形式
例如:某开环系统的传递函数为 1. G(s)H(s)=k(s+3)/s(s+2)
1+ G(s)H (s) = 0
m
∏ k g (s − zi )
i=1 n
= −1
∏ (s − pj)
j =1
【 根轨迹性质 3】 根轨迹的条数 【 根轨迹性质 4】 根轨迹的起点与终点
第四章 线性系统的根轨迹法
根轨迹始于开环的极点,终止于开环的零点。
起点
m
n
∏ ∏ Kg (s − zi ) + (s − pj ) = 0
i=1
j=1
终点
∏ ∏ m
1n
i=1 (s − zi ) + Kg
(s − pj) = 0
第四章 线性系统的根轨迹法
【法则三】根轨迹的分离点与会合点 在复平面上,两条或两条以上的根轨迹相遇以后又立即 分开的点称为分离点或会合点 。
在分离点或会合点上,根轨迹的切线与正实轴之间 的夹角称为根轨迹的分离角。分离角按下式计算:
θd =(2k +1)π / L, k = 0,±1,±2,...
L为相遇根轨迹的条数
第四章 线性系统的根轨迹法
4.1 控制系统的根轨迹
R(s)
C(s)
k 1/s(s+2)
4.1.1 根轨迹的基本概念
根轨迹是开环系统某一参数从零变到无穷时,闭环系统特征 方程式的根在s平面上的变化轨迹。
例如,某系统开环传递函数 闭环环传递函数
相关文档
最新文档