ASTM-D6007-02 甲醛检测方法
测量甲醛的正确方法
测量甲醛的正确方法
测量甲醛的正确方法包括以下步骤:
1. 确保测量环境干净整洁,尽量减少干扰物质的存在。
关闭室内空气净化设备和通风设备。
2. 使用专用甲醛检测仪器进行测量。
市面上有各种类型的甲醛检测仪器,例如便携式甲醛检测仪、电子甲醛探头等。
3. 根据仪器说明书,正确安装甲醛检测仪器,并确保其充分预热。
4. 在测量前,将涉及甲醛污染源的房间或区域封闭30分钟至
2小时。
关闭所有门窗,确保环境封闭且空气流通少。
5. 打开甲醛检测仪器,将探头置于待测空气中心位置,并保持静止。
根据仪器要求进行指示,等待一段时间以获取测量结果。
6. 确保在测量过程中尽量避免呼吸或搅动空气,以减少误差。
7. 记录测量结果,并根据仪器说明书的参考范围进行判断。
通常,0.1-0.5 mg/m³的甲醛浓度可视为正常范围。
8. 如有需要,可以进行多次测量以获取更准确的结果。
9. 测量完毕后,彻底通风房间,将甲醛浓度控制在安全范围内。
需要注意的是,不同的甲醛检测仪器可能会有不同的使用方法
和测量原理,因此在进行测量前,应详细阅读和遵循仪器说明书中的操作指南。
此外,为确保测量结果的准确性,还应定期校准和维护甲醛检测仪器。
甲醛测试操作规范及试验方法
图0甲醛测试仪一. 目的1.规定甲醛测试仪的操作规范及试验方法﹐为了指导检测人员对机器的正确使用及维护.2.减少因不正确的操作而造成机器的损坏及检测结果的不稳定因素;二.适用范围1. 主要用于各类板材(如纤维板和密度板)甲醛含量的检测.2. 用于来料检验及零件开发或材质更改试验.三.职责1.测试人员须经相关培训后,方可操作2.测试人员必须严格按照此操作规范及试验方法进行操作。
四. 测试标准依据ASTM D6007-02使用一小腔室测定木制品中的甲醛浓度的标准五.测试前准备工作八. BDX-II 型空气采集操作方法及注意事项: 1. 设定气体流速在3L/min.及外部通气.如图2 2. 把干净的橡胶管附于泵的进样口;3. 把泵置于舱内底部螺纹管空气进样口的底部;图1 通气孔关闭通气孔打开气流调节按钮,使用螺丝刀转动按钮,将增加气流或将减少气流;打开和关闭空气泵,按下这个按钮使用螺丝刀拧松这个螺丝,将阀盖转180度,然后开启开关和气流调节按钮图2在测试过程中,泵应该设置为指向空圆的箭头,以允许气流向外部通风在测量仪表的端口,不能被堵塞.1.过滤器每6个月更换一次。
2.如果它被弄脏或堵塞,就会引起机器的问题。
3.我们可以通过比较中间区域和其他区域的过滤颜色来确定过滤器是否需要改变。
步骤1:松开4个螺丝,将滤纸盖上步骤二:脱下密封环和滤布。
步骤三:组装新的滤布。
然后将阀盖装配到泵上.九.PPM公司htV-M型甲醛测试仪操作方法及注意事项:1.仪器说明.2. 苯酚过滤器说明:3.校正源说明:显示代码:温度和空气湿度传感器,在测试期间不要触摸有一个红色的盖子可以盖住进气口,需要在测试前把它拿掉,然后在测试后盖上盖子。
1.苯酚过滤器可以过滤苯酚/雷琐辛醇、醇类/醛类,2.每个过滤器只能使用5次,它应该被丢弃。
3.使用的过滤器不应该与新过滤器一起存储。
3.1.由于温度不同,校准标准释放的甲醛浓度各不相同。
有一种集中查找表显示对温度的值。
室内空气中甲醛含量的测定方法
室内空气中甲醛含量的测定方法随着城市化进程的加速和室内空间的不断扩大,室内空气质量成为了人们日常关注的一个重要问题。
而室内空气中甲醛含量作为影响室内空气质量的重要指标之一,其测定方法就显得尤为重要。
本文将介绍室内空气中甲醛含量的测定方法,希望能够为大家提供一些参考。
一、化学分析法化学分析法是目前较为常见的室内空气中甲醛含量测定方法之一。
其原理是通过将室内空气中的甲醛与某一特定试剂或催化剂作用,产生可定量的化学反应,从而测定室内空气中甲醛的含量。
1. 水合肼法水合肼法是一种常用的化学分析方法,其原理是利用水合肼与甲醛作用生成甲醰肼,再经过分光光度计测定其吸光度,从而计算出室内空气中甲醛的含量。
该方法操作简单、成本低廉,因此在实际应用中较为常见。
2. 高效液相色谱法高效液相色谱法是一种精密的化学分析方法,其原理是通过使用高效液相色谱仪将室内空气中的甲醛分离并检测,从而计算出其含量。
该方法具有高灵敏度、高准确度的特点,但设备和试剂的费用较高,操作也相对复杂。
3. 毛细管气相色谱法毛细管气相色谱法是一种高分辨率的分析方法,其原理是利用气相色谱仪将室内空气中的甲醛分离并检测。
该方法具有分辨率高、分析速度快的特点,但在操作时需要严格控制条件,因此相对复杂。
二、光谱分析法光谱分析法是一种较为先进的室内空气中甲醛含量测定方法,其原理是通过光谱仪器对室内空气中的甲醛进行光谱分析,从而测定其含量。
1. 紫外-可见分光光度法紫外-可见分光光度法是一种常用的光谱分析方法,其原理是通过紫外-可见分光光度计对室内空气中的甲醛进行吸收光谱分析,从而计算出其含量。
该方法操作简单、成本较低,因此在实际应用中较为常见。
2. 红外光谱法红外光谱法是一种高灵敏度的光谱分析方法,其原理是通过红外光谱仪对室内空气中的甲醛进行红外吸收光谱分析,从而计算出其含量。
该方法具有高灵敏度、高分辨率的特点,但设备和试剂的费用相对较高。
三、传感器检测法传感器检测法是一种快速、便捷的室内空气中甲醛含量测定方法,其原理是通过使用特定的传感器对室内空气中的甲醛进行检测,从而获得其含量。
甲醛检测正规操作方法
甲醛检测正规操作方法
以下为甲醛检测正规操作方法:
1. 选择合适的检测设备。
甲醛检测仪器应选择符合国家标准和质量认证要求的型号。
2. 选择合适的检测场所。
应该选择室内空气流通良好、温度、湿度稳定,没有明显异味或甲醛源污染的场所。
3. 确定检测点位。
应选择离甲醛污染源较近的位置进行检测,如家具、地板、装修板材等。
4. 预处理空气样品。
在采样前应先将检测器预热,以确保准确测量。
5. 采集空气样品。
检测器要放置在离地面0.5m左右的位置,采样时间持续30分钟左右,并且检测器不应受到其他光源或热源的影响。
6. 记录数据。
记录采样开始和结束时间、检测点位、温度、湿度等参数。
7. 解读检测结果。
根据检测结果确定甲醛污染程度是否符合国家标准,如果超出标准,则应采取相应的治理措施。
需要注意的是,甲醛检测需要依赖专业的仪器和操作技能,建议找专业人士进行检测。
甲醛超标检测流程
甲醛超标检测流程
一、采集样本
1.选择检测点:确定需要检测的室内空间或材料
2.采集样本:采集空气样本或材料样本
二、样本处理
1.空气样本处理:将采集的空气样本装入采样瓶中
2.材料样本处理:将材料样本取出并准备好待测部位
三、实验室准备
1.样本送检:将样本送往实验室进行检测
2.实验室设备准备:校准检测设备并准备好其他必要设备
四、检测甲醛含量
1.气相色谱法:使用气相色谱仪检测空气中甲醛含量
2.液相色谱法:使用液相色谱仪检测材料中甲醛含量
五、数据分析
1.检测结果分析:分析检测结果是否超过标准限值
2.数据报告:生成检测报告并记录详细数据
六、结果解读
1.结果评估:评估甲醛含量是否超标以及危害程度
2.风险提示:提供甲醛超标可能带来的健康风险
七、建议措施
1.室内通风:建议加强室内通风以降低甲醛含量
2.甲醛治理:提供甲醛治理建议和方法
八、结论与反馈
1.结论总结:总结甲醛超标检测结果和建议措施
2.反馈客户:向客户反馈检测结果和建议。
甲醛含量的测试方法
甲醛含量的测试方法
甲醛含量的测试方法有:
1.闻嗅法:在室外洁净空气中停留15分钟,然后进入室内,如果闻到刺激性气味,但没有特殊味道,如苦杏仁的味道、芳香味道等等,那就应该是甲醛的味道了。
2.手持检测仪检测法:在网上购买手持检测仪,按照说明对家中进行甲醛检测。
嗪能够在在酸性溶液中被高铁离子氧化形成蓝绿色化合物,而化合物颜色的深浅,则与甲醛含量成正比。
这些检测仪大多会配备检测试纸,或是内置检测区,而根据反应后的显色成都,就可以对照色卡进行甲醛数值的判断,或是直接在屏幕上进行数值显示。
3.分光光度法:专业检测方法,也是国标检测法。
分光光度法能够通过测定甲醛在特定波长处或一定波长范围内光的吸
收度,对甲醛进行定性和定量分析。
4.气相色谱法:同样是专业检测方法,而且和分光光度法一样也是国标检测法。
甲醛气相色谱测定方法
甲醛气相色谱测定方法
甲醛气相色谱测定方法是一种常用的分析方法,可以用于测定室内空气中甲醛的浓度。
下面是甲醛气相色谱测定方法的步骤:
1. 样品准备:将待测样品收集到一个密闭的容器中,然后将其送到实验室进行处理。
2. 样品处理:将样品中的甲醛提取出来,通常使用固相萃取柱或其他化学试剂来提取甲醛。
3. 气相色谱仪设置:将气相色谱仪进行设置,选择适当的柱子和检测器,并进行柱子的预处理。
4. 进样:将样品注入到气相色谱仪中进行分析。
5. 数据分析:通过气相色谱仪记录的数据,可以得到甲醛的峰面积和峰高,从而计算出甲醛的浓度。
需要注意的是,在进行甲醛气相色谱测定时,需要对仪器进行定期校准和维护,以确保数据的准确性和可靠性。
同时,也需要对样品进行适当的处理,以避免样品中其他物质的干扰。
甲醛如何检测
说到甲醛检测,很多人都表示束手无策,正所谓:明枪易躲,暗箭难防,对于看不见摸不着有刺激性的气体的它,人们如何进行检测呢?
一般的方法有两种:其一是找专业的第三方检测机构进行检测,这类公司能提供专业的仪器,给出比较可靠的报告。
其二就是自己检测,具体的方法是:1、滴定法
(1)碘量法测定甲醛含量碘量法是己知过量的碘液在碱性溶液中氧化甲醛为甲酸盐,剩余的碘经酸化使之氧化成蚁酸后用硫代硫酸钠标准溶液滴定,淀粉为指示剂,滴至蓝色消失。
根据碘的消耗量计算甲醛含量。
(2)酸碱滴定法甲醛在过量的氢氧化钠溶液中与过氧化氢反应生成甲酸钠,然后再用硫酸标准溶液反滴过量的氢氧化钠溶液。
2、亚硫酸钠法测定甲醛
一定条件下,已知过量的亚硫酸钠与甲醛发生加成反应,生成OH羟甲基磺酸盐,剩余的亚硫酸钠用碘标准溶液回滴,淀粉为指示剂,滴至蓝色,30s内不褪色,根据碘的消耗量计算甲醛含量。
3、气相色谱法
气相色谱方法检测化合物具有抗干扰能力强,操作简便,检出限低等优点,常被用来作为化台物的标准检测方法。
在检测甲醛过程中通常以2,4一二硝基苯肼为衍生剂,在酸性介质中与甲醛反应生成相应的腙,用环己烷或正己烷进行萃取,EcD检测器测定生成的腙,从而间接测定游离的甲醛。
检测机构,这里给大家推荐--河南德和检测技术有限公司,这是一家从事第三方检测的专业机构,公司取得了河南省质量技术监督局颁发的CMA《检验检测机构资质认定证书》,证书编号为:181603100359。
同时公司还具备室内空气(甲醛、苯、TVOC等)、洁净厂房、医院手术室、ICU病房等共计63项指标的检验检测资质和能力。
甲醛检测方法
甲醛检测方法甲醛是一种无色有刺激性气味的有机化合物,常见于家具、装饰材料、建筑材料、家电等产品中。
长期接触高浓度的甲醛会对人体健康造成危害,因此及时检测甲醛含量显得尤为重要。
本文将介绍几种常用的甲醛检测方法,希望能对大家有所帮助。
首先,最常见的甲醛检测方法之一是使用甲醛检测试纸。
这种方法简单快捷,只需将甲醛检测试纸置于待检测的物体表面,一段时间后观察测试纸颜色变化即可得出初步结论。
然而,这种方法的准确性较低,只能作为初步判断使用,不能完全替代其他更准确的方法。
其次,甲醛检测仪器也是一种常用的检测方法。
市面上有许多专门用于检测甲醛含量的仪器,如甲醛检测仪、甲醛监测仪等。
这些仪器通常能够提供更为准确的检测结果,对于需要进行专业检测的场合非常适用。
使用这些仪器需要按照说明书正确操作,严格按照要求进行检测,以确保结果的准确性。
另外,还可以通过化学分析的方法来检测甲醛含量。
这种方法通常需要将待检测样品送至专业实验室进行分析,通过化学试剂或仪器来测定甲醛的含量。
这种方法的准确性较高,适用于对甲醛含量有严格要求的场合,如医疗卫生、食品加工等领域。
除了上述方法,还可以通过人体感官来初步判断甲醛的含量。
当人体接触到含有甲醛的物品时,如果出现眼睛刺痛、咽喉不适、头晕等症状,很可能是因为甲醛超标所致。
这种方法虽然简单,但仅能作为初步判断使用,不能替代专业的检测方法。
综上所述,甲醛检测方法有多种,每种方法都有其适用的场合和特点。
在日常生活中,我们可以根据实际情况选择合适的方法进行甲醛检测,以保障家庭成员的健康。
希望本文介绍的内容能够对大家有所帮助,谢谢阅读。
ASTMD6007部分中文翻译
ASTMD6007部分中文翻译D6007小型环境舱法测试木制品中甲醛释放量的检测1.适用范围:1.1本测试方法用于测试在给定的温湿度条件下木制品释放的甲醛在空气中的浓度。
结果的获取目的是为了与较大型产品在大型环境舱测试方法(E1333)下得到的数据进行比较。
该测试结果可能与E1333测试方法得到的数据相关联。
在小环境舱中采集的空气样品中的甲醛的含量是通过NIOSH(国家安全与健康研究所)编撰的3500 chromotropic acid(变色酸)程序来确定。
2.参考文献3.术语3.1.1空气交换率3.1.2平衡浓度——Ceq—准平衡态,ppm3.1.3承载率L——被测试样品的总暴露面具除以测试环境舱的体积,(m2/m3)3.1.4供给新鲜空气流量,Q—调湿的和过滤的空气单位时间内供给到舱内的量(m3/h)3.1.5传质系数,K—木制品表面释放有害物质的渗透性,m/h。
K 的计算方法如下:K=(/)() ()seq s Q A C C C3.1.6 N/L比—(N/L 与Q/A是相等的)气流速度(流入舱中的气流与采样表面积的比率)(m/h)N/L=/ / Q V A V3.1.7 Q/A比率—流入舱中的气流与采样表面积的比率(m/h)3.1.8样品表面积,A—舱内样品的所有暴露面积,m23.1.9稳态浓度,Cs—在一定时间内甲醛浓度不变(ppm),在特定的环境测试参数下。
3.1.10封闭系统体积V—测试舱内部体积m3。
4.重要性及使用5.注解6.仪器6.1测试环境舱—小型舱的内部容积在0.02到1 m3之间。
舱内不应该没有冷凝管等能凝结水蒸气的管线,避免吸附甲醛,影响测试结果。
舱的内表面要求使用吸附较小的材料(不锈钢,铝,聚四氟乙烯这些材料比较适合做环境舱的内壁)舱的所有连接处应该密封,门应自动封闭。
6.2 供给空气6.2.1供给空气应是过滤后无灰尘的环境中获取,所包含的甲醛浓度不超过0.02ppm。
甲醛检测怎样操作方法
甲醛检测怎样操作方法
甲醛是一种无色、有刺激性气味的有机化合物,对人体健康有较大的危害。
下面是甲醛检测的一般操作方法:
1. 购买合适的甲醛检测仪器:市场上有许多不同类型的甲醛检测仪器,例如甲醛检测仪、挥发性有机物检测仪等。
选择适合的仪器进行检测。
2. 准备工作:在检测前,确保测量场所周围的窗户与门关闭,确保室内空气处于静止状态。
将检测仪器放置在合适的位置,等待其预热并校准。
3. 开始测量:根据仪器的使用说明书,打开仪器并选择相应的检测模式。
将检测仪器靠近可能存在甲醛污染的地方,例如新装修的房间、新家具等。
根据仪器的要求,进行一定时间的测量。
4. 等待结果:根据仪器的要求,一般测量时间为几分钟到几小时不等。
等待测量结果出现在仪器的显示屏上。
5. 结果判断:根据测得的甲醛浓度值,判断室内空气是否达标。
一般而言,室内空气甲醛浓度应低于0.08毫克/立方米,超过该值可能对人体健康产生危害。
需要注意的是,甲醛检测仪器的准确性和使用方法可能有所不同,具体操作步骤请参考所购买仪器的说明书。
此外,在进行甲醛浓度检测时,应注意自身的安全,
避免长时间暴露在高浓度的甲醛环境中。
测试甲醛方法
测试甲醛方法
首先,可以使用甲醛检测仪器进行测试。
市面上有许多专门用于检测室内甲醛
含量的仪器,使用起来非常方便。
只需要将仪器放置在需要测试的空间内,按照说明书操作,即可得到准确的甲醛含量数据。
这种方法的优点是准确性高,操作简单,但需要购买专门的仪器,成本较高。
其次,可以使用甲醛检测试纸进行测试。
甲醛检测试纸是一种简单易用的测试
方法,只需要将试纸暴露在空气中一段时间,然后观察试纸变化即可得到初步的甲醛含量数据。
这种方法的优点是成本低廉,操作简单,适合家庭用户使用。
但是,由于试纸的准确性可能不如专业仪器高,因此在测试结果不确定时,建议使用其他方法进行验证。
另外,可以通过人体感觉进行初步测试。
甲醛浓度较高的环境通常会有刺鼻的
气味,因此可以通过嗅觉来初步判断空气中是否存在甲醛。
但是,这种方法只能作为初步判断,无法得到准确的甲醛含量数据,因此不适合作为唯一的测试手段。
最后,可以委托专业机构进行室内空气检测。
一些专业的环境检测机构可以提
供室内空气质量检测服务,他们会使用专业仪器对空气中的甲醛含量进行准确测试,并给出相应的改善建议。
这种方法的优点是准确性高,能够全面了解室内空气质量,但需要支付一定的检测费用。
综上所述,测试甲醛的方法有多种,可以根据实际情况选择合适的测试手段。
无论采用哪种方法,都应该重视室内空气质量,及时发现并解决甲醛污染问题,保障家人的健康。
希望以上介绍的方法能够帮助大家更好地了解和测试甲醛,让家庭环境更加清洁、健康。
甲醛检测流程
甲醛检测流程甲醛是一种常见的有害气体,长期接触甲醛会对人体健康造成严重危害。
因此,对室内甲醛含量进行检测是非常重要的。
下面我们将介绍甲醛检测的流程,希望能帮助大家更好地了解和应对甲醛污染问题。
首先,选择合适的检测方法。
目前常见的甲醛检测方法包括化学荧光法、高效液相色谱法、红外吸收法等。
其中,化学荧光法是一种简便、快速的检测方法,适用于家庭环境中的甲醛检测。
高效液相色谱法和红外吸收法则通常由专业机构进行,适用于工业生产等领域的甲醛检测。
接着,准备好相应的检测设备。
对于化学荧光法,我们需要准备甲醛检测试剂盒、移液器、离心机等设备;而对于高效液相色谱法和红外吸收法,则需要专业的检测仪器和设备。
确保检测设备的准确性和可靠性对于甲醛检测的结果至关重要。
然后,进行采样和检测。
在进行甲醛检测之前,需要对待测环境进行采样。
对于家庭环境,可以选择在室内空气中采样;对于工业生产环境,则需要根据具体情况选择合适的采样点。
采样完成后,按照检测方法的要求进行样品处理和检测操作,得出甲醛含量的检测结果。
最后,根据检测结果采取相应的措施。
如果甲醛含量超标,需要及时采取措施进行治理。
常见的治理方法包括通风换气、甲醛清除剂处理、甲醛治理设备安装等。
在进行治理过程中,需要注意保护好自己的身体健康,避免直接接触甲醛。
总之,甲醛检测是一项重要的工作,可以帮助我们了解室内环境中甲醛的含量,保护自己和家人的健康。
希望大家能够重视甲醛检测工作,及时发现问题并采取有效措施,创造一个健康舒适的生活环境。
甲醛测试方法
甲醛测试方法
甲醛是一种常见的有害气体,它可能存在于我们生活和工作的环境中,对人体健康造成危害。
因此,了解甲醛的测试方法对于保护我们的健康至关重要。
下面将介绍几种常见的甲醛测试方法,希望能对大家有所帮助。
首先,最常见的甲醛测试方法之一是使用甲醛检测试剂。
这种方法简单易行,只需将甲醛检测试剂放置在被测物体周围,一段时间后观察颜色变化即可得出初步结论。
然而,这种方法的准确性较低,只能作为初步判断使用,不能作为最终结论。
其次,可以使用甲醛检测仪进行测试。
甲醛检测仪是一种专业的测试设备,能够准确地检测出甲醛的浓度。
使用甲醛检测仪需要按照说明书上的操作流程进行,通常是将仪器放置在被测物体周围一段时间,待测试完成后,仪器会显示出甲醛的浓度值。
这种方法准确性较高,可以作为最终结论使用。
另外,还可以选择委托专业机构进行甲醛测试。
一些专业的环境检测机构提供甲醛测试服务,他们会派遣专业人员前来进行现场测试,并给出准确的测试报告。
这种方法的准确性和可靠性都是较
高的,尤其适合对于重要场所和敏感人群的甲醛测试。
除了以上几种常见的甲醛测试方法外,还有一些其他的测试方法,比如红外光谱法、气相色谱法等,这些方法通常需要专业知识和设备,不适合普通人进行。
在选择甲醛测试方法时,需要根据实际情况和需求进行选择,确保测试结果的准确性和可靠性。
总之,了解甲醛测试方法对于我们的健康至关重要。
在日常生活和工作中,我们应该重视甲醛测试,及时发现并解决甲醛污染问题,保护自己和家人的健康。
希望大家能够通过本文介绍的甲醛测试方法,更好地保护自己的健康。
甲醛测试使用方法
甲醛测试使用方法哎,说起甲醛测试啊,这事儿可不简单。
你想啊,新房子装修完,那味儿,啧啧,真是让人头疼。
甲醛这东西,看不见摸不着的,但是它的危害可不小,搞不好就能让你头疼、嗓子疼,甚至更严重的,所以啊,检测甲醛,这事儿得认真对待。
首先,你得有个甲醛测试仪,这东西不贵,网上一搜一大堆。
但是,别贪便宜,买个靠谱的,毕竟健康是大事。
买回来之后,别急着用,先看看说明书,了解了解怎么操作。
接下来,找个好天气,把家里窗户都打开,通风个半天左右,让甲醛散散。
然后,把测试仪拿出来,按照说明书上说的,放到房间里,找个不太显眼的地方,别让家里的小猫小狗给碰坏了。
记得啊,测试仪要放在离地一米左右的地方,因为甲醛这玩意儿,它喜欢在空气的下层待着。
然后,你就等着吧,别急,这玩意儿得等上个半小时左右,才能给你一个准确的读数。
等测试仪“嘀”的一声,你就可以去看结果了。
如果数值在0.08mg/m³以下,那就可以放心了,这房子甲醛含量还算安全。
但是,如果数值超过了这个数,那就得注意了,可能得请专业的除甲醛公司来处理。
不过,别以为买了测试仪就万事大吉了,这玩意儿也得定期校准,不然时间长了,它也会“老眼昏花”,测不准了。
所以啊,定期维护,也是必要的。
最后,别忘了,除了测试仪,还有好多小方法可以帮你判断甲醛含量,比如养点绿萝啊,吊兰啊,这些植物对甲醛有一定的吸收作用。
或者,放点活性炭,也能吸附甲醛。
总之呢,甲醛测试,这事儿得认真对待,别马虎。
毕竟,健康是自己的,马虎不得。
好了,今天的分享就到这里,希望对你有所帮助。
记得,健康第一,甲醛测试,不可少!。
GB干燥器法穿孔萃取法和ASTMD6007小室法测定人造板甲醛释放量的对应关系研究
GB干燥器法穿孔萃取法和ASTMD6007小室法测定人造板
甲醛释放量的对应关系研究
近年来,随着人们对室内空气质量的关注度不断提高,人造板材中甲醛释放量的检测成为了一项重要的需求。
而对于不同的检测方法,如GB 干燥器法、穿孔萃取法和ASTMD6007小室法,其结果是否具有一致性一直是一个备受关注的问题。
本文旨在通过对这三种检测方法进行对比研究,探讨它们之间的对应关系,为人造板甲醛释放量的检测提供更为科学的依据。
首先,GB干燥器法是中国标准中规定的一种人造板甲醛释放量检测方法。
该方法利用高温的干燥器将人造板样品中的甲醛挥发出来,然后通过吸附剂吸附甲醛气体进行采样分析。
穿孔萃取法则是一种较为传统的检测方法,通过在人造板表面进行一定数量的穿孔,使板材内部的甲醛挥发到表面,再进行采样分析。
而ASTMD6007小室法则是世界上较为通用的甲醛释放量检测方法,通过将样品放置在特定大小的小室中,测量一定时间内内部甲醛的浓度变化来确定甲醛释放水平。
综合来看,尽管这三种检测方法在原理和步骤上存在一定的差异,但通过适当的数据处理和对比分析,它们之间的结果仍然可以相互对应,从而为人造板甲醛释放量的检测提供更多的选择和参考。
当然,对于不同的使用场景和要求,选择合适的检测方法仍然是非常重要的,同时也需要在实际检测中注意各种因素的影响,确保测试的准确性和可靠性。
总之,通过对GB干燥器法、穿孔萃取法和ASTMD6007小室法这三种检测方法进行比较研究,我们可以得出它们之间存在一定的对应关系,为人造板甲醛释放量的检测提供更为科学的依据和参考。
希望本文的研究成果能够对相关领域的研究和实践工作提供一定的帮助和启示。
甲醛检测方法
甲醛检测方法甲醛是一种常见的有害气体,它会对人体健康造成危害。
因此,甲醛的检测变得尤为重要。
在日常生活中,我们可以通过多种方法来检测甲醛的浓度,以保障室内空气质量,保护家人的健康。
首先,最常见的甲醛检测方法之一是使用甲醛检测仪器。
市面上有许多专门用于检测室内空气中甲醛含量的仪器,通过这些仪器我们可以方便快捷地了解室内甲醛的浓度。
使用这种方法,我们只需要将检测仪器放置在室内空气中,一段时间后便可得到准确的检测结果。
然而,这种方法需要购买专门的仪器,成本较高,不够经济实惠。
其次,我们还可以使用化学试剂来进行甲醛检测。
化学试剂检测方法简单易行,成本较低。
我们只需要将试剂放置在室内,一段时间后观察试剂的颜色变化,就可以初步判断甲醛的浓度。
然而,这种方法的准确性不如专业仪器高,且操作过程中需要注意安全防护,避免试剂接触皮肤或呼吸道。
另外,我们还可以借助专业的检测机构来进行甲醛检测。
这种方法的优势在于检测结果准确可靠,可以提供权威的检测报告。
通过委托专业机构进行检测,我们可以全面了解室内甲醛的情况,有针对性地采取改善措施。
然而,这种方法需要耗费一定的时间和金钱,不够便捷。
此外,我们还可以通过一些简单的方法来初步判断室内是否存在甲醛。
比如,我们可以用鼻子来嗅一下室内的气味,如果有刺鼻的气味,可能是甲醛超标的表现。
另外,我们还可以观察家具、装修材料等是否存在明显的异味,这也可能是甲醛超标的信号。
虽然这种方法不够科学准确,但可以作为日常初步检测的方法之一。
综上所述,甲醛的检测方法多种多样,我们可以根据实际情况选择合适的方法来进行检测。
在日常生活中,我们应该重视室内空气质量,定期进行甲醛检测,及时采取改善措施,以保障家人的健康。
希望本文所述的方法能对大家有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Designation:D6007–02Standard Test Method forDetermining Formaldehyde Concentration in Air from Wood Products Using a Small Scale Chamber1This standard is issued under thefixed designation D6007;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.1.Scope1.1This test method measures the formaldehyde concentra-tions in air from wood products under defined test conditions of temperature and relative humidity.Results obtained from this small-scale chamber test method are intended to be comparable to results obtained testing larger product samples by the large chamber test method for wood products,Test Method E1333. The results may be correlated to values obtained from Test Method E1333.The quantity of formaldehyde in an air sample from the small chamber is determined by a modification of the National Institute for Occupational Safety and Health(NIOSH) 3500chromotropic acid test procedure.Other analytical pro-cedures may be used to determine the quantity of formaldehyde in the air sample provided that such methods give results comparable to those obtained by using the chromotropic acid procedure.However,the test results and test report must be properly qualified and the analytical procedure employed must be accurately described.1.2The wood-based panel products to be tested by this test method are characteristically used for different applications and are tested at different relative amounts or loading ratios to reflect different applications.This is a test method that specifies testing at various loading ratios for different product types. However,the test results and test report must be properly qualified and must specify the make-up airflow,sample surface area,and chamber volume.1.3Ideal candidates for small-scale chamber testing are products relatively homogeneous in their formaldehyde release characteristics.Still,product inhomogeneities must be consid-ered when selecting and preparing samples for small-scale chamber testing.1.4The values stated in SI units are the standard values. Any values given in parentheses are for information only. 1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:D3195Practice for Rotameter Calibration2D5197Test Method for Determination of Formaldehyde and Other Carbonyl Compounds in Air(Active Sampler Methodology)2D5221Test Method for Continuous Measurement of Form-aldehyde in Air2E77Test Methods for Inspection and Verification of Ther-mometers3E220Method for Calibration of Thermocouples by Com-parison Techniques3E337Test Method for Measuring Humidity with a Psy-chrometer(the Measurement of Wet-Bulb and Dry-Bulb Temperatures)2E691Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method4E741Test Method for Determining Air Change in a Single Zone by Means of Tracer Gas Dilution5E1333Test Method for Determining Formaldehyde Con-centrations in Air and Emission Rates from Wood Products Under Defined Test Conditions Using a Large Chamber6 2.2U.S.Department of Housing and Urban Development (HUD)Standards:24CFR3280,Manufactured Home Construction and Safety Standards72.3NIOSH Standard:3500Formaldehyde Method82.4Other Documents:Minnesota Statutes Section144.495,325f.18,and325F.181 Formaldehyde Gases in Building Materials91This test method is under the jurisdiction of ASTM Committee D07on Wood and is the direct responsibility of Subcommittee D07.03on Panel Products.Current edition approved April10,2002.Published June2002.Originally published as st previous edition D6007-96.2Annual Book of ASTM Standards,V ol11.03.3Annual Book of ASTM Standards,V ol14.03.4Annual Book of ASTM Standards,V ol14.02.5Annual Book of ASTM Standards,V ol04.11.6Annual Book of ASTM Standards,V ol04.10.7Federal Register,V ol49,No.155,Aug.8,1984,available from Superintendent of Documents,ernment Printing Office,732N.Capitol St.,NW,Mail Stop: SDE,Washington,DC20401.8U.S.Dept.of Health and Human Services,1989,available from Superintendent of Documents,ernment Printing Office,732N.Capitol St.,NW,Mail Stop: SDE,Washington,DC20401.9Available from Print Communications,Dept.of Administration,117University Ave.,St.Paul,MN55155.1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.3.Terminology3.1Definitions of Terms Specific to This Standard:3.1.1air change rate,N(N is equal to Q/V)—the ratio of conditioned andfiltered air that enters or is replaced in the small chamber in one hour divided by the interior volume of the small chamber,air changes per hour(ACH).3.1.2equilibrium concentration,C eq—is that C s measured when Q equals zero,ppm.3.1.3loading ratio,L—(L is equal to A/V)the total exposed surface area,excluding panel edges,of the product being tested divided by the test chamber’s interior volume,m2/m3.3.1.4make-up airflow,Q—the quantity of conditioned and filtered air fed into the chamber per unit time,m3/h.3.1.5mass transfer coeffıcient,K—a measure of the perme-ability of the emitting surface of a wood based panel product, m/h.K is calculated as follows:10K5~Q/A!~C s!~C eq2C s!(1)3.1.6N/L ratio—(N/L is equivalent to Q/A)the ratio of air flow through the chamber to sample surface area,m/h,as follows:N/L5Q/VA/V5~Q/V!3~V/A!5Q/A(2)3.1.7Q/A ratio—the ratio of airflow through the chamber (Q)to sample surface area(A),m/h.3.1.8sample surface area,A—the total area of all sample faces exposed in the chamber,m2.3.1.9steady state concentration,C s—the interval when the formaldehyde concentration is not changing with time(ex-pressed in parts of formaldehyde per million parts air(ppm)) under the defined environmental test parameters.3.1.10volume of closed system,V—the interior volume of the test chamber,m3.4.Significance and Use4.1Limitations on formaldehyde levels have been estab-lished for wood panel building products made with urea-formaldehyde adhesives and permanently installed in homes or used as components in kitchen cabinets and similar industrial products.This test method is intended for use in conjunction with the test method referenced by HUD Rules and Regula-tions24CFR3280for manufactured housing and by Minne-sota Statutes Section144.495for housing units and building materials.This test method provides a means of testing smaller samples and reduces the time required for testing.4.2Formaldehyde concentration levels obtained by this small-scale method may differ from expected in full-scale indoor environments.Variations in product loading,tempera-ture,relative humidity,and air exchange will affect formalde-hyde emission rates and thus likely indoor air formaldehyde concentrations.4.3This test method requires the use of a chamber of0.02 to1m3in volume to evaluate the formaldehyde concentration in air using the following controlled conditions:4.3.1Conditioning of specimens prior to testing,4.3.2Exposed surface area of the specimens in the test chamber,4.3.3Test chamber temperature and relative humidity,4.3.4The Q/A ratio,and4.3.5Air circulation within the chamber.5.Interferences5.1The NIOSH3500analytical method lists phenols as a negative interference when present at an8:1excess over formaldehyde.Modifications in the analytical procedure shall be made when relatively high phenol to formaldehyde concen-trations(8:1)are anticipated.11,126.Apparatus6.1Test Chamber—The interior volume of the small cham-ber shall be from0.02to1m3.The interior of the test chamber shall be free of refrigeration coils that condense water and items such as humidifiers with water reservoirs since water has the potential for collecting formaldehyde and thus influencing test results.The interior surfaces of the small chamber, including any sample support system,shall be a nonadsorbent material.Stainless steel,aluminum,and polytetrafluoroethyl-ene(PTFE)have been found appropriate as chamber lining materials.All joints except for doors used for loading and unloading specimens should be sealed.Doors shall be self-sealing.6.2Make-Up Air:6.2.1The make-up air shall come from afiltered dust-free environment and contain not more than0.02ppm of formal-dehyde.This can be accomplished by passing make-up air through afilter bed of activated carbon,activated alumina impregnated with potassium permanganate,or other materials capable of absorbing,or oxidizing formaldehyde.6.2.2Make-up air for the chamber must pass through a calibrated airflow measuring device.6.2.3Air Circulation—Low speed mixing fans or multi-port inlet and outlet diffusers are two techniques that have been used successfully to ensure mixing of the chamber air over all sample surfaces.6.2.4Air Sampling Port—The exhaustflow(that is,cham-ber outlet)is normally used as the sampling point,although separate sampling ports in the chamber can be used.The sampling system shall be constructed of a material to minimize adsorption(for example,glass,stainless steel),and the system should be maintained at the same temperature as the test chambers.6.3Examples of acceptable reagents,materials,and equip-ment are provided in Appendix X1.10Christensen,R.L.,and Anderson,W.H.,Measuring Formaldehyde Concen-trations Using a Small Scale Chamber,Proceedings23rd International Particleboard/Composite Materials Symposium,W.S.U.,1989.11Hakes,D.,Johnson,G.,and Marhevka,J.,Procedure for Elimination of Phenol Interference in the Chromotropic Acid Method for Formaldehyde,American Industrial Hygiene Association,April1984.12Technical Bulletin No.415,National Council of the Paper Industry for Air and Stream Improvement Inc.(NCASI),1983.7.Hazards7.1Chromotropic Acid Reagent Treatment —(See 10.3.4and 10.3.5.)During this hazardous operation,the operator must wear rubber gloves,apron,and a full face mask or be protected from splashing by a transparent shield such as a hood window.The solution becomes extremely hot during addition of sulfuric acid.If acid is not added slowly,some loss of sample could occur due to splattering.7.2Cleaning Chemicals for Glassware —Use appropriate precautions if cleaning chemicals are considered to be hazard-ous.8.Test Specimens8.1Standard Face and Back Configuration —Loading (L or A/V )is defined as the total exposed specimen surface area,excluding edge area,divided by the chamber volume.Alumi-num tape shall be used to cover the edges of the specimens if the edge exposure is greater than 5%of the surface area,thereby retarding formaldehyde emission from the edge.The Q/A ratios in Table 1are used for testing wood panel products containing formaldehyde.Each small chamber will have a unique value for the make-up air flow (Q )dependent on the sample surface area used,and the type of product tested.8.2Nonstandard Sample Configuration Testing Products with Single Surface Exposed —Some products have signifi-cantly different formaldehyde release characteristics for each surface.In those cases,panels may be tested back-to-back with edges taped together.The panels shall be identified as tested in the back-to-back mode.8.3Combination Testing —Different products may be tested in combination.Qualify the test report and note the Q/A ratio used.9.Sample Material Handling and Specimen Conditioning 9.1Handling —Materials selected for testing shall be wrapped in polyethylene plastic having a minimum thickness of 0.15mm (6mil)until sample conditioning is initiated.When testing wood products that are not newly manufactured such as after original application,installation or use,the method of packaging and shipping the products for testing shall be fully rmation on the age and history of the product shall be detailed in the test report.9.2Conditioning —Condition test specimens with a mini-mum distance of 0.15m (6in.)between each specimen for 2h 615min at conditions of 2463°C (7565°F)and 5065%relative humidity.The formaldehyde concentration in the air within 0.3m (12in.)of where panels are conditioned shall be not more than 0.1ppm during the conditioning period.Alter-native conditioning intervals may give better correlation,such as seven day conditioning that parallels Test Method E 1333.10.Procedure10.1Test Procedure for Materials :10.1.1Purge the chamber by running empty or with the use of filters designed to reduce the formaldehyde background concentration in air,or both.The formaldehyde background concentration in air of the empty operating chamber shall not exceed 0.02ppm.Clean chamber surfaces with water or suitable solvent if formaldehyde background concentrations approach 0.02ppm.10.1.2Locate the specimens in the chamber so that the conditioned air stream circulates over all panel surfaces.10.1.3Operate the chamber at 2561°C (7762°F)and 5064%relative humidity.Record the temperature,relative humidity,and barometric pressure during the testing period.Conduct the chamber test at a given Q/A ratio and record this ratio in the report.10.1.4Specimens remain in the operating chamber until a steady state formaldehyde concentration is reached.The time may be estimated using the following equation:t 521n ~12C t /C s !VQ 1KA(3)where:t =time to any percent of C s less than 100%(such as99.9999999999,and so forth),C t=concentration at time,t ,C s =steady state formaldehyde concentration,A =product surface area,m 2,V =chamber volume,m 3,K =mass transfer coefficient,m/h,and −1n =negative natural log.It is necessary to know the range of K for the product involved.If K is unknown,a conservative estimate based on the literature may be used.10Alternatively,back to back air tests giving replicate values within the error of the analytical method may be used.10.2Air Sampling —Purge air sampling lines for1min.At the sampling station,bubble air through a single impinger containing 20mL of a 1%sodium bisulfite (NaHSO 3)solu-tion.A filter trap may be placed between the impinger and the flowmeter.Set a calibrated flowmeter to maintain an average airflow of 160.05L/min for 30min with time measured accurately to within 5s.Following air sampling,analyze the collection solution.10.3Analysis of Air Samples :10.3.1Pipet 4mL of the NaHSO 3solution from the im-pinger into each of three 16by 150-mm screwcap test tubes for triplicate analysis of each impinger sample.10.3.2Pipet 4mL of 1%NaHSO 3into a 16by 150-mm screwcap test tube to act as a reagent blank.10.3.3Add 0.1mL of 1%chromotropic acid reagent to each test tube.Shake tube after addition.10.3.4Slowly and carefully pipet 6.0mL concentrated sulfuric acid (H 2SO 4)into each test tube (Warning —See 7.1.)and allow to flow down the side of test tube.Allow the volumetric pipet to drain.Do not blow out .Before placing capsTABLE 1Q/A Ratios,62%Test Method E 1333L (m 2/m 3)N/L or Q/A (m/h)Product Type0.950.526hardwood plywood wall paneling 0.431.173particleboard flooring panels,industrial particleboard panels,industrial hardwood plywood panels 0.26 1.905medium density fiberboard (MDF)0.13 3.846particleboard door coreon test tubes,check the condition of the polytetrafluoroethyl-ene (PTFE)cap liners to make sure they are clean and not deteriorated.10.3.5Slowly and gently agitate test tubes toaffect mixing.Mixing is complete when there is no sign of stratification.Caution needs to be taken due to the exothermic chemical reaction.Rapid mixing will cause heating and a pressure increase which may break the test tube.Vent test tubes to release pressure.10.3.6If absorbance readings exceed 1.0or if spectropho-tometric analysis is performed within 2h,heat capped test tubes to 95°C or place capped test tubes in a boiling water bath for 1562min to ensure that the chemical reaction is completed.Remove tubes from water bath and allow to cool to room temperature.10.4Absorbance Readings :10.4.1Standardize the spectrophotometer using distilled water at 580nm in accordance with the instrument’s operating instructions.The reagent blank shall be read against distilled water because an absorbance above 0.100for the reagent blank indicates contamination of reagent blank or improper solution preparation.If absorbance for the reagent blank compared to distilled water is greater than 0.100,repeat the entire standard-ization procedure.10.4.2Zero the instrument using the reagent blank if the absorbance is not greater than 0.100(compared to distilled water as zero).Alternatively,the instrument may be left zeroed on distilled water,and the absorbance of the reagent blank subtracted from the absorbance of the standard solutions.10.4.3Read and record absorbance at 580nm for each test tube prepared (see A4.6-A4.9).If the absorbance of the specimen solution is found to fall outside the preferred absorbance range (>1.0),steps 10.3.1-10.3.4may be repeated using an appropriate dilution of each impinger solution.11.Calculation11.1Convert the volume of air sampled to the volume of air at standard conditions as follows:V s 5V 3P 32981013~T 1273!(4)where:V s =volume of air at standard conditions (101kPa and298K),L,V =volume of air sampled,L,P =barometric pressure,kPa,and T =temperature of sample air,°C.11.2Calculate total micrograms of formaldehyde collected in each impinger sample as follows:C t 5C a 3F a(5)where:C t =total formaldehyde in the sample,µg,C a =total quantity of formaldehyde in the sample aliquotstaken from the impinger (as determined from the calibration curve in Annex A4),µg,andF a =aliquot factor 5sampling solution volume,mL aliquot used,mL11.2.1Calculate the concentration of formaldehyde in air in the small chamber as follows:C s 5C t 324.47V s330.03(6)where:C s=parts of formaldehyde per million parts air,ppm,30.03=molecular weight of formaldehyde,and24.47=µL of formaldehyde gas in 1µmol at 101kPa and298K.Round calculated formaldehyde concentrations to the near-est 0.01ppm.Round up to the nearest 0.01ppm any value at or in excess of 0.005ppm.Round down all values below 0.005to the nearest 0.01ppm.11.3When the chamber temperature differs from 25by 1⁄4°C (77by 1⁄2°F)or more,adjust the formaldehyde concentra-tions obtained to a standard temperature of 25°C (77°F)using a formula developed by Berge,et al.13Annex A1contains a table of conversion factors for use at different observed test temperatures as calculated using this formula.The observed test temperature is the average temperature for the total period of 15min prior to air sampling plus the time of air sampling.11.4The small chamber formaldehyde concentration in air shall be adjusted to a concentration at 50%relative humidity when the difference in relative humidity from 50%is greater than or equal to 1%(see Annex A2).12.Report12.1Report the following information:12.1.1Test number.12.1.2Title of report shall state if standard face and back configuration testing (see 8.1)or if nonstandard configuration testing (see 8.2)was performed.12.1.3The manner in which materials were shipped or stored,or both:wrapped separately in vapor retarder,wrapped collectively in vapor retarder or in original box or container.If materials were shipped unwrapped,or not in the original box or container,it shall be noted in the test rmation on age and product history,if known,shall be described in the test report.12.1.4Name of product manufacturer or name of company submitting material,or both,date of manufacture,and sam-pling date (if known).12.1.5Description of test material or product shall include generic product name,thickness,size,if surface is finished or sealed (both surfaces should be described),and special treat-ment (if known).12.1.6Specimen conditioning details to include average temperature and range (nearest 1⁄4°C),average relative humid-ity and range (nearest 1%),and time to the nearest minute.12.1.7Formaldehyde background concentration in the air in the area where specimens are conditioned (rounded to the nearest 0.01ppm).12.1.8Chamber volume:nominal length,width,and height.13Berge,A.,Mellagaard,B.,Hanetho,P.,and Ormstad,E.B.,FormaldehydeRelease from Particleboard-Evaluation of a Mathematical Model ,Holz Als Roh-und Werkstoff 38,1980,pp.252–255.12.1.9Chamber Q/L ratio.12.1.10Description of specimens as loaded into chamber including number of specimens in charge and number of surfaces exposed.12.1.11Average temperature and range(nearest1⁄4°C), average relative humidity and range(nearest1%),and time to the nearest minute during the sampling period.12.1.12Chamber formaldehyde concentration in air at test conditions;chamber formaldehyde concentration in air cor-rected to25°C,50%relative humidity,rounded to nearest0.01 ppm.12.1.13The analytical method employed if different from the NIOSH3500chromotropic acid test procedure.12.1.14Formaldehyde background concentration of air in chamber prior to test and formaldehyde concentration of make-up air(rounded to the nearest0.01ppm).12.1.15Air-sampling rate and length of sample time. 12.1.16Date of test.13.Precision and Bias13.1A study including seven laboratories and four test materials was conducted in accordance with Practice E691and resulted in the following statements for precision and bias. 13.1.1Repeatability—Test results indicate a repeatability (within laboratory)precision standard deviation ranging from 0.01to0.02for products emitting0.06to0.24ppm of formaldehyde.13.1.2Reproducibility—Test results indicate a reproducibil-ity(between laboratory)precision standard deviation ranging from0.02to0.05for products emitting0.06to0.24ppm of formaldehyde,respectively.13.1.3Bias—No bias statement is available for this test method due to the lack of an acceptable homogeneous form-aldehyde off-gassing reference material.14.Keywords14.1airborne;chromotropic acid analysis;formaldehyde concentration in air;small chamber;small-scale test;wood productsANNEXES(Mandatory Information)A1.TEMPERATURE CONVERSION FACTORS FOR FORMALDEHYDEA1.1Table A1.1is based on the Berge,et al13formula to correct formaldehyde concentrations in air for temperature:C5C o3e2R~1/t21/to!orC o5Ce R~1/t21/to!where:C=test formaldehyde concentration level,C o=corrected formaldehyde concentration level, e=natural log base,R=coefficient of temperature(9799),t=actual temperature,K,andt o=corrected temperature,K.A2.RELATIVE HUMIDITY CONVERSION FACTORS FOR FORMALDEHYDEA2.1Table A2.1is based on the Berge,et al 13formula to correct formaldehyde concentrations in air for relative humid-ity:C 5C o @11A ~H 2H o !#orC o 5C11A H 2H o !where:C =test formaldehyde concentration level,C o =corrected formaldehyde concentration level,A =coefficient of humidity (0.0175),H =actual relative humidity,and H o =relative humidity,%.A3.STANDARD SOLUTIONS A AND BA3.1Standardization of Formaldehyde Standard Solution A (1.0mg/mL):A3.1.1Pipet 2.70mL of 37.0%formaldehyde solution into a 1L volumetric flask.Dilute to mark with freshly distilled water and mix well.This solution is stable for at least one month.A3.1.2Calibrate the pH meter with standard buffer solution of pH 9.0.A3.1.3Pipet two 50mL aliquots of formaldehyde standard Solution A into two 150-mL beakers for duplicate analysis and add 20mL of 1M sodium sulfite (Na 2SO 3)to each beaker.Sodium sulfite solution can age,thus the 1M sodium sulfite solution should be adjusted to a 9.5pH before adding to standard Solution A aliquots.A3.1.4Place solution on magnetic stirrer.Immerse pH electrodes into the solution and carefully titrate with 0.100N hydrochloric acid (HCl)to the original pH of the solution.Record volume of HCl and corresponding pH intermittently.Make a graph of pH versus volume of HCl.A3.1.5Calculate the concentration,C A ,of formaldehyde standard Solution A in milligrams per millilitre as follows:C A 5V 3N 330.03~mg per milliequivalent !50~mL !where:V =0.100N HCl required at pH of 9.5from the graphprepared in A3.1.4,mL,andTABLE A1.1Temperature Conversion Table for FormaldehydeN OTE 1—The Berge,et al 11equation is an exponential function.The greater the variance between actual and corrected temperature,the greater the potential error.Two horizontal lines within the table delineate the specified test temperature ranges 2561°C (7762°F).Actual To Convert to 25°C (77°F)Multiple by Actual To Convert to 25°C (77°F)Multiply by°C (°F)°C (°F)22.2(72) 1.3625.3(77.5)0.9722.5(72.5) 1.3225.6(78)0.9422.8(73) 1.2825.8(78.5)0.9123.1(73.5) 1.2426.1(79)0.8923.3(74) 1.2026.4(79.5)0.8623.6(74.5) 1.1726.7(80)0.8323.9(75) 1.1326.9(80.5)0.8124.2(75.5) 1.1027.2(81)0.7824.4(76) 1.0627.5(81.5)0.7624.7(76.5) 1.0327.8(82)0.7425.0(77)1.00TABLE A2.1Relative Humidity Conversion Table forFormaldehydeActual RH %To Convert to 50%RH Multiply byActual RH %To Convert to 50%RH Multiply by46 1.08510.9847 1.06520.9748 1.04530.9549 1.02540.93501.00N=normality of HCl.The concentration of standard Solution A will be the average of the two analysesconducted.A3.2Standard Solution B:A3.2.1Prepare formaldehyde standard Solution B by dilut-ing1mL of standard Solution A and1g of sodium bisulfite (NaHSO3)to100mL in a volumetricflask using distilled water.This standard is stable for at least one week.A3.2.2Calculate the concentration of formaldehyde C B in standard Solution B in micrograms per millilitre as follows:C b5C A3100031mL100A3.2.3Record the value.A4.CALIBRATION CURVEA4.1Prepare a1%sodium bisulfite(NaHSO3)solution by dissolving1g of NaHSO3in a100mL volumetricflask and diluting to the mark with distilled water.This solution is stable at room temperature and should be prepared on a weekly basis.A4.2Label six16by150mm screwcapped test tubes1,2, 3,4,5,and6.A4.3Pipet the following volumes of1%sodium bisulfite solution and then standard Solution B(see Annex A3)into the labeled test tubes:Tube No.Volume,mLNaHSO3Solution B1 4.002 3.90.103 3.70.304 3.50.505 3.30.706 3.0 1.00A4.3.1Note that no Solution B was added to Test Tube1. Test Tube1will be the reagent blank.A4.4Add0.1mL of1%chromotropic acid reagent to each test tube.Shake tube after addition.A4.5Slowly and carefully pipet 6.0mL concentrated sulfuric acid(H2SO4)into each test tube(Warning–See7.1.) and allow toflow down the side of the test tube.Allow the volumetric pipet to drain.Do not blow out.Before placing caps on test tubes,check the condition of the polytetrafluoroethyl-ene(PTFE)cap liners to make sure they are clean and not deteriorated.A4.5.1Slowly and gently agitate test tubes to affect mixing. Mixing is complete when there is no sign of stratification. Carefully vent test tubes to release pressure.Rapid mixing will cause heating and a pressure increase with the potential for breaking the test tube.If absorbance readings exceed1.0or if spectrophotometric analysis is performed within2h,heat capped test tubes to95°C or place in a boiling water bath for 15+2min to ensure that the chemical reaction is complete. After removal,allow the test tubes to cool to room temperature. A4.6Standardize the spectrophotometer using distilled water at580nm in accordance with the instrument’s operating instructions.The reagent blank(Tube1)shall be read against distilled water.A high absorbance for the reagent indicates contamination of reagent blank or improper solution prepara-tion.If absorbance for the reagent blank compared to distilled water is greater than0.040(using a12mm cell path length),repeat the entire standardization procedure.A4.7Zero the instrument using the reagent blank(Tube1) if the absorbance is not greater than0.040(compared to distilled water as zero).Alternatively,the instrument may be left zeroed on distilled water,and the absorbance of the reagent blank subtracted from the absorbance of the standard solutions. Recovery shall be within65%of reagent blank.A4.8Read and record absorbance at580nm for each standard prepared(Tubes2through6).A4.9Plot absorbance against micrograms of formaldehyde in the color developed solution.Note the amount of formalde-hyde in micrograms is based upon the concentration of formaldehyde in standard Solution B,which is dependent upon the standardization carried out on standard Solution A in Annex A3.A4.9.1Example—If standard Solution A=100µg/mL then standard Solution B=10.00µg/mL:Tube1=0mL Standard Solution B310.00µg/mL=0.00µg total formaldehydeTube2=0.10mL Standard Solution B310.00µg/mL=1.00µg total formaldehydeTube3=0.30mL Standard Solution B310.00µg/mL=3.00µg total formaldehydeTube4=0.50mL Standard Solution B310.00µg/mL=5.00µg total formaldehydeTube5=0.70mL Standard Solution B310.00µg/mL=7.00µg total formaldehydeTube6=1.00mL Standard Solution B310.00µg/mL=10.00µg total formaldehydeA4.9.2The absorbance of each tube would be plotted against the total micrograms of formaldehyde in each tube. A4.9.3The absorbance of each chamber impinger aliquot specimen determined in10.4.3is compared to this calibration curve,and the total micrograms of formaldehyde in the aliquot is represented as C a in11.2.N OTE A4.1—The calibration curve as described in this annex is provided as an example.If absorbance readings are outside of this range, dilute the solution with distilled water to a concentration that is within the calibration curve.If absorbance readings exceed1.0,place capped test tubes in a boiling water bath for1562min to ensure that the chemical reaction is completed.Vent test tubes to release pressure.Remove tubes from water bath and allow to cool to room temperature.A4.10Preparation of the calibration curve(A4.3-A4.9)。