2016四川省高考文科数学试卷及答案(文数)

合集下载

2016年全国统一高考数学试卷文科全国一附带答案解析

2016年全国统一高考数学试卷文科全国一附带答案解析

2016年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.33.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.35.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a nb n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(文科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}【考点】1E:交集及其运算.【专题】11:计算题;29:规律型;5J:集合.【分析】直接利用交集的运算法则化简求解即可.【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.【点评】本题考查交集的求法,考查计算能力.2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.3【考点】A5:复数的运算.【专题】11:计算题;29:规律型;35:转化思想;5N:数系的扩充和复数.【分析】利用复数的乘法运算法则,通过复数相等的充要条件求解即可.【解答】解:(1+2i)(a+i)=a﹣2+(2a+1)i的实部与虚部相等,可得:a﹣2=2a+1,解得a=﹣3.故选:A.【点评】本题考查复数的相等的充要条件的应用,复数的乘法的运算法则,考查计算能力.3.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【专题】12:应用题;34:方程思想;49:综合法;5I:概率与统计.【分析】确定基本事件的个数,利用古典概型的概率公式,可得结论.【解答】解:从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,有=6种方法,红色和紫色的花在同一花坛,有2种方法,红色和紫色的花不在同一花坛,有4种方法,所以所求的概率为=.另解:由列举法可得,红、黄、白、紫记为1,2,3,4,即有(12,34),(13,24),(14,23),(23,14),(24,13),(34,12),则P==.故选:C.【点评】本题考查等可能事件的概率计算与分步计数原理的应用,考查学生的计算能力,比较基础.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.3【考点】HR:余弦定理.【专题】11:计算题;35:转化思想;4R:转化法;58:解三角形.【分析】由余弦定理可得cosA=,利用已知整理可得3b2﹣8b﹣3=0,从而解得b的值.【解答】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.【点评】本题主要考查了余弦定理,一元二次方程的解法在解三角形中的应用,考查了计算能力和转化思想,属于基础题.5.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题;29:规律型;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】设出椭圆的方程,求出直线的方程,利用已知条件列出方程,即可求解椭圆的离心率.【解答】解:设椭圆的方程为:,直线l经过椭圆的一个顶点和一个焦点,则直线方程为:,椭圆中心到l的距离为其短轴长的,可得:,4=b2(),∴,=3,∴e==.故选:B.【点评】本题考查椭圆的简单性质的应用,考查点到直线的距离公式,椭圆的离心率的求法,考查计算能力.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】33:函数思想;48:分析法;57:三角函数的图像与性质.【分析】求得函数y的最小正周期,即有所对的函数式为y=2sin[2(x﹣)+],化简整理即可得到所求函数式.【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.【点评】本题考查三角函数的图象平移变换,注意相位变换针对自变量x而言,考查运算能力,属于基础题和易错题.7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b【考点】4M:对数值大小的比较.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】根据指数函数,对数函数,幂函数的单调性结合换底公式,逐一分析四个结论的真假,可得答案.【解答】解:∵a>b>0,0<c<1,∴log c a<log c b,故B正确;∴当a>b>1时,0>log a c>log b c,故A错误;a c>b c,故C错误;c a<c b,故D错误;故选:B.【点评】本题考查的知识点是指数函数,对数函数,幂函数的单调性,难度中档.9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]【考点】6B:利用导数研究函数的单调性.【专题】35:转化思想;4C:分类法;53:导数的综合应用.【分析】求出f(x)的导数,由题意可得f′(x)≥0恒成立,设t=cosx(﹣1≤t ≤1),即有5﹣4t2+3at≥0,对t讨论,分t=0,0<t≤1,﹣1≤t<0,分离参数,运用函数的单调性可得最值,解不等式即可得到所求范围.【解答】解:函数f(x)=x﹣sin2x+asinx的导数为f′(x)=1﹣cos2x+acosx,由题意可得f′(x)≥0恒成立,即为1﹣cos2x+acosx≥0,即有﹣cos2x+acosx≥0,设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t﹣,由4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a≥﹣;当﹣1≤t<0时,3a≤4t﹣,由4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a≤.综上可得a的范围是[﹣,].另解:设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,由题意可得5﹣4+3a≥0,且5﹣4﹣3a≥0,解得a的范围是[﹣,].故选:C.【点评】本题考查导数的运用:求单调性,考查不等式恒成立问题的解法,注意运用参数分离和换元法,考查函数的单调性的运用,属于中档题.二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.【考点】9T:数量积判断两个平面向量的垂直关系.【专题】11:计算题;41:向量法;49:综合法;5A:平面向量及应用.【分析】根据向量垂直的充要条件便可得出,进行向量数量积的坐标运算即可得出关于x的方程,解方程便可得出x的值.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.【点评】考查向量垂直的充要条件,以及向量数量积的坐标运算,清楚向量坐标的概念.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.【考点】GP:两角和与差的三角函数.【专题】11:计算题;35:转化思想;49:综合法;56:三角函数的求值.【分析】由θ得范围求得θ+的范围,结合已知求得cos(θ+),再由诱导公式求得sin()及cos(),进一步由诱导公式及同角三角函数基本关系式求得tan(θ﹣)的值.【解答】解:∵θ是第四象限角,∴,则,又sin(θ+)=,∴cos(θ+)=.∴cos()=sin(θ+)=,sin()=cos(θ+)=.则tan(θ﹣)=﹣tan()=﹣=.故答案为:﹣.【点评】本题考查两角和与差的正切,考查诱导公式及同角三角函数基本关系式的应用,是基础题.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为4π.【考点】J8:直线与圆相交的性质.【专题】11:计算题;35:转化思想;5B:直线与圆.【分析】圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,利用圆的弦长公式,求出a值,进而求出圆半径,可得圆的面积.【解答】解:圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,∵直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,且|AB|=2,∴圆心(0,a)到直线y=x+2a的距离d=,即+3=a2+2,解得:a2=2,故圆的半径r=2.故圆的面积S=4π,故答案为:4π【点评】本题考查的知识点是直线与圆相交的性质,点到直线的距离公式,难度中档.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a nb n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【考点】8H:数列递推式.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】(Ⅰ)令n=1,可得a1=2,结合{a n}是公差为3的等差数列,可得{a n}的通项公式;(Ⅱ)由(1)可得:数列{b n}是以1为首项,以为公比的等比数列,进而可得:{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,+b n+1=nb n.(Ⅱ)由(I)知:(3n﹣1)b n+1即3b n=b n.+1即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.【点评】本题考查的知识点是数列的递推式,数列的通项公式,数列的前n项和公式,难度中档.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【考点】LF:棱柱、棱锥、棱台的体积;MK:点、线、面间的距离计算.【专题】11:计算题;35:转化思想;5F:空间位置关系与距离.【分析】(Ⅰ)根据题意分析可得PD⊥平面ABC,进而可得PD⊥AB,同理可得DE⊥AB,结合两者分析可得AB⊥平面PDE,进而分析可得AB⊥PG,又由PA=PB,由等腰三角形的性质可得证明;(Ⅱ)由线面垂直的判定方法可得EF⊥平面PAC,可得F为E在平面PAC内的正投影.由棱锥的体积公式计算可得答案.【解答】解:(Ⅰ)证明:∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(Ⅱ)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC 内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD=CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=PG,DE=PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PG=3,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=×DE×S=×2××2×2=.△PEF【点评】本题考查几何体的体积计算以及线面垂直的性质、应用,解题的关键是正确分析几何体的各种位置、距离关系.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【考点】3H:函数的最值及其几何意义;5C:根据实际问题选择函数类型;B8:频率分布直方图.【专题】11:计算题;51:函数的性质及应用;5I:概率与统计.【分析】(Ⅰ)若n=19,结合题意,可得y与x的分段函数解析式;(Ⅱ)由柱状图分别求出各组的频率,结合“需更换的易损零件数不大于n”的频率不小于0.5,可得n的最小值;(Ⅲ)分别求出每台都购买19个易损零件,或每台都购买20个易损零件时的平均费用,比较后,可得答案.【解答】解:(Ⅰ)当n=19时,y==(Ⅱ)由柱状图知,更换的易损零件数为16个频率为0.06,更换的易损零件数为17个频率为0.16,更换的易损零件数为18个频率为0.24,更换的易损零件数为19个频率为0.24又∵更换易损零件不大于n的频率为不小于0.5.则n≥19∴n的最小值为19件;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,所须费用平均数为:(70×19×200+4300×20+4800×10)=4000(元)假设这100台机器在购机的同时每台都购买20个易损零件,所须费用平均数为(90×4000+10×4500)=4050(元)∵4000<4050∴购买1台机器的同时应购买19台易损零件.【点评】本题考查的知识点是分段函数的应用,频率分布条形图,方案选择,难度中档.20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.【考点】K8:抛物线的性质.【专题】15:综合题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求出P,N,H的坐标,利用=,求;(Ⅱ)直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,利用判别式可得结论.【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),∵M关于点P的对称点为N,∴=,=t,∴N(,t),∴ON的方程为y=x,与抛物线方程联立,解得H(,2t)∴==2;(Ⅱ)由(Ⅰ)知k MH=,∴直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.【点评】本题考查直线与抛物线的位置关系,考查学生的计算能力,正确联立方程是关键.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】35:转化思想;48:分析法;51:函数的性质及应用;53:导数的综合应用.【分析】(Ⅰ)求出f(x)的导数,讨论当a≥0时,a<﹣时,a=﹣时,﹣<a<0,由导数大于0,可得增区间;由导数小于0,可得减区间;(Ⅱ)由(Ⅰ)的单调区间,对a讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增(如右上图);②当a<0时,(如右下图)若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;当x→﹣∞时f(x)>0或找到一个x<1使得f(x)>0对于a>0恒成立,f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,在(﹣∞,ln(﹣2a))单调增,在(1,+∞)单调增,在(1n(﹣2a),1)单调减,只有f(ln(﹣2a))等于0才有两个零点,而当x≤1时,f(x)<0,所以只有一个零点不符题意.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).【点评】本题考查导数的运用:求单调区间,考查函数零点的判断,注意运用分类讨论的思想方法和函数方程的转化思想,考查化简整理的运算能力,属于难题.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。

2016年四川省高考数学文科试题含答案(Word版)

2016年四川省高考数学文科试题含答案(Word版)

2016年普通高等学校招生全国统一考试(四川卷)数学(文史类)第I 卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.设i 为虚数单位,则复数(1+i)2= (A) 0 (B)2 (C)2i (D)2+2i2.设集合A={x11≤x ≤5},Z 为整数集,则集合A ∩Z 中元素的个数是 (A)6 (B) 5 (C)4 (D)33.抛物线y 2=4x 的焦点坐标是(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0) 4.为了得到函数y=sin )3(π+x 的图象,只需把函数y=sinx 的图象上所有的点(A)向左平行移动3π个单位长度 (B) 向右平行移动3π个单位长度 (C) 向上平行移动3π个单位长度 (D) 向下平行移动3π个单位长度5.设p:实数x ,y 满足x>1且y>1,q: 实数x ,y 满足x+y>2,则p 是q 的 (A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件6.已知a 函数f(x)=x 3-12x 的极小值点,则a= (A)-4 (B) -2 (C)4 (D)27.某公司为激励创新,计划逐年加大研发奖金投入。

若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是 (参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30) (A)2018年 (B) 2019年 (C)2020年 (D)2021年8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。

如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为(A)35 (B) 20 (C)18 (D)99.已知正三角形ABC 的边长为32,平面ABC 内的动点P ,M 满足1AP =uu u r ,PM MC =uuu r uuu r ,则2BM uuu r 的最大值是 (A)443 (B) 449(C) 43637+ (D) 433237+10. 设直线l 1,l 2分别是函数f(x)= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 (A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞)第II 卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2016高考文科数学试题全国卷3(含答案全解析)

2016高考文科数学试题全国卷3(含答案全解析)

2016年全国高考文科数学试题(全国卷3)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合,则=(A)(B)(C)(D)(2)若,则=(A)1 (B)(C)(D)(3)已知向量=(,),=(,),则∠ABC=(A)30°(B)45°(C)60°(D)120°(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是(A)各月的平均最低气温都在0℃以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均最高气温高于20℃的月份有5个(5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(A)(B)(C)(D)(6)若,则cos2θ=(A)(B)(C)(D)(7)已知则(A)(B) (C)(D)(8)执行右面的程序框图,如果输入的a=4,b=6,那么输出的n=(A)3 (B)4 (C)5 (D)6(9)在△ABC中,边上的高等于,则=(A)(B)(C)(D)(10)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)(B)(C)90 (D)81(11)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是(A)(B)(C)(D)(12)已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P 为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(A)(B)(C)(D)第II卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分(13)设满足约束条件则的最小值为______.(14)函数的图像可由函数的图像至少向右平移______个单位长度得到. (15)已知直线与圆交于A、B两点,过A、B分别作l的垂线与x轴交于C、D两点,则|CD|=______.(16)已知f(x)为偶函数,当时,,则曲线y= f(x)在点(1,2)处的切线方程式_________.三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知各项都为正数的数列满足,.(I)求;(II)求的通项公式.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1–7分别对应年份2008–2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:,,,≈2.646.参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:(19)(本小题满分12分)如图,四棱锥P-ABCD中,PA⊥地面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明MN∥平面PAB;(II)求四面体N-BCM的体积.已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.(21)(本小题满分12分)设函数.(I)讨论的单调性;(II)证明当时,;(III)设,证明当时,.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4—1:几何证明选讲如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点。

2016年高考-全国二卷-文科数学-原题+解析

2016年高考-全国二卷-文科数学-原题+解析

2016年普通高等学校招生全国统一考试(课标全国卷Ⅱ)文 数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,3},B={x|x 2<9},则A ∩B=( ) A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}2.设复数z 满足z+i=3-i,则z =( ) A.-1+2iB.1-2iC.3+2iD.3-2i3.函数y=Asin(ωx+φ)的部分图象如图所示,则( )A.y=2sin (2x -π6) B.y=2sin (2x -π3) C.y=2sin (x +π6)D.y=2sin (x +π3)4.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A.12πB.323π C.8π D.4π5.设F为抛物线C:y2=4x的焦点,曲线y=kx(k>0)与C交于点P,PF⊥x轴,则k=( )A.12B.1 C.32D.26.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )A.-43B.-34C.√3D.27.下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π8.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.7B.5C.3D.39.中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=( )A.7B.12C.17D.3410.下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=xB.y=lg xC.y=2xD.y=√x11.函数f(x)=cos 2x+6cos (π2-x)的最大值为( ) A.4B.5C.6D.712.已知函数f(x)(x ∈R )满足f(x)=f(2-x),若函数y=|x 2-2x-3|与y=f(x)图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i=1mx i =( )A.0B.mC.2mD.4m第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.已知向量a =(m,4),b =(3,-2),且a ∥b ,则m= .14.若x,y 满足约束条件{x -y +1≥0,x +y -3≥0,x -3≤0,则z=x-2y 的最小值为 .15.△ABC 的内角A,B,C 的对边分别为a,b,c,若cos A=45,cos C=513,a=1,则b= . 16.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =[a n ],求数列{b n }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.18.(本小题满分12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234≥5保费0.85a a 1.25a 1.5a 1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数01234≥5频数605030302010 (Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(Ⅲ)求续保人本年度平均保费的估计值.19.(本小题满分12分)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H.将△DEF沿EF折到△D'EF的位置.(Ⅰ)证明:AC⊥HD';(Ⅱ)若AB=5,AC=6,AE=54,OD'=2√2,求五棱锥D'-ABCFE的体积.20.(本小题满分12分)已知函数f(x)=(x+1)ln x-a(x-1).(Ⅰ)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程; (Ⅱ)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.21.(本小题满分12分)已知A是椭圆E:x24+y23=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,证明:√3<k<2.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,在正方形ABCD 中,E,G 分别在边DA,DC 上(不与端点重合),且DE=DG,过D 点作DF ⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F 四点共圆;(Ⅱ)若AB=1,E 为DA 的中点,求四边形BCGF 的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系xOy 中,圆C 的方程为(x+6)2+y 2=25.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是{x =tcosα,y =tsinα(t 为参数),l 与C 交于A,B 两点,|AB|=√10,求l 的斜率.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x -12|+|x +12|,M 为不等式f(x)<2的解集. (Ⅰ)求M;(Ⅱ)证明:当a,b ∈M 时,|a+b|<|1+ab|.2016年普通高等学校招生全国统一考试(课标全国卷Ⅱ)一、选择题1.D 由已知得B={x|-3<x<3},∵A={1,2,3},∴A ∩B={1,2},故选D.2.C z=3-2i,所以z =3+2i,故选C.3.A 由题图可知A=2,T 2=π3-(-π6)=π2,则T=π,所以ω=2,则y=2sin(2x+φ),因为题图经过点(π3,2),所以2sin (2×π3+φ)=2,所以2π3+φ=2kπ+π2,k ∈Z ,即φ=2kπ-π6,k ∈Z ,当k=0时,φ=-π6,所以y=2sin (2x -π6),故选A.4.A 设正方体的棱长为a,则a 3=8,解得a=2.设球的半径为R,则2R=√3a,即R=√3,所以球的表面积S=4πR 2=12π.故选A. 5.D 由题意得点P 的坐标为(1,2).把点P 的坐标代入y=kx (k>0)得k=1×2=2,故选D. 6.A 由圆的方程可知圆心为(1,4).由点到直线的距离公式可得√2=1,解得a=-43,故选A.7.C 由三视图知圆锥的高为2√3,底面半径为2,则圆锥的母线长为4,所以圆锥的侧面积为12×4π×4=8π.圆柱的底面积为4π,圆柱的侧面积为4×4π=16π,从而该几何体的表面积为8π+16π+4π=28π,故选C. 8.B 行人在红灯亮起的25秒内到达该路口,即满足至少需要等待15秒才出现绿灯,根据几何概型的概率公式知所求事件的概率P=2540=58,故选B.9.C 执行程序框图,输入a 为2时,s=0×2+2=2,k=1,此时k>2不成立;再输入a 为2时,s=2×2+2=6,k=2,此时k>2不成立;再输入a 为5,s=6×2+5=17,k=3,此时k>2成立,结束循环,输出s 为17,故选C. 10.D 函数y=10lg x的定义域、值域均为(0,+∞),而y=x,y=2x的定义域均为R ,排除A,C;y=lgx 的值域为R ,排除B,故选D.。

2016年高考文科数学全国Ⅰ卷试题及答案

2016年高考文科数学全国Ⅰ卷试题及答案

绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试文科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}(2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A )-3(B )-2(C )2(D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,学.科.网余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13(B )12(C )23(D )56(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b= (A(BC )2(D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13(B )12(C )23(D )34(6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3)(7)如图,学.科网某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π (8)若a>b>0,0<c<1,则(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b (9)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C )(D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足(A )2y x =(B )3y x = (C )4y x = (D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为 (A )32(B )22(C )33(D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是 (A )[]1,1-(B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =. (14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=. (15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为。

2016年普通高等学校招生全国统一考试I卷文科数学(含答案)

2016年普通高等学校招生全国统一考试I卷文科数学(含答案)

2016年普通高等学校招生全国统一考试(课标全国卷Ⅰ)文 数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=( ) A.{1,3}B.{3,5}C.{5,7}D.{1,7}2.设(1+2i)(a+i)的实部与虚部相等,其中a 为实数,则a=( ) A.-3B.-2C.2D.33.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13 B.12C.23D.564.△ABC 的内角A,B,C 的对边分别为a,b,c.已知a=√5,c=2,cos A=23,则b=( )A.√2B.√3C.2D.35.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A.13 B.12C.23D.346.将函数y=2sin (2x +π6)的图象向右平移14个周期后,所得图象对应的函数为( ) A.y=2sin (2x +π4)B.y=2sin (2x +π3)C.y=2sin (2x -π4)D.y=2sin (2x -π3)7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π8.若a>b>0,0<c<1,则( ) A.log a c<log b cB.log c a<log c bC.a c <b cD.c a >c b9.函数y=2x 2-e |x|在[-2,2]的图象大致为( )10.执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足( )A.y=2xB.y=3xC.y=4xD.y=5x11.平面α过正方体ABCD-A 1B 1C 1D 1的顶点A,α∥平面CB 1D 1,α∩平面ABCD=m,α∩平面ABB 1A 1=n,则m,n 所成角的正弦值为( ) A.√32B.√22C.√33D.1312.若函数f(x)=x-13sin 2x+asin x 在(-∞,+∞)单调递增,则a 的取值范围是( ) A.[-1,1]B.[-1,13]C.[-13,13]D.[-1,-13]第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13.设向量a=(x,x+1),b=(1,2),且a⊥b,则x= .14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)= .15.设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2√3,则圆C的面积为.16.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=13,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(本小题满分12分)如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6.顶点P在平面ABC内的正投影为点D,D 在平面PAB内的正投影为点E,连结PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(本小题满分12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.;(Ⅰ)求|OH||ON|(Ⅱ)除H以外,直线MH与C是否有其他公共点?说明理由.21.(本小题满分12分)已知函数f(x)=(x-2)e x+a(x-1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,△OAB 是等腰三角形,∠AOB=120°.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与☉O 相切;(Ⅱ)点C,D 在☉O 上,且A,B,C,D 四点共圆,证明:AB ∥CD.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为{x =acost ,y =1+asint (t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (Ⅰ)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a.24.(本小题满分10分)选修4—5:不等式选讲 已知函数f(x)=|x+1|-|2x-3|. (Ⅰ)画出y=f(x)的图象; (Ⅱ)求不等式|f(x)|>1的解集.2016年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.B ∵A={1,3,5,7},B={x|2≤x≤5},∴A∩B={3,5},故选B.2.A ∵(1+2i)(a+i)=(a -2)+(2a+1)i, ∴a -2=2a+1,解得a=-3,故选A.3.C 从红、黄、白、紫4种颜色的花中任选2种有以下选法:(红黄)、(红白)、(红紫)、(黄白)、(黄紫)、(白紫),共6种,其中红色和紫色的花不在同一花坛(亦即黄色和白色的花不在同一花坛)的选法有4种,所以所求事件的概率P=46=23,故选C.4.D 由余弦定理得5=22+b 2-2×2bcos A,∵cos A=23,∴3b 2-8b-3=0,∴b=3(b =-13舍去).故选5.B 如图,|OB|为椭圆中心到l 的距离,则|OA|·|OF|=|AF|·|OB|,即bc=a·b2,所以e=c a =12.故选B.6.D 该函数的周期为π,将其图象向右平移π4个单位后,得到的图象对应的函数为y=2sin [2(x -π4)+π6]=2sin (2x -π3),故选D.7.A 由三视图知该几何体为球去掉了18所剩的几何体(如图),设球的半径为R,则78×43πR 3=28π3,故R=2,从而它的表面积S=78×4πR 2+34×πR 2=17π.故选A.8.B ∵0<c<1,∴当a>b>1时,log a c>log b c,A 项错误; ∵0<c<1,∴y=log c x 在(0,+∞)上单调递减,又a>b>0, ∴log c a<log c b,B 项正确;∵0<c<1,∴函数y=x c在(0,+∞)上单调递增, 又∵a>b>0,∴a c>b c,C 项错误;∵0<c<1,∴y=c x 在(0,+∞)上单调递减, 又∵a>b>0,∴c a<c b ,D 项错误.故选B.9.D 当x=2时,y=8-e 2∈(0,1),排除A,B;易知函数y=2x 2-e |x|为偶函数,当x∈[0,2]时,y=2x 2-e x ,求导得y'=4x-e x,当x=0时,y'<0,当x=2时,y'>0,所以存在x 0∈(0,2),使得y'=0,故选D.10.C 执行程序框图:当n=1时,x=0,y=1,此时02+12≥36不成立;当n=2时,x=12,y=2,此时(12)2+22≥36不成立;当n=3时,x=32,y=6,此时(32)2+62≥36成立,结束循环,输出x 的值为32,y 的值为6,满足y=4x,故选C.11.A 设正方体ABCD-A 1B 1C 1D 1的棱长为a.将正方体ABCD-A 1B 1C 1D 1补成棱长为2a 的正方体,如图所示.正六边形EFGPQR 所在的平面即为平面α.点A 为这个大正方体的中心,直线GR 为m,直线EP 为n.显然m 与n 所成的角为60°.所以m,n 所成角的正弦值为√32.故选A.12.C f '(x)=1-23cos 2x+acos x=1-23(2cos 2x-1)+acos x=-43cos 2x+acos x+53, f(x)在R 上单调递增,则f '(x)≥0在R 上恒成立,令cos x=t,t∈[-1,1],则-43t 2+at+53≥0在[-1,1]上恒成立,即4t 2-3at-5≤0在[-1,1]上恒成立,令g(t)=4t 2-3at-5,则{g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a≤13,故选C.二、填空题 13.答案 -23解析 因为a ⊥b,所以x+2(x+1)=0,解得x=-23.14.答案-43 解析 解法一:∵sin (θ+π4)=√22×(sin θ+cos θ)=35, ∴sin θ+cos θ=3√25①, ∴2sin θcos θ=-725. ∵θ是第四象限角,∴sin θ<0,cos θ>0,∴sin θ-cos θ=-√1-2sinθcosθ=-4√25②, 由①②得sin θ=-√210,cos θ=7√210,∴tan θ=-17, ∴tan (θ-π4)=tanθ-11+tanθ=-43.解法二:∵(θ+π4)+(π4-θ)=π2,∴sin (θ+π4)=cos (π4-θ)=35,又2kπ-π2<θ<2kπ,k∈Z,∴2kπ-π4<θ+π4<2kπ+π4,k ∈Z, ∴cos (θ+π4)=45,∴sin (π4-θ)=45, ∴tan (π4-θ)=sin(π4-θ)cos(π4-θ)=43, ∴tan (θ-π4)=-tan (π4-θ)=-43. 15.答案 4π解析 把圆C 的方程化为x 2+(y-a)2=2+a 2,则圆心为(0,a),半径r=√a 2+2.圆心到直线x-y+2a=0的距离d=√2.由r 2=d 2+(|AB |2)2,得a 2+2=a 22+3,解得a 2=2,则r 2=4,所以圆的面积S=πr 2=4π. 16.答案 216 000解析 设生产产品A x 件,生产产品B y 件,利润之和为z 元,则z=2 100x+900y.根据题意得{ 1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ,y ∈N ,即{ 3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ,y ∈N ,作出可行域(如图).由{10x +3y =900,5x +3y =600得{x =60,y =100. 当直线2 100x+900y-z=0过点A(60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000. 故所求的最大值为216 000元.三、解答题17.解析 (Ⅰ)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2,(3分) 所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n-1.(5分)(Ⅱ)由(Ⅰ)和a n b n+1+b n+1=nb n 得b n+1=bn 3,(7分) 因此{b n }是首项为1,公比为13的等比数列.(9分)记{b n }的前n 项和为S n ,则S n =1-(13)n1-13=32-12×3n -1.(12分)18.解析 (Ⅰ)证明:因为P 在平面ABC 内的正投影为D,所以AB ⊥PD.因为D 在平面PAB 内的正投影为E,所以AB ⊥DE.(2分)又PD∩DE=D,所以AB ⊥平面PED,故AB ⊥PG.又由已知可得,PA=PB,从而G 是AB 的中点.(4分)(Ⅱ)在平面PAB 内,过点E 作PB 的平行线交PA 于点F,F 即为E 在平面PAC 内的正投影.(5分)理由如下:由已知可得PB ⊥PA,PB ⊥PC,又EF ∥PB,所以EF ⊥PA,EF ⊥PC,又PA∩PC=P,因此EF ⊥平面PAC,即点F 为E 在平面PAC 内的正投影.(7分)连结CG,因为P 在平面ABC 内的正投影为D,所以D 是正三角形ABC 的中心,由(Ⅰ)知,G 是AB的中点,所以D 在CG 上,故CD=23CG.(9分)由题设可得PC ⊥平面PAB,DE ⊥平面PAB,所以DE ∥PC,因此PE=23PG,DE=13PC. 由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PE=2√2.在等腰直角三角形EFP 中,可得EF=PF=2,(11分)所以四面体PDEF 的体积V=13×12×2×2×2=43.(12分)19.解析 (Ⅰ)当x≤19时,y=3 800;当x>19时,y=3 800+500(x-19)=500x-5 700,所以y 与x 的函数解析式为y={3 800, x ≤19,500x -5 700,x >19(x ∈N).(4分) (Ⅱ)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n 的最小值为19.(5分)(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800元,20台的费用为4 300元,10台的费用为4 800元,因此这100台机器在购买易损零件上所需费用的平均数为1100(3 800×70+4 300×20+4 800×10)=4 000(元).(7分)若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000元,10台的费用为4 500元,因此这100台机器在购买易损零件上所需费用的平均数为1100(4 000×90+4 500×10)=4 050(元).(10分)比较两个平均数可知,购买1台机器的同时应购买19个易损零件.(12分)20.解析 (Ⅰ)由已知得M(0,t),P (t 22p ,t).(1分)又N 为M 关于点P 的对称点,故N (t 2p ,t),ON 的方程为y=p t x,代入y 2=2px 整理得px 2-2t 2x=0,解得x1=0,x2=2t 2p.因此H(2t 2p,2t).(4分)所以N为OH的中点,即|OH||ON|=2.(6分)(Ⅱ)直线MH与C除H以外没有其他公共点.(7分) 理由如下:直线MH的方程为y-t=p2t x,即x=2tp(y-t).(9分)代入y2=2px得y2-4ty+4t2=0,解得y1=y2=2t,即直线MH与C只有一个公共点,所以除H以外直线MH与C没有其他公共点.(12分)21.解析(Ⅰ)f '(x)=(x-1)e x+2a(x-1)=(x-1)(e x+2a).(i)设a≥0,则当x∈(-∞,1)时, f '(x)<0;当x∈(1,+∞)时, f '(x)>0.所以f(x)在(-∞,1)单调递减,在(1,+∞)单调递增.(2分)(ii)设a<0,由f '(x)=0得x=1或x=ln(-2a).①若a=-e2,则f '(x)=(x-1)(e x-e),所以f(x)在(-∞,+∞)单调递增.②若a>-e2,则ln(-2a)<1,故当x∈(-∞,ln(-2a))∪(1,+∞)时, f '(x)>0;当x∈(ln(-2a),1)时, f '(x)<0.所以f(x)在(-∞,ln(-2a)),(1,+∞)单调递增,在(ln(-2a),1)单调递减.(4分)③若a<-e2,则ln(-2a)>1,故当x∈(-∞,1)∪(ln(-2a),+∞)时, f '(x)>0;当x∈(1,ln(-2a))时, f '(x)<0.所以f(x)在(-∞,1),(ln(-2a),+∞)单调递增,在(1,ln(-2a))单调递减.(6分)(Ⅱ)(i)设a>0,则由(Ⅰ)知, f(x)在(-∞,1)单调递减,在(1,+∞)单调递增.又f(1)=-e, f(2)=a,取b满足b<0且b<ln a2,则f(b)>a2(b-2)+a(b-1)2=a(b2-32b)>0,所以f(x)有两个零点.(8分)(ii)设a=0,则f(x)=(x-2)e x,所以f(x)只有一个零点.(9分)(iii)设a<0,若a≥-e 2,则由(Ⅰ)知, f(x)在(1,+∞)单调递增,又当x≤1时f(x)<0,故f(x)不存在两个零点;(10分)若a<-e 2,则由(Ⅰ)知, f(x)在(1,ln(-2a))单调递减,在(ln(-2a),+∞)单调递增,又当x≤1时f(x)<0,故f(x)不存在两个零点.(11分)综上,a 的取值范围为(0,+∞).(12分)22.证明 (Ⅰ)设E 是AB 的中点,连结OE.因为OA=OB,∠AOB=120°,所以OE ⊥AB,∠AOE=60°.(2分)在Rt △AOE 中,OE=12AO,即O 到直线AB 的距离等于☉O 半径,所以直线AB 与☉O 相切.(5分)(Ⅱ)因为OA=2OD,所以O 不是A,B,C,D 四点所在圆的圆心.设O'是A,B,C,D 四点所在圆的圆心,作直线OO'.(7分)由已知得O 在线段AB 的垂直平分线上,又O'在线段AB 的垂直平分线上,所以OO'⊥AB. 同理可证,OO'⊥CD.所以AB ∥CD.(10分)23.解析 (Ⅰ)消去参数t 得到C 1的普通方程:x 2+(y-1)2=a 2.C 1是以(0,1)为圆心,a 为半径的圆.(2分)将x=ρcos θ,y=ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(4分)(Ⅱ)曲线C 1,C 2的公共点的极坐标满足方程组{ρ2-2ρsinθ+1-a 2=0,ρ=4cosθ.(6分) 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,(8分)由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a=-1(舍去)或a=1.a=1时,极点也为C 1,C 2的公共点,在C 3上.所以a=1.(10分)24.解析(Ⅰ)f(x)={x-4,x≤-1,3x-2,-1<x≤32,-x+4,x>32,(4分)y=f(x)的图象如图所示.(6分)(Ⅱ)由f(x)的表达式及图象知,当f(x)=1时,可得x=1或x=3;当f(x)=-1时,可得x=13或x=5,(8分)故f(x)>1的解集为{x|1<x<3}; f(x)<-1的解集为{x|x<13或x>5}.(9分)所以|f(x)|>1的解集为{x|x<13或1<x<3或x>5}.(10分)。

2016高考文科数学(四川卷)

2016高考文科数学(四川卷)

2016高考文科数学(四川卷)一、选择题1.设i 为虚数单位,则复数(1+i )2=(A )0 (B )2 (C )2i (D )2+2i2.设集合A={x|1≤x≤5},Z 为整数集,则集合A∩Z 中元素的个数是(A )6 (B )5 (C )4 (D )33.抛物线y 2=4x 的焦点坐标是(A )(0,2) (B )(0,1) (C )(2,0) (D )(1,0)4.为了得到函数y=sin 3x π(+)的图象,只需把函数y=sinx 的图象上所有的点 (A )向左平行移动3π个单位长度 (B )向右平行移动3π个单位长度 (C )向上平行移动3π个单位长度 (D )向下平行移动3π个单位长度 5.设p:实数x ,y 满足x >1且y >1,q: 实数x ,y 满足x+y >2,则p 是q 的(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件6.已知a 为函数f (x )=x 3–12x 的极小值点,则a=(A )–4 (B )–2 (C )4 (D )27.某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30)(A )2018年 (B )2019年 (C )2020年 (D )2021年8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为(A)35 (B)20 (C)18 (D)99.已知正三角形ABCABC内的动点P,M满足|1|AP=,PMMC=,则2||BM的最大值是(A(B(C(D10.设直线l1,l2分别是函数f(x)=ln01,ln,1x xx x-<<⎧⎨>⎩,图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是(A)(0,1)(B)(0,2)(C)(0,+∞)(D)(1,+ ∞)二、填空题11.sin750︒= .12.已知某三棱锥的三视图如图所示,则该三棱锥的体积是 .13.从2,3,8,9中任取两个不同的数字,分别记为a,b,则log a b为整数的概率是 .14.若函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=4x,则f(52-)+f(2)= .15.在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P'(22yx y+,22xx y-+);当P 是原点时,定义P的“伴随点”为它自身.现有下列命题:①若点A的“伴随点”是点A',则点A'的“伴随点”是A.②单位圆上的点的“伴随点”仍在单位圆上;③若两点关于x轴对称,则它们的“伴随点”关于y轴对称;④若三点在同一条直线上,则它们的“伴随点”一定共线.其中的真命题是(写出所有真命题的序号).三、解答题(解答应写出文字说明,证明过程或演算步骤.)16.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5), [0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a 的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.17.如图,在四棱锥P-ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC=∠PAB=90°,BC=CD=12AD. (Ⅰ)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由;(Ⅱ)证明:平面PAB ⊥平面PBD.18.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c(Ⅰ)证明:sinAsinB=sinC ;(ⅡtanB. 19.已知数列{a n }的首项为1, S n 为数列{a n }的前n 项和,S n+1=qS n +1,其中q ﹥0,n ∈N *.(Ⅰ)若a 2,a 3,a 2+ a 3成等差数列,求数列{a n }的通项公式;(Ⅱ)设双曲线2221n y x a -=的离心率为n e ,且22e =,求22212n e e e ++⋅⋅⋅+. 20.已知椭圆E :22221x y a b +=(a ﹥b ﹥0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点1)2P 在椭圆E 上.(Ⅰ)求椭圆E 的方程;(Ⅱ)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA|·|MB|=|MC|·|MD|.21.设函数f (x )=ax 2–a –lnx ,g (x )=1e ex x -,其中a ∈R ,e=2.718…为自然对数的底数. (Ⅰ)讨论f (x )的单调性;(Ⅱ)证明:当x >1时,g (x )>0;(Ⅲ)确定a 的所有可能取值,使得f (x )>g (x )在区间(1,+∞)内恒成立.2016高考文科数学(四川卷)参考答案1—5 CBDAA 6—10 DBCBA11.12 12.3 13.1614.2- 15.②③ 16.(Ⅰ)由频率分布直方图,可知:月均用水量在[0,0.5)的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a ,解得a=0.30.(Ⅱ)由(Ⅰ),100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000. (Ⅲ)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5所以2≤x<2.5.由0.50×(x –2)=0.5–0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.17.(Ⅰ)取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点.理由如下:因为AD ∥BC,BC=12AD ,所以BC ∥AM, 且BC=AM. 所以四边形AMCB 是平行四边形,从而CM ∥AB.又AB ⊂平面PAB,CM ⊄平面PAB,所以CM ∥平面PAB.(说明:取棱PD 的中点N,则所找的点可以是直线MN 上任意一点)(Ⅱ)由已知,PA ⊥AB, PA ⊥CD,因为AD ∥BC,BC=12AD ,所以直线AB 与CD 相交, 所以PA ⊥平面ABCD.从而PA ⊥BD.因为AD ∥BC,BC=12AD , 所以BC ∥MD,且BC=MD.所以四边形BCDM 是平行四边形.所以BM=CD=12AD ,所以BD ⊥AB. 又AB∩AP=A,所以BD ⊥平面PAB.又BD ⊂平面PBD,所以平面PAB ⊥平面PBD.18.(Ⅰ)根据正弦定理,可设(0)sin sin sin a b c k k A B C===>, 则a=ksin A ,b=ksin B ,c=ksinC. 代入cos cos sin A B C a b c+=中,有 cos cos sin sin sin sin A B C k A k B k A+=,变形可得 sin A sin B=sin Acos B+cosAsinB=sin (A+B ).在△ABC 中,由A+B+C=π,有sin (A+B )=sin (π–C )=sin C ,所以sin A sin B=sin C.(Ⅱ)由已知,b 2+c 2–a 2=65bc ,根据余弦定理,有 2223cos 25b c a A bc +-==.所以45=. 由(Ⅰ),sin Asin B=sin Acos B +cos Asin B ,所以45sin B=45cos B+35sin B , 故tan B=sin cos B B=4. 19.(Ⅰ)由已知,1211,1,n n n n S qS S qS +++=+=+ 两式相减得到21,1n n a qa n ≥++=. 又由211S qS =+得到21a qa =,故1n n a qa +=对所有1n ≥都成立.所以,数列{}n a 是首项为1,公比为q 的等比数列.从而1=n n a q -.由2323+a a a a ,,成等差数列,可得32232=a a a a ++,所以32=2,a a ,故=2q .所以1*2()n n a n -=?N .(Ⅱ)由(Ⅰ)可知,1n n a q -=. 所以双曲线2221n y x a -=的离心率n e =由22e =解得q =.所以,22222(1)12222(1)2(11)(1+)[1]1[1]11(31).2n n n n n e e e q q q n q qn q n --++鬃?=+++鬃?+-=+++鬃?=+-=+-,20.(Ⅰ)由已知,a=2b. 又椭圆22221(0)x y a b a b +=>>过点1)2P ,故2213414b b +=,解得21b =. 所以椭圆E 的方程是2214x y +=. (Ⅱ)设直线l 的方程为1(0)2y x m m =+≠,1122(,),(,)A x y B x y ,由方程组221,41,2x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩ 得222220x mx m ++-=,①方程①的判别式为24(2)Δm =-,由Δ>0,即220m ->,解得m <<由①得212122,22x x m x x m +=-=-. 所以M 点坐标为(,)2m m -,直线OM 方程为12y x =-, 由方程组221,41,2x y y x ⎧+=⎪⎪⎨⎪=-⎪⎩得(22C D -.所以25)(2)4MC MD m m m ⋅=-+=-. 又222212*********[()()][()4]4416MA MB AB x x y y x x x x ⋅==-+-=+- 22255[44(22)](2)164m m m =--=-. 所以=MA MB MC MD ⋅⋅.21.(Ⅰ)2121()20).ax f x ax x x x-'=-=>( 0a 当≤时, ()f x '<0,()f x 在0+∞(,)内单调递减. 0a >当时,由()f x '=0有x = 当x∈(时,()f x '<0,()f x 单调递减; 当x∈+)∞时,()f x '>0,()f x 单调递增. (Ⅱ)令()s x =1e x x --,则()s x '=1e 1x --.当1x >时,()s x '>0,所以1e x x ->,从而()g x =111ex x -->0. (Ⅲ)由(Ⅱ),当1x >时,()g x >0.当0a ≤,1x >时,()f x =2(1)ln 0a x x --<. 故当()f x >()g x 在区间1+)∞(,内恒成立时,必有0a >. 当102a <<>1. 由(Ⅰ)有(1)0f f <=,而0g >, 所以此时()f x >()g x 在区间1+)∞(,内不恒成立. 当12a ≥时,令()h x =()f x -()g x (1x ≥). 当1x >时,()h x '=122111112e x ax x x x x x x--+->-+-=322221210x x x x x x -+-+>>. 因此,()h x 在区间1+)∞(,单调递增.又因为(1)h =0,所以当1x >时,()h x =()f x -()g x >0,即()f x >()g x 恒成立. 综上,a ∈1+)2∞[,.。

2016年高考文科数学全国卷2(含详细答案)

2016年高考文科数学全国卷2(含详细答案)

数学试卷 第1页(共33页) 数学试卷 第2页(共33页) 数学试卷 第3页(共33页)绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷2)文科数学使用地区:海南、宁夏、黑龙江、吉林、辽宁、新疆、内蒙古、青海、甘肃、重庆、陕西、西藏本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分,共6页.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4. 作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合{}123A =,,,{}2|9B x x =<,则A B =( ) A. {2,1,0,1,2,3}--B. {2,1,0,1,2}--C. {1,2,3}D. {1,2}2. 设复数z 满足3z i i +=-,则=z ( )A. 12i -+B. 12i -C. 32i +D. 32i -3. 函数()sin y A x ωϕ=+的部分图像如图所示,则A. 2sin(2)6y x π=-B. 2sin(2)3y x π=-C. 2sin()6y x π=+D. 2sin()3y x π=+4. 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )A. 12πB. 323πC. 8πD. 4π5. 设F 为抛物线C :24y x =的焦点,曲线0ky k x =>()与C 交于点P ,PF x ⊥轴,则=k( )A.12 B. 1 C. 32D. 26. 圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则=a( )A. 43-B. 34-C.D. 27. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积( )A. 20πB. 24πC. 28πD. 32π8. 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 ( )A. 710B. 58C. 38D. 3109. 中国古代有计算多项式值得秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的s = ( )A. 7B. 12C. 17D. 3410. 下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是 ( )A. y x =B. lg y x =C. 2x y =D. 1y x=11. 函数() = cos26cos()2f x x x π+-的最大值为( )A. 4B. 5C. 6D. 712. 已知函数()()f x x ∈R 满足()(2)f x f x =-,若函数223y x x =--与()y f x =图象的交点为11x y (,),22x y (,),…,m m x y (,),则1mi i x =∑=A. 0B. mC. 2mD. 4m姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共6页) 数学试卷 第5页(共6页) 数学试卷 第6页(共6页)第Ⅱ卷本卷包括必考题和选考题两部分.第13~12题为必考题,每个试题考生都必须作答.第22~24为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分. 13. 已知向量a ()4m =,,b ()32=-,,且a ∥b ,则m =________.14. 若x ,y 满足约束条件10,30,30,x y x y x -++--⎧⎪⎨⎪⎩≥≥≤则2z x y =-的最小值为________.15. ABC ∆的内角A B C ,,的对边分别为a b c ,,,若4cos 5A =,5cos 13C =,1a =,则b =________.16. 有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)等差数列{}n a 中,344a a +=,576a a +=.(Ⅰ)求{}n a 的通项公式;(Ⅱ)设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]0=,[2.6]2=.18. (本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(Ⅰ)记A 为事件:“一续保人本年度的保费不高于基本保费”。

2016年高考真题文科数学(全国Ⅰ卷)含答案

2016年高考真题文科数学(全国Ⅰ卷)含答案

2016年普通高等学校招生全国统一考试文科数学 第Ⅰ卷一、选择题:本大题共12小题,每小题5分.(1)设集合,,则(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7}(2)设的实部与虚部相等,其中a 为实数,则a =( )(A )-3 (B )-2 (C )2 (D )3 (3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) (A )31 (B )21 (C ) 32 (D )65 (4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知,,32cos =A ,则b=( )(A )(B )(C )2 (D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到的l 距离为其短轴长的41,则该椭圆的离心率为( )(A )31 (B )21 (C )32 (D )43(6)若将函数y =2sin (2x +6π)的图像向右平移41个周期后,所得图像对应的函数为( )(A )y =2sin(2x +4π) (B )y =2sin(2x +3π) (C )y =2sin(2x –4π) (D )y =2sin(2x –3π) )(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π(8)若a>b>0,0<c<1,则( )(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b (9)函数y =2x 2–e |x |在[–2,2]的图像大致为( )(A ) (B ) (C ) (D ) (10)执行右面的程序框图,如果输入的1,0==y x n =1,则输出y x ,的值满足( )(A )(B )(C )(D )(11)平面过正方体ABCD —A 1B 1C 1D 1的顶点A ,,,,则m ,n 所成角的正弦值为(A )(B ) (C ) (D )(12)若函数在单调递增,则a 的取值范围是 (A )(B ) (C ) (D )第II 卷二、填空题:本大题共4小题,每小题5分 (13)设向量a =(x ,x +1),b =(1,2),且a b ,则x =(14)已知θ是第四象限角,且sin(θ+4π)=53,则tan(θ–4π)=.(15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B两点,若32AB =,则圆C 的面积为 (16)某企业生产产品A 和产品B 需要甲、乙两种新型材料。

2016年全国普通高等学校统一招生考试文科数学及解答

2016年全国普通高等学校统一招生考试文科数学及解答

2016年全国普通高等学校统一招生考试文科数学及解答D(2)若43i z =+,则||z z = (A )1 (B )1- (C )43+i 55(D )43i 55-【答案】D 【解析】试题分析:因i z 34+=,则其共轭复数为i z 34-=,其模为534|34|||22=+=+=i z ,故i z z5354||-=,应选答案D 。

(3)已知向量BA →=(123,BC →=312),则∠ABC =(A )30° (B )45° (C )60° (D )120° 【答案】A 【解析】:试题分析:因为1331(,),(,)22BA BC ==,故333442BA BC ⋅=+=,又因为||||cos 11cos cos BA BC BA BC ABC ABC ABC⋅=⋅∠=⨯⨯∠=∠所以3cos 2ABC ∠=,所以6ABC π∠=,应选答案A (4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是(A)各月的平均最低气温都在0℃以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均最高气温高于20℃的月份有5个【答案】D【解析】试题分析:从题设中提供的信息及图中标注的数据可以看出:深色的图案是一年十二个月中各月份的平均最低气温,稍微浅一点颜色的图案是一年十二个月中中各月份的平均最高气温,故结合所提供的四个选项,可以确定D是不正确的,因为从图中可以看出:平均最高气温高于20C0只有7、8两个月份,故应选答案D 。

(5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(A )815 (B )18 (C )115(D )130【答案】C 【解析】试题分析:前2位共有3515⨯=种可能,其中只有1种是正确的密码,因此所求概率为115P =.故选C . (6)若tanθ=13,则cos2θ= (A )45-(B )15-(C )15(D )45【答案】D 【解析】 试题分析:22222222cos sin 1tan cos 2cos sin cos sin 1tan θθθθθθθθθ--=-==++2211()43151()3--==+-.故选D .(7)已知4213332,3,25a b c ===,则(A)b<a<c (B) a < b <c (C) b <c<a (D) c<a< b 【答案】A 【解析】 试题分析:423324a ==,1233255c ==,又函数23y x =在[0,)+∞上是增函数,所以b a c <<.故选A .(8)执行右面的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6 【答案】B(9)在ABC中 ,B=1,,sin 43BC BC A π=边上的高等于则(A)310105310【答案】D 【解析】试题分析:由题意得,1112=sin 2323ABCS a a ac B c a ∆⋅=⇒=, ∴232sin sin()4C A A A π=⇒-=222A A A +=,∴310tan 3sin A A =-⇒=,故选D.(10)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)18365+(B)54185+(C)90(D)81【答案】B【解析】试题分析:由题意得,该几何体为一四棱柱,∴表面积为(3336335)2545⋅+⋅+⋅⋅=+ B.(11)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是(A)4π(B)9π2(C)6π(D)32π3【答案】B(12)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )13(B )12(C )23(D )34【答案】A 【解析】 试题分析:由题意得,(,0)A a -,(,0)B a ,根据对称性,不妨2(,)b Pc a-,设:l x my a =-,∴(,)a c M c m --,(0,)aE m,∴直线BM :()()a c y x a m a c -=--+,又∵直线BM 经过OE 中点,∴()1()23a c a a c e ac m m a -=⇒==+,故选A. 第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设x ,y 满足约束条件210,210,1,x y x y x -+≥⎧⎪--≤⎨⎪≤⎩则z =2x +3y –5的最小值为______.【答案】-10 【解析】试题分析:可行域为一个三角形ABC 及其内部,其中(1,0),(-1,-1),(1,3)A B C ,直线z 235x y =+-过点B 时取最小值-10(14)函数y =sin x –3cos x 的图像可由函数y =2sin x 的图像至少向右平移______个单位长度得到. 【答案】3π 【解析】试题分析:2sin()3y x π=-,所以至少向右平移3π(15)已知直线l :360x -+=与圆x2+y2=12交于A 、B 两点,过A 、B 分别作l 的垂线与x 轴交于C 、D 两点,则|CD|= . 【答案】3 【解析】试题分析:由题意得:26212()232AB =-=因此23cos3.6CD π==(16)已知f (x )为偶函数,当0x ≤ 时,1()x f x e x--=-,则曲线y = f (x )在点(1,2)处的切线方程式_____________________________. 【答案】y 2x.= 【解析】 试题分析:110,(),()1,x x x f x e x f x e --'>=+=+时(1)2,y 22(x 1)y 2x.f '=-=-⇒=三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分) 已知各项都为正数的数列{}na 满足11a=,211(21)20n n n n a a a a ++---=.(I )求23,a a ;(II )求{}na 的通项公式.【答案】(1)11,24;(2)112nn a -=.【解析】试题分析:(I )因为11a =,211(21)20n n n n aa a a ++---=,所以21212(21)20aa a a ---=,解得212a=同理可得 22323(21)20aa a a ---=,解得314a=(II )由已知得211220n n n n n aa a a a ++-+-=,即1(2)(1)0n n n aa a +-+=因为{}na 各项都为正数,所以12n na a +=,即112n na a+=,故数列{}na 是首项为11a=,公比为12q =的等比数列,其通项公式为112nn a-=(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1–7分别对应年份2008–2014. (Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:719.32ii y ==∑,7140.17i ii t y ==∑721()0.55ii y y =-=∑,7≈2.646. 参考公式:12211()()()(yy)n iii nni ii i t t y y r t t ===--=--∑∑∑回归方程y a bt =+ 中斜率和截距的最小二乘估计公式分别为:121()()()niii ni i t t y y b t t ==--=-∑∑,=.a y bt -【答案】(1)可用线性回归模型拟合变量y 与t 的关系.(2)我们可以预测2016年我国生活垃圾无害化处理1.83 亿吨. 【解析】试题分析:(1)变量y 与t 的相关系数77771111777722221111()()7()()7()()iii i i ii i i i iii ii i i i t t y y t y t y r t t y y t t y y ========---⋅==-⋅-⨯-⋅-∑∑∑∑∑∑∑∑,又7128ii t==∑,719.32ii y ==∑,7140.17i ii t y ==∑721()27 5.292ii t t =-==∑,721()0.55ii y y =-=∑,所以740.17289.320.997 5.2920.55r ⨯-⨯=≈⨯⨯ , 故可用线性回归模型拟合变量y 与t 的关系. (2)4t =,y =7117ii y =∑,所以7172211740.17749.327ˆ0.10287i ii ii t y t ybtt ==-⋅-⨯⨯⨯===-∑∑,1ˆˆ9.320.1040.937ay bx =-=⨯-⨯≈,(19)(本小题满分12分)如图,四棱锥P-ABCD 中,PA ⊥地面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点. (I )证明MN ∥平面PAB; (II )求四面体N-BCM 的体积.【答案】(I )见解析;(II )53。

2016年高考全国2卷文科数学试题(含解析)

2016年高考全国2卷文科数学试题(含解析)

第1页 共8页 ◎ 第2页 共8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○……………………○…………内…………○…………装…………绝密★启用前2016年高考全国2卷文科数学试题(含解析)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明评卷人得分一、选择题(题型注释)1.已知集合{123},A =,,2{|9}B x x =<,则A B =(A ){210123}--,,,,, (B ){21012}--,,,, (C ){1,2,3} (D ){12}, 2.设复数z 满足i 3i z +=-,则z =(A )12i -+ (B )12i - (C )32i + (D )32i - 3.函数=sin()y A x ωϕ+ 的部分图像如图所示,则(A )2sin(2)6y x π=- (B )2sin(2)3y x π=- (C )2sin(+)6y x π= (D )2sin(+)3y x π= 4.体积为8的正方体的顶点都在同一球面上,则该球的表面积为(A )12π (B )323π(C )8π (D )4π5.设F 为抛物线C :y 2=4x 的焦点,曲线y=kx (k>0)与C 交于点P ,PF⊥x 轴,则k= (A )12 (B )1 (C )32 (D )26.圆x 2+y 2−2x −8y+13=0的圆心到直线ax+y −1=0的距离为1,则a=(A )−43 (B )−34 (C )3 (D )27.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π8.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯 ,则至少需要等待15秒才出现绿灯的概率为(A )710 (B )58 (C )38 (D )3109.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的2,2,x n == 依次输入的a 为2,2,5,则输出的s=第3页 共8页 ◎ 第4页 共8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………订…………○…………线…………○…………(A )7 (B )12 (C )17 (D )3410.下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是(A )y=x (B )y=lgx (C )y=2x(D )y x =11.函数π()cos 26cos()2f x x x =+-的最大值为(A )4 (B )5 (C )6 (D )712.已知函数f (x )(x∈R )满足f (x )=f (2−x ),若函数 y=|x 2−2x −3|与y=f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mii x =∑(A )0 (B )m (C ) 2m (D ) 4m第5页 共8页 ◎ 第6页 共8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○……………………○…………内…………○…………装…………第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题(题型注释)13.已知向量a=(m,4),b=(3,−2),且a ∥b ,则m=___________.14.若x ,y 满足约束条件10,30,30,x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩则z=x −2y 的最小值为__________.15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a=1,则b=____________.16.有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________. 评卷人得分三、解答题(题型注释)17.等差数列{na }中,34574,6a a a a +=+=.(Ⅰ)求{na }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.18.某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数 0 1 2 3 4 ≥5 保费0.85aa1.25a1.5a1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数 0 1 2 3 4 ≥5 频数605030302010(Ⅰ)记A 为事件:“一续保人本年度的保费不高于基本保费”.求P (A )的估计值;(Ⅱ)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P (B )的估计值;(Ⅲ)求续保人本年度的平均保费估计值. 19.如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE=CF ,EF 交BD 于点H ,将DEF △沿EF 折到D'EF △的位置.(Ⅰ)证明:AC HD'⊥;(Ⅱ)若55,6,,224AB AC AE OD'====求五棱锥D'ABCFE -的体积.20.已知函数()(1)ln (1)f x x x a x =+--.(Ⅰ)当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程;(Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围.21.已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 于A ,M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当AM AN=时,求AMN △的面积(Ⅱ) 当2AM AN=32k <<.22.选修4-1:几何证明选讲如图,在正方形ABCD 中,E ,G 分别在边DA ,DC 上(不与端点重合),且DE=DG ,过D 点作DF ⊥CE ,垂足为F.第7页 共8页 ◎ 第8页 共8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………订…………○…………线…………○…………(Ⅰ)证明:B ,C ,G ,F 四点共圆;(Ⅱ)若AB=1,E 为DA 的中点,求四边形BCGF 的面积. 23.选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为22(+6)+=25x y . (Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin x t α,y t α,=⎧⎨=⎩(t 为参数),l 与C 交于A ,B 两点,10AB =求l 的斜率.24.选修4-5:不等式选讲已知函数11()22f x xx,M 为不等式()2f x 的解集.(Ⅰ)求M ;(Ⅱ)证明:当a ,b M 时,1ab ab.参考答案1.D 【解析】试题分析:由29x <得33x -<<,所以{|33}B x x =-<<,因为{1,2,3}A =,所以{1,2}A B =,故选D.【考点】 一元二次不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 2.C 【解析】试题分析:由i 3i z +=-得32i z =-,所以32i z =+,故选C. 【考点】 复数的运算,共轭复数【名师点睛】复数i(,)a b a b +∈R 的共轭复数是i(,)a b a b -∈R ,据此先化简再计算即可. 3.A 【解析】试题分析:由题图知,2A =,最小正周期ππ2[()]π36T =--=,所以2π2πω==,所以2sin(2)y x ϕ=+.因为图象过点π(,2)3,所以π22sin(2)3ϕ=⨯+,所以2πsin()13ϕ+=,所以2ππ2π()32k k ϕ+=+∈Z ,令0k =,得π6ϕ=-,所以π2sin(2)6y x =-,故选A. 【考点】 三角函数的图像与性质【名师点睛】根据图像求解析式问题的一般方法是:先根据函数=sin()y A x h ωϕ++图像的最高点、最低点确定A ,h 的值,由函数的周期确定ω的值,再根据函数图像上的一个特殊点确定φ值. 4.A 【解析】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为,所以该球的表面积为24π12π⋅=,故选A. 【考点】 正方体的性质,球的表面积【名师点睛】与棱长为a 的正方体相关的球有三个: 外接球、内切球和与各条棱都相切的球,其半径分别为2、2a和2. 5.D【解析】试题分析:因为F 是抛物线24y x =的焦点,所以(1,0)F , 又因为曲线(0)k y k x =>与C 交于点P ,PF x ⊥轴,所以21k=,所以2k =,选D.【考点】 抛物线的性质,反比例函数的性质【名师点睛】抛物线方程有四种形式,注意焦点的位置. 对于函数y=kx(0)k ≠,当0k >时,在(,0)-∞,(0,)+∞上是减函数,当0k <时,在(,0)-∞,(0,)+∞上是增函数. 6.A 【解析】试题分析:由2228130x y x y +--+=配方得22(1)(4)4x y -+-=,所以圆心为(1,4),因为圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,所以1=,解得43a =-,故选A.【考点】 圆的方程,点到直线的距离公式【名师点睛】直线与圆的位置关系有三种情况:相交、相切和相离. 已知直线与圆的位置关系时,常用几何法将位置关系转化为圆心到直线的距离d 与半径r 的大小关系,以此来确定参数的值或取值范围. 7.C 【解析】试题分析:由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为212π248π2S =⋅⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.【考点】 三视图,空间几何体的体积 【名师点睛】以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解. 8.B 【解析】试题分析:因为红灯持续时间为40秒,所以这名行人至少需要等待15秒才出现绿灯的概率为40155408-=,故选B. 【考点】几何概型【名师点睛】对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法. 9.C 【解析】试题分析:由题意,2,2,0,0x n k s ====,输入2a =,则0222,1s k =⋅+==,循环;输入2a =,则2226,2s k =⋅+==,循环;输入5a =,62517,32s k =⋅+==>,结束循环.故输出的17s =,选C.【考点】 程序框图,直到型循环结构【名师点睛】识别算法框图和完善算法框图是高考的重点和热点.解决这类问题:首先,要明确算法框图中的顺序结构、条件结构和循环结构;第二,要识别运行算法框图,理解框图解决的实际问题;第三,按照题目的要求完成解答.对框图的考查常与函数和数列等相结合,进一步强化框图问题的实际背景. 10.D 【解析】试题分析:lg 10xy x ==,定义域与值域均为()0,+∞,只有D 满足,故选D . 【考点】 函数的定义域、值域,对数的计算【名师点睛】对于基本初等函数的定义域、值域问题,应熟记图象,运用数形结合思想求解. 11.B 【解析】试题分析:因为22311()12sin 6sin 2(sin )22f x x x x =-+=--+,而sin [1,1]x ∈-,所以当sin 1x =时,()f x 取得最大值5,选B.【考点】 正弦函数的性质、二次函数的性质 【名师点睛】求解本题易出现的错误是认为当3sin 2x =时,函数23112(sin )22y x =--+取得最大值.12.B 【解析】试题分析:因为2(),|23|y f x y x x ==--的图像都关于1x =对称,所以它们图像的交点也关于1x =对称,当m 为偶数时,其和为22m m ⨯=;当m 为奇数时,其和为1212m m-⨯+=,因此选B.【考点】 函数图像的对称性【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 13.6- 【解析】试题分析:因为a ∥b ,所以2430m --⨯=,解得6m =-.【考点】平面向量的坐标运算 ,平行向量 【名师点睛】如果a =(x 1,y 1),b =(x 2,y 2)(b≠0),则a∥b 的充要条件是x 1y 2-x 2y 1=0. 14.5- 【解析】试题分析:由1030x y x y -+=⎧⎨+-=⎩得12x y =⎧⎨=⎩,记为点()1,2Α;由1030x y x -+=⎧⎨-=⎩得34x y =⎧⎨=⎩,记为点()3,4Β;由3030x x y -=⎧⎨+-=⎩得30x y =⎧⎨=⎩,记为点()3,0C .分别将A ,B ,C 的坐标代入2z x y =-,得1223Αz =-⨯=-,3245Βz =-⨯=-,3203C z =-⨯=,所以2z x y=-的最小值为5-.【考点】 简单的线性规划【名师点睛】利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.15.2113【解析】试题分析:因为45cos ,cos 513A C ==,且,A C 为三角形的内角,所以312sin ,sin 513A C ==,63sin sin[π()]sin()sin cos cos sin 65B AC A C A C A C =-+=+=+=,又因为sin sin a b A B =,所以sin 21sin 13a B b A ==.【考点】 正弦定理,两角和、差的三角函数公式【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. 16.1和3 【解析】试题分析:由题意分析可知甲的卡片上的数字为1和3,乙的卡片上的数字为2和3,丙的卡片上的数字为1和2. 【考点】 推理【名师点睛】演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程.17.(Ⅰ)235n n a +=;(Ⅱ)24.【解析】试题分析:(Ⅰ) 根据等差数列的通项公式及已知条件求1a ,d ,从而求得n a;(Ⅱ)由(Ⅰ)求nb ,再求数列{}n b 的前10项和.试题解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有112+54,+53a d a d ==.解得121,5a d ==.所以{}n a 的通项公式为235n n a +=.(Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦. 当n=1,2,3时,2312,15n n b +≤<=;当n=4,5时,2323,25n n b +≤<=; 当n=6,7,8时,2334,35n n b +≤<=;当n=9,10时,2345,45n n b +≤<=.所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=.【考点】等差数列的通项公式,数列的求和 【名师点睛】求解本题时常出现以下错误:对“[]x 表示不超过x 的最大整数”理解出错.18.(Ⅰ)由6050200+求P (A )的估计值;(Ⅱ)由3030200+求P (B )的估计值;(III )根据平均值的计算公式求解. 【解析】 试题分析: 试题解析:(Ⅰ)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内险次数小于2的频率为60500.55200+=,故P (A )的估计值为0.55.(Ⅱ)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30300.3200+=,故P (B )的估计值为0.3.调查的200名续保人的平均保费为0.850.300.25 1.250.15 1.50.15 1.750.1020.05 1.192 5a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯=,因此,续保人本年度平均保费的估计值为1.192 5a.【考点】 样本数据的频率、由频率估计概率、平均值的计算 【名师点睛】样本的数字特征常见的命题角度有:(1)样本的数字特征与频率分布直方图交汇;(2)样本的数字特征与茎叶图交汇;(3)样本的数字特征与优化决策问题交汇.19.(Ⅰ)详见解析;(Ⅱ)2.【解析】试题分析:(Ⅰ)证AC EF ∥,再证.AC HD '⊥(Ⅱ)证明OD OH '⊥,再证'⊥OD 平面ABC ,最后根据锥体的体积公式求五棱锥D'ABCFE -的体积.试题解析:(I )由已知得,.⊥=AC BD AD CD又由=AE CF 得=AE CFAD CD ,故.AC EF ∥由此得,'⊥⊥EF HD EF HD ,所以.AC HD '⊥(II )由EF AC ∥得1.4==OH AE DO AD 由5,6==AB AC得4.===DO BO 所以1, 3.'===OH D H DH于是2222219,''+=+==OD OH D H 故.'⊥OD OH由(I )知'⊥AC HD ,又,'⊥=AC BD BDHD H , 所以⊥AC 平面,'BHD 于是.'⊥AC OD 又由,'⊥=OD OH AC OH O ,所以,'⊥OD 平面.ABC 又由=EF DH AC DO 得9.2=EF 五边形ABCFE 的面积11969683.2224=⨯⨯-⨯⨯=S 所以五棱锥D'–ABCFE体积16934=⨯⨯=V 【考点】 空间中线面位置关系的判断,几何体的体积【名师点睛】立体几何中的折叠问题,应注意折叠前后线段的长度、角哪些变了,哪些没变.20.(Ⅰ)220.x y +-=;(Ⅱ)(],2.-∞【解析】 试题分析:(Ⅰ)先求()f x 的定义域,再求()f x ',(1)f ',(1)f ,由直线方程的点斜式可求曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-=(Ⅱ)构造新函数(1)()ln 1-=-+a x g x x x ,对实数a 分类讨论,用导数法求解.试题解析:(I )()f x 的定义域为(0,)+∞.当4=a 时,1()(1)ln 4(1),()ln 3'=+--=+-f x x x x f x x x ,(1)2,(1)0.'=-=f f曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-=(II )当(1,)∈+∞x 时,()0>f x 等价于(1)ln 0.1-->+a x x x 设(1)()ln 1-=-+a x g x x x ,则222122(1)1(),(1)0(1)(1)+-+'=-==++a x a x g x g x x x x ,(i )当2≤a ,(1,)∈+∞x 时,222(1)1210+-+≥-+>x a x x x ,故()0,()'>g x g x 在(1,)+∞上单调递增,因此()0>g x ;(ii )当2>a 时,令()0'=g x 得1211=-=-+x a x a .由21>x 和121=x x 得11<x ,故当2(1,)∈x x 时,()0'<g x ,()g x 在2(1,)x 单调递减,因此()0<g x .综上,a 的取值范围是(],2.-∞【考点】 导数的几何意义,利用导数判断函数的单调性【名师点睛】求函数的单调区间的方法:(1)确定函数y =f (x )的定义域;(2)求导数y′=f′(x );(3)解不等式f′(x )>0,解集在定义域内的部分为单调递增区间;(4)解不等式f′(x )<0,解集在定义域内的部分为单调递减区间.21.(Ⅰ)14449;(Ⅱ)详见解析.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ∆的面积;(Ⅱ)设()11,M x y ,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示||AM ,同理用k 表示||AN ,再由2AM AN =求k 的取值范围.试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >.由已知及椭圆的对称性知,直线AM 的倾斜角为π4.又(2,0)A -,因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=. 解得0y =或127y =,所以1127y =.因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=. (Ⅱ)将直线AM 的方程(2)(0)y k x k =+>代入22143x y +=得2222(34)1616120k x k x k +++-=. 由2121612(2)34k x k -⋅-=+得2122(34)34k x k -=+,故1|||2|AM x =+=. 由题设,直线AN 的方程为1(2)y x k =-+,故同理可得212||3+4AN k =. 由2||||AM AN =得222343+4k kk =+,即3246380k k k -+-=. 设32()4638f t t t t =-+-,则k 是()f t 的零点,22()121233(21)0f t t t t '=-+=-≥,所以()f t 在(0,)+∞单调递增.又260,(2)60f f =<=>,因此()f t 在(0,)+∞有唯一的零点,且零点k在2)2k <<.【考点】椭圆的性质,直线与椭圆的位置关系【名师点睛】对于直线与椭圆的位置关系问题,通常将直线方程与椭圆方程联立进行求解,注意计算的准确性.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.22.(Ⅰ)详见解析;(Ⅱ)12.【解析】试题分析:(Ⅰ)证,DGF CBF △∽△再证,,,B C G F 四点共圆;(Ⅱ)证明Rt Rt ,BCG BFG △△≌四边形BCGF 的面积S 是GCB △面积GCB S △的2倍.试题解析:(I )因为DF EC ⊥,所以,DEF CDF △△∽则有,,DF DE DG GDF DEF FCB CF CD CB ∠=∠=∠==所以,DGF CBF △△∽由此可得,DGF CBF ∠=∠由此180,CGF CBF ∠+∠=︒所以,,,B C G F 四点共圆.(II )由,,,B C G F 四点共圆,CG CB ⊥知FG FB ⊥.连结GB .由G 为Rt DFC △斜边CD 的中点,知GF GC =,故Rt Rt ,BCG BFG △△≌因此四边形BCGF 的面积S 是GCB △面积GCB S △的2倍,即111221.222GCB S S ==⨯⨯⨯=△【考点】 三角形相似、全等,四点共圆【名师点睛】判定两个三角形相似要注意结合图形性质灵活选择判定定理,特别要注意对应角和对应边.通过相似三角形的性质可用来证明线段成比例、角相等,还可间接证明线段相等.23.(Ⅰ)212cos 110ρρθ++=;(Ⅱ)15.【解析】试题分析:(Ⅰ)利用222x y ρ=+,cos x ρθ=可得C 的极坐标方程;(Ⅱ)先将直线l 的参数方程化为极坐标方程,再利用弦长公式可得l 的斜率.试题解析:(Ⅰ)由cos ,sin x y ρθρθ==可得圆C 的极坐标方程212cos 110.ρρθ++= (Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l 的极坐标方程为()θαρ=∈R .设,A B 所对应的极径分别为12,.ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11.ρραρρ+=-=12||||AB ρρ=-==由||AB =得23cos ,tan 8αα==. 所以l的斜率为或. 【考点】圆的极坐标方程与普通方程互化,直线的参数方程,弦长公式【名师点睛】极坐标与直角坐标互化时要注意:将点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一;将曲线的方程进行互化时,一定要注意变量的范围.要注意转化的等价性.24.(Ⅰ){|11}M x x =-<<;(Ⅱ)详见解析.【解析】试题分析:(I )先去掉绝对值,再分12x ≤-,1122x -<<和12x ≥三种情况解不等式,即可得M ;(II )采用平方作差法,再进行因式分解,进而可证当a ,b ∈M 时,1a b ab +<+.试题解析:(I )12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩ 当12x ≤-时,由()2f x <得22,x -<解得1x >-; 当1122x -<<时,()2f x <; 当12x ≥时,由()2f x <得22,x <解得1x <.所以()2f x <的解集{|11}M x x =-<<.(Ⅱ)由(Ⅰ)知,当,a b M ∈时,11,11a b -<<-<<,从而22222222()(1)1(1)(1)0a b ab a b a b a b +-+=+--=--<,因此|||1|.a b ab +<+【考点】绝对值不等式,不等式的证明.【名师点睛】形如||||x a x b c -+-≥(或c ≤)型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应的方程的根,将数轴分为(,]a -∞,(,]a b ,(,)b +∞ (此处设a b <)三个部分,在每个部分去掉绝对值号并分别列出对应的不等式进行求解,然后取各个不等式解集的并集.(2)图象法:作出函数1||||y x a x b =-+-和2y c =的图象,结合图象求解.。

2016年四川省高考文科数学试卷及参考答案与试题解析

2016年四川省高考文科数学试卷及参考答案与试题解析

2016年四川省高考文科数学试卷及参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设i为虚数单位,则复数(1+i)2=( )A.0B.2C.2iD.2+2i2.(5分)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是( )A.6B.5C.4D.33.(5分)抛物线y2=4x的焦点坐标是( )A.(0,2)B.(0,1)C.(2,0)D.(1,0)4.(5分)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点( )A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度D.向下平行移动个单位长度5.(5分)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(5分)已知a为函数f(x)=x3-12x的极小值点,则a=( )A.-4B.-2C.4D.27.(5分)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)A.2018年B.2019年C.2020年D.2021年8.(5分)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为( )A.35B.20C.18D.99.(5分)已知正三角形ABC的边长为2,平面ABC内的动点P,M满足||=1,=,则||2的最大值是( )A. B. C. D.10.(5分)设直线l1,l2分别是函数f(x)=图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是( )A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)sin750°=.12.(5分)已知某三棱锥的三视图如图所示,则该三棱锥的体积是.13.(5分)从2,3,8,9中任取两个不同的数字,分别记为a,b,则logab为整数的概率是.14.(5分)若函数f(x)是定义R上的周期为2的奇函数,当0<x<1时,f(x)=4x,则f(-)+f(2)=.15.(5分)在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P′(,),当P是原点时,定义“伴随点”为它自身,现有下列命题:①若点A的“伴随点”是点A′,则点A′的“伴随点”是点A.②单元圆上的“伴随点”还在单位圆上.③若两点关于x轴对称,则他们的“伴随点”关于y轴对称④若三点在同一条直线上,则他们的“伴随点”一定共线.其中的真命题是.三、解答题(共6小题,满分75分)16.(12分)我国是世界上严重缺水的国家.某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(Ⅲ)估计居民月均水量的中位数.17.(12分)如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.(I)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(II)证明:平面PAB⊥平面PBD.18.(12分)在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2-a2=bc,求tanB.19.(12分)已知数列{an }的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N+(Ⅰ)若a2,a3,a2+a3成等差数列,求数列{an}的通项公式;(Ⅱ)设双曲线x2-=1的离心率为en ,且e2=2,求e12+e22+…+en2.20.(13分)已知椭圆E:+=1(a>b>0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P(,)在椭圆E上.(Ⅰ)求椭圆E的方程;(Ⅱ)设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:︳MA︳•︳MB︳=︳MC︳•︳MD︳21.(14分)设函数f(x)=ax2-a-ln x,g(x)=-,其中a∈R,e=2.718…为自然对数的底数.(1)讨论f(x)的单调性;(2)证明:当x>1时,g(x)>0;(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.2016年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设i为虚数单位,则复数(1+i)2=( )A.0B.2C.2iD.2+2i【分析】利用复数的运算法则即可得出.【解答】解:(1+i)2=1+i2+2i=1-1+2i=2i,故选:C.【点评】本题考查了复数的运算法则,考查了推理能力与计算能力,属于基础题.2.(5分)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是( )A.6B.5C.4D.3【分析】利用交集的运算性质即可得出.【解答】解:∵集合A={x|1≤x≤5},Z为整数集,则集合A∩Z={1,2,3,4,5}.∴集合A∩Z中元素的个数是5.故选:B.【点评】本题考查了集合的运算性质,考查了推理能力与计算能力,属于基础题.3.(5分)抛物线y2=4x的焦点坐标是( )A.(0,2)B.(0,1)C.(2,0)D.(1,0)【分析】根据抛物线的标准方程及简单性质,可得答案.【解答】解:抛物线y2=4x的焦点坐标是(1,0),故选:D.【点评】本题考查的知识点是抛物线的简单性质,难度不大,属于基础题.4.(5分)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点( )A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度D.向下平行移动个单位长度【分析】根据函数图象平移“左加右减“的原则,结合平移前后函数的解析式,可得答案. 【解答】解:由已知中平移前函数解析式为y=sinx,平移后函数解析式为:y=sin(x+),可得平移量为向左平行移动个单位长度,故选:A.【点评】本题考查的知识点是函数图象的平移变换法则,熟练掌握图象平移“左加右减“的原则,是解答的关键.5.(5分)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】由x>1且y>1,可得:x+y>2,反之不成立,例如取x=3,y=.【解答】解:由x>1且y>1,可得:x+y>2,反之不成立:例如取x=3,y=.∴p是q的充分不必要条件.故选:A.【点评】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.6.(5分)已知a为函数f(x)=x3-12x的极小值点,则a=( )A.-4B.-2C.4D.2【分析】可求导数得到f′(x)=3x2-12,可通过判断导数符号从而得出f(x)的极小值点,从而得出a的值.【解答】解:f′(x)=3x2-12;∴x<-2时,f′(x)>0,-2<x<2时,f′(x)<0,x>2时,f′(x)>0;∴x=2是f(x)的极小值点;又a为f(x)的极小值点;∴a=2.故选:D.【点评】考查函数极小值点的定义,以及根据导数符号判断函数极值点的方法及过程,要熟悉二次函数的图象.7.(5分)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)A.2018年B.2019年C.2020年D.2021年【分析】设第n年开始超过200万元,可得130×(1+12%)n-2015>200,两边取对数即可得出. 【解答】解:设第n年开始超过200万元,则130×(1+12%)n-2015>200,化为:(n-2015)lg1.12>lg2-lg1.3,n-2015>=3.8.取n=2019.因此开始超过200万元的年份是2019年.故选:B.【点评】本题考查了等比数列的通项公式、不等式的性质,考查了推理能力与计算能力,属于中档题.8.(5分)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为( )A.35B.20C.18D.9【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量v的值,模拟程序的运行过程,可得答案.【解答】解:∵输入的x=2,n=3,故v=1,i=2,满足进行循环的条件,v=4,i=1,满足进行循环的条件,v=9,i=0,满足进行循环的条件,v=18,i=-1不满足进行循环的条件,故输出的v值为:故选:C.【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.9.(5分)已知正三角形ABC的边长为2,平面ABC内的动点P,M满足||=1,=,则||2的最大值是( )A. B. C. D.【分析】如图所示,建立直角坐标系.B(0,0),C.A.点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,可得M,代入||2=+3sin,即可得出.【解答】解:如图所示,建立直角坐标系.B(0,0),C.A.∵M满足||=1,∴点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,则M,∴||2=+=+3sin≤.∴||2的最大值是.也可以以点A为坐标原点建立坐标系.解法二:取AC中点N,MN=,从而M轨迹为以N为圆心,为半径的圆,B,N,M三点共线时,BM为最大值.所以BM最大值为3+=.故选:B.【点评】本题考查了数量积运算性质、圆的参数方程、三角函数求值,考查了推理能力与计算能力,属于中档题.10.(5分)设直线l1,l2分别是函数f(x)=图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是( )A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞)【分析】设出点P1,P2的坐标,求出原分段函数的导函数,得到直线l1与l2的斜率,由两直线垂直求得P1,P2的横坐标的乘积为1,再分别写出两直线的点斜式方程,求得A,B两点的纵坐标,得到|AB|,联立两直线方程求得P的横坐标,然后代入三角形面积公式,利用基本不等式求得△PAB的面积的取值范围.【解答】解:设P1(x1,y1),P2(x2,y2)(0<x1<1<x2),当0<x<1时,f′(x)=,当x>1时,f′(x)=,∴l1的斜率,l2的斜率,∵l1与l2垂直,且x2>x1>0,∴,即x1x2=1.直线l1:,l2:.取x=0分别得到A(0,1-lnx1),B(0,-1+lnx2),|AB|=|1-lnx1-(-1+lnx2)|=|2-(lnx1+lnx2)|=|2-lnx1x2|=2.联立两直线方程可得交点P的横坐标为x=,∴|AB|•|xP|==.∵函数y=x+在(0,1)上为减函数,且0<x1<1,∴,则,∴.∴△PAB的面积的取值范围是(0,1).故选:A.【点评】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用基本不等式求函数的最值,考查了数学转化思想方法,属中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)sin750°=.【分析】利用终边相同角的诱导公式及特殊角的三角函数值即可得答案.【解答】解:sin750°=sin(2×360°+30°)=sin30°=,故答案为:.【点评】本题考查运用诱导公式化简求值,着重考查终边相同角的诱导公式及特殊角的三角函数值,属于基础题.12.(5分)已知某三棱锥的三视图如图所示,则该三棱锥的体积是.【分析】几何体为三棱锥,底面为俯视图三角形,棱锥的高为1,代入体积公式计算即可.【解答】解:由三视图可知几何体为三棱锥,底面为俯视图三角形,底面积S==,棱锥的高为h=1,∴棱锥的体积V=Sh==.故答案为:.【点评】本题考查了棱锥的三视图和体积计算,是基础题.b为整数的概率是.13.(5分)从2,3,8,9中任取两个不同的数字,分别记为a,b,则logab为整数满足的基本事件个【分析】由已知条件先求出基本事件总数,再利用列举法求出logab为整数的概率.数,由此能求出loga【解答】解:从2,3,8,9中任取两个不同的数字,分别记为a,b,基本事件总数n==12,logb为整数满足的基本事件个数为(2,8),(3,9),共2个,ab为整数的概率p=.∴loga故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.14.(5分)若函数f(x)是定义R上的周期为2的奇函数,当0<x<1时,f(x)=4x,则f(-)+f(2)=-2 .【分析】根据函数奇偶性和周期性的性质将条件进行转化求解即可.【解答】解:∵函数f(x)是定义R上的周期为2的奇函数,当0<x<1时,f(x)=4x,∴f(2)=f(0)=0,f(-)=f(-+2)=f(-)=-f()=-=-=-2,则f(-)+f(2)=-2+0=-2,故答案为:-2.【点评】本题主要考查函数值的计算,根据函数奇偶性和周期性的性质将条件进行转化是解决本题的关键.15.(5分)在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P′(,),当P是原点时,定义“伴随点”为它自身,现有下列命题:①若点A的“伴随点”是点A′,则点A′的“伴随点”是点A.②单元圆上的“伴随点”还在单位圆上.③若两点关于x轴对称,则他们的“伴随点”关于y轴对称④若三点在同一条直线上,则他们的“伴随点”一定共线.其中的真命题是②③.【分析】根据“伴随点”的定义,分别进行判断即可,对应不成立的命题,利用特殊值法进行排除即可.【解答】解:①设A(0,1),则A的“伴随点”为A′(1,0),而A′(1,0)的“伴随点”为(0,-1),不是A,故①错误,②若点在单位圆上,则x2+y2=1,即P(x,y)不是原点时,定义P的“伴随点”为P(y,-x),满足y2+(-x)2=1,即P′也在单位圆上,故②正确,③若两点关于x轴对称,设P(x,y),对称点为Q(x,-y),则Q(x,-y)的“伴随点”为Q′(-,),则Q′(-,)与P′(,)关于y轴对称,故③正确,④∵(-1,1),(0,1),(1,1)三点在直线y=1上,∴(-1,1)的“伴随点”为(,),即(,),(0,1)的“伴随点”为(1,0),(1,1的“伴随点”为(,-),即(,-),则(,),(1,0),(,-)三点不在同一直线上,故④错误,故答案为:②③【点评】本题主要考查命题的真假判断,正确理解“伴随点”的定义是解决本题的关键.考查学生的推理能力.三、解答题(共6小题,满分75分)16.(12分)我国是世界上严重缺水的国家.某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(Ⅲ)估计居民月均水量的中位数.【分析】(I)先根据频率分布直方图中的频率等于纵坐标乘以组距求出9个矩形的面积即频率,再根据直方图的总频率为1求出a的值;(II)根据已知中的频率分布直方图先求出月均用水量不低于3吨的频率,结合样本容量为30万,进而得解.(Ⅲ)根据频率分布直方图,求出使直方图中左右两边频率相等对应的横坐标的值.【解答】解:(I)∵1=(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)×0.5,整理可得:2=1.4+2a,∴解得:a=0.3.(II)估计全市居民中月均用水量不低于3吨的人数为3.6万,理由如下:由已知中的频率分布直方图可得月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12,又样本容量为30万,则样本中月均用水量不低于3吨的户数为30×0.12=3.6万.(Ⅲ)根据频率分布直方图,得;0.08×0.5+0.16×0.5+0.30×0.5+0.42×0.5=0.48<0.5,0.48+0.5×0.52=0.74>0.5,∴中位数应在(2,2.5]组内,设出未知数x,令0.08×0.5+0.16×0.5+0.30×0.5+0.42×0.5+0.52×x=0.5,解得x=0.04;∴中位数是2+0.04=2.04.【点评】本题用样本估计总体,是研究统计问题的一个基本思想方法.频率分布直方图中小长方形的面积=组距×,各个矩形面积之和等于1,能根据直方图求众数和中位数,属于常规题型.17.(12分)如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.(I)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(II)证明:平面PAB⊥平面PBD.【分析】(I)M为PD的中点,直线CM∥平面PAB.取AD的中点E,连接CM,ME,CE,则ME∥PA,证明平面CME∥平面PAB,即可证明直线CM∥平面PAB;(II)证明:BD⊥平面PAB,即可证明平面PAB⊥平面PBD.【解答】证明:(I)M为PD的中点,直线CM∥平面PAB.取AD的中点E,连接CM,ME,CE,则ME∥PA,∵ME⊄平面PAB,PA⊂平面PAB,∴ME∥平面PAB.∵AD∥BC,BC=AE,∴ABCE是平行四边形,∴CE∥AB.∵CE⊄平面PAB,AB⊂平面PAB,∴CE∥平面PAB.∵ME∩CE=E,∴平面CME∥平面PAB,∵CM⊂平面CME,∴CM∥平面PAB若M为AD的中点,连接CM,由四边形ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.可得四边形ABCM为平行四边形,即有CM∥AB,CM⊄平面PAB,AB⊂平面PAB,∴CM∥平面PAB;(II)∵PA⊥CD,∠PAB=90°,AB与CD相交,∴PA⊥平面ABCD,∵BD⊂平面ABCD,∴PA⊥BD,由(I)及BC=CD=AD,可得∠BAD=∠BDA=45°,∴∠ABD=90°,∴BD⊥AB,∵PA∩AB=A,∴BD⊥平面PAB,∵BD⊂平面PBD,∴平面PAB⊥平面PBD.【点评】本题主要考查了直线与平面平行的判定,平面与平面垂直的判定,考查空间想象能力、运算能力和推理论证能力,属于中档题.18.(12分)在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2-a2=bc,求tanB.【分析】(Ⅰ)将已知等式通分后利用两角和的正弦函数公式整理,利用正弦定理,即可证明. (Ⅱ)由余弦定理求出A的余弦函数值,利用(Ⅰ)的条件,求解B的正切函数值即可.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sinC.∴整理可得:sinAsinB=sinC,(Ⅱ)解:b2+c2-a2=bc,由余弦定理可得cosA=.sinA=,=+==1,=,tanB=4.【点评】本题主要考查了正弦定理,余弦定理,两角和的正弦函数公式,三角形内角和定理,三角形面积公式的应用,考查了转化思想,属于中档题.19.(12分)已知数列{an }的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N+(Ⅰ)若a2,a3,a2+a3成等差数列,求数列{an}的通项公式;(Ⅱ)设双曲线x2-=1的离心率为en ,且e2=2,求e12+e22+…+en2.【分析】(Ⅰ)根据题意,由数列的递推公式可得a2与a3的值,又由a2,a3,a2+a3成等差数列,可得2a3=a2+(a2+a3),代入a2与a3的值可得q2=2q,解可得q的值,进而可得Sn+1=2Sn+1,进而可得Sn =2Sn-1+1,将两式相减可得an=2an-1,即可得数列{an}是以1为首项,公比为2的等比数列,由等比数列的通项公式计算可得答案;(Ⅱ)根据题意Sn+1=qSn+1,同理有Sn=qSn-1+1,将两式相减可得an=qan-1,分析可得an=q n-1;又由双曲线x2-=1的离心率为en ,且e2=2,分析可得e2==2,解可得a2的值,由an=q n-1可得q的值,进而可得数列{an}的通项公式,再次由双曲线的几何性质可得en 2=1+an2=1+3n-1,运用分组求和法计算可得答案.【解答】解:(Ⅰ)根据题意,数列{a n }的首项为1,即a 1=1, 又由S n +1=qS n +1,则S 2=qa 1+1,则a 2=q, 又有S 3=qS 2+1,则有a 3=q 2,若a 2,a 3,a 2+a 3成等差数列,即2a 3=a 2+(a 2+a 3), 则可得q 2=2q,(q >0), 解可得q =2,则有S n +1=2S n +1,① 进而有S n =2S n -1+1,② ①-②可得a n =2a n -1,则数列{a n }是以1为首项,公比为2的等比数列, 则a n =1×2n -1=2n -1;(Ⅱ)根据题意,有S n +1=qS n +1,③ 同理可得S n =qS n -1+1,④ ③-④可得:a n =qa n -1, 又由q >0,则数列{a n }是以1为首项,公比为q 的等比数列,则a n =1×q n -1=q n -1; 若e 2=2,则e 2==2,解可得a 2=, 则a 2=q =,即q =, a n =1×q n -1=q n -1=()n -1, 则e n 2=1+a n 2=1+3n -1,故e 12+e 22+…+e n 2=n +(1+3+32+…+3n -1)=n +.【点评】本题考查数列的递推公式以及数列的求和,涉及双曲线的简单几何性质,注意题目中q >0这一条件.20.(13分)已知椭圆E :+=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P(,)在椭圆E 上. (Ⅰ)求椭圆E 的方程;(Ⅱ)设不过原点O 且斜率为的直线l 与椭圆E 交于不同的两点A,B,线段AB 的中点为M,直线OM 与椭圆E 交于C,D,证明:︳MA ︳•︳MB ︳=︳MC ︳•︳MD ︳【分析】(Ⅰ)由题意可得a =2b,再把已知点的坐标代入椭圆方程,结合隐含条件求得a,b 得答案;(Ⅱ)设出直线方程,与椭圆方程联立,求出弦长及AB 中点坐标,得到OM 所在直线方程,再与椭圆方程联立,求出C,D 的坐标,把︳MA ︳•︳MB ︳化为(|AB|)2,再由两点间的距离公式求得︳MC︳•︳MD︳的值得答案.【解答】(Ⅰ)解:如图,由题意可得,解得a2=4,b2=1,∴椭圆E的方程为;(Ⅱ)证明:设AB所在直线方程为y=,联立,得x2+2mx+2m2-2=0.∴△=4m2-4(2m2-2)=8-4m2>0,即.设A(x1,y1),B(x2,y2),M(x,y),则,|AB|==.∴x=-m,,即M(),则OM所在直线方程为y=-,联立,得或.∴C(-,),D(,-).则︳MC︳•︳MD︳===.而︳MA︳•︳MB︳=(10-5m2)=.∴︳MA︳•︳MB︳=︳MC︳•︳MD︳.【点评】本题考查椭圆的标准方程,考查了直线与圆锥曲线位置关系的应用,训练了弦长公式的应用,考查数学转化思想方法,训练了计算能力,是中档题.21.(14分)设函数f(x)=ax2-a-ln x,g(x)=-,其中a∈R,e=2.718…为自然对数的底数.(1)讨论f(x)的单调性;(2)证明:当x>1时,g(x)>0;(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.【分析】(Ⅰ)求导数,分类讨论,即可讨论f(x)的单调性;(Ⅱ)要证g(x)>0(x>1),即->0,即证,也就是证;(Ⅲ)由f(x)>g(x),得,设t(x)=,由题意知,t(x)>0在(1,+∞)内恒成立,再构造函数,求导数,即可确定a的取值范围.【解答】(Ⅰ)解:由f(x)=ax2-a-lnx,得f′(x)=2ax-=(x>0),当a≤0时,f′(x)<0在(0,+∞)成立,则f(x)为(0,+∞)上的减函数;当a>0时,由f′(x)=0,得x==,∴当x∈(0,)时,f′(x)<0,当x∈(,+∞)时,f′(x)>0,则f(x)在(0,)上为减函数,在(,+∞)上为增函数;综上,当a≤0时,f(x)为(0,+∞)上的减函数,当a>0时,f(x)在(0,)上为减函数,在(,+∞)上为增函数;(Ⅱ)证明:要证g(x)>0(x>1),即->0,即证,也就是证,令h(x)=,则h′(x)=,=h(1)=e,∴h(x)在(1,+∞)上单调递增,则h(x)min即当x>1时,h(x)>e,∴当x>1时,g(x)>0;(Ⅲ)解:由f(x)>g(x),得,设t(x)=,由题意知,t(x)>0在(1,+∞)内恒成立,∵t(1)=0,∴有t′(x)=2ax=≥0在(1,+∞)内恒成立,令φ(x)=,则φ′(x)=2a=,当x≥2时,φ′(x)>0,令h(x)=,h′(x)=,函数在[1,2)上单调递增,∴h(x)=h(1)=-1.mine1-x>0,∴1<x<2,φ′(x)>0,综上所述,x>1,φ′(x)>0,φ(x)在区间(1,+∞)单调递增,∴t′(x)>t′(1)≥0,即t(x)在区间(1,+∞)单调递增,由2a-1≥0,∴a≥.【点评】本题考查导数知识的综合运用,考查函数的单调性,不等式的证明,考查恒成立成立问题,正确构造函数,求导数是关键.。

2016学年高考文科数学年四川卷答案

2016学年高考文科数学年四川卷答案

数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前贵州省黔西南州2016年初中毕业生学业暨升学统一考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算24-的结果等于( )A .8-B .16-C .16D .82.如图,ABC △的顶点均在O 上,若36A ∠= ,则BOC ∠的度数为( )A .18B .36C .60D .723.如图,AB CD ∥CB DE ∥,若72B ∠= ,则D ∠的度数为( )A .36B .72C .108D .1184.如图,点B ,F ,C ,E 在一条直线上AB ED ∥,AC FD ∥, 那么添加下列一个条件后,仍无法判ABC DEF ∆∆≌的是 ( ) A .AB DE = B .AC DF = C .A D ∠=∠D .BF EC =5.如图,在ABC △中,点D 在AB 上,2BD AD =,DE BC ∥交AC 于E ,则下列结论不正确的是( )A .3BC DE =B .BD CEBA CA= C .ADE ABC △∽△D .13ADE ABC S S =6.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是( )A .16B .13C .12D .237.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如下表所示,这组数据的众数和中位数分别是( )学生数(人) 5 8 14 19 4 时间(小时) 6 7 8 9 10 A .14,9B .9,9C .9,8D .8,98.如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )ABCD9.如图,反比例函数2y x=的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为( )A .2B .4C .5D .810.如图,矩形ABCD 绕点B 逆时针旋转30后得到矩形111A BC D ,11C D 与AD 交于点M ,延长DA 交11A D 于F ,若1AB =,BC =,则AF 的长度为( )A .2B CD 1第Ⅱ卷(非选择题 共110分)二、填空题(本大题共10小题,每小题3分,共30分.请把答案填写在题中的横线上) 11.计算:2(2)ab -= .12.0.0000156用科学记数法表示为 . 13.分解因式:34x x -= .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)14.若一个多边形的内角和为1080 ,则这个多边形的边数为 . 15.函数y =自变量x 的取值范围是 . 16.如图,AB 是O 的直径,CD 为弦,CD AB ⊥于E ,若6CD =,1BE =,则O 的直径为 .17.关于x 的两个方程260x x --=与213x m x =+-有一个解相同,则m = . 18.已知1O 和2O 的半径分别为m ,n ,且m ,n满足2(2)0n +-=,圆心距1252O O =,则两圆的位置关系为 . 19.如图,小明购买一种笔记本所付款金额y (元)与购买量x (本)之间的函数图象由线段OB 和射线BE 组成,则一次购买8个笔记本比分8次购买每次购买1个可节省元.20.阅读材料并解决问题: 求23201412222+++++ 的值.令23201412222S =+++++ ,等式两边同时乘以2,则2320142015222222S =+++++ . 两式相减,得2015221S S -=-所以201521S =-.依据以上计算方法,计算23201513333+++++= .三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分12分,每题6分)(1)计算:101π|2cos45((tan8022016---+- .(2)化简:2222(2)211x x x x x x +---÷-++,再代入一个合适的x 求值.22.(本小题满分12分)如图,点A 是O 直径BD 延长线上的一点,点C 在O 上,AC BC =,AD CD =. (1)求证:AC 是O 的切线;(2)若O 的半径为2,求ABC △的面积.23.(本小题满分14分)2016年黔西南州教育局组织全州中小学生参加全省安全知识网络竞赛,在全州安全知识竞赛结束后,通过网上查询,某校一名班主任对本班成绩(成绩取整数,满分100分)做了统计分析,绘制成如下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题.频数分布表分组(分)频数 频率 5060x <≤ 2 0.04 6070x <≤ 12 a 7080x <≤ b 0.36 8090x <≤ 14 0.28 90100x <≤c 0.08 合计501数学试卷 第5页(共6页) 数学试卷 第6页(共6页)(1)频数分布表中a = ,b = ,c = ; (2)补全频数分布直方图;(3)为了激励学生增强安全意识,班主任准备从超过90分的学生中选2人介绍学习经验,那么取得100分的小亮和小华同时被选上的概率是多少?请用列表法或画树状图加以说明,并列出所有等可能结果.24.(本小题满分14分)黔西南州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元.相关资料表明:甲、乙两种鱼苗的成活率为80%,90%. (1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条? (2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条? (3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?25.(本小题满分12分)求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法——更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之.”意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数 解:请用以上方法解决下列问题: (1)求108与45的最大公约数. (2)求三个数78,104,143的最大公约数.26.(本小题满分16分)如图,二次函数23y x x m =-++的图象与x 轴的一个交点为(4,0)B ,另一个交点为A ,且与y 轴相交于C 点.(1)求m 的值及C 点坐标;(2)在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大?若存在,求出此时M 点坐标;若不存在,请简要说明理由; (3)P 为抛物线上一点,它关于直线BC 的对称点为Q . ①当四边形PBQC 为菱形时,求点P 的坐标;②点P 的横坐标为(04)t t <<,当t 为何值时,四边形PBQC 的面积最大,请说明理由.915635-=563521-=352114-= 21147-=1477-=所以91与56的最大公约数是7.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。

2016年高考文科数学全国卷1(含详细答案)

2016年高考文科数学全国卷1(含详细答案)

数学试卷 第1页(共39页) 数学试卷 第2页(共39页)数学试卷 第3页(共39页)绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:山西、河南、河北、湖南、湖北、江西、安徽、福建、广东本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分. 考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3. 考试结束,监考员将本试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B = ( )A. {1,3}B. {3,5}C. {5,7}D. {1,7}2. 设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则=a( )A. 3-B. 2-C. 2D. 33. 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 ( )A.13 B.12 C. 23D. 564. ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知a =,2c =,2cos 3A =,则b =( )A.B.C. 2D. 35. 直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13 B.12 C. 23D. 346. 将函数2sin(2)6y x π=+的图象向右平移14个周期后,所得图象对应的函数为( )A. 2sin(2)4y x π=+ B. 2sin(2)3y x π=+ C. 2sin(2)4y x π=-D. 2sin(2)3y x π=-7. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 ( )A. 17πB. 18πC. 20πD. 28π 8. 若0a b >>,01c <<,则( )A. log log a b c c <B. log log c c a b <C. cca b <D. ab c c>9. 函数2|x|2y x e =-在[2,2]-的图象大致为( )ABC D10. 执行如图的程序框图,如果输入的0x =,1y =,1n =,则输出x ,y 的值满足 ( )A. 2y x =B. 3y x =C. 4y x =D. 5y x =11. 平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,n 所成角的正弦值为( )A.B.C.D.1312. 若函数1()sin 2sin 3f x x x a x =-+在(,)-∞+∞单调递增,则a 的取值范围是( )A. []1,1-B. 11,3⎡⎤-⎢⎥⎣⎦C. 11,33⎡⎤-⎢⎥⎣⎦D. 11,3⎡⎤--⎢⎥⎣⎦姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)第II 卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13. 设向量a 1(),x x =+,b (1,2)=,且a ⊥b ,则x = .14. 已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-= . 15. 设直线2y x a =+与圆22:220C x y ay +--=相交于,A B 两点,若||AB =则圆C的面积为 .16. 某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足11b =,213b =,11n n n n a b b nb +++=. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求{}n b 的前n 项和. 18.(本小题满分12分)如图,已知正三棱锥P ABC -的侧面是直角三角形,6PA =.顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连接PE 并延长交AB 于点G . (Ⅰ)证明:G 是AB 的中点;(Ⅱ)在图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.19.(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (Ⅰ)若19n =,求y 与x 的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值; (Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(本小题满分12分)在直角坐标系xOy 中,直线:(0)l y t t =≠交y 轴于点M ,交抛物线2:2C y px =(0)p >于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求||||OH ON ;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.21.(本小题满分12分)已知函数2()(2)(1)x f x x e a x =-+-. (Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修41-:几何证明选讲如图,OAB △是等腰三角形,120AOB ∠=.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点,C D 在⊙O 上,且,,,A B C D 四点共圆,证明:AB CD ∥.23.(本小题满分10分)选修44-:坐标系与参数方程在直线坐标系xOy 中,曲线1C 的参数方程为cos ,1sin ,x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .24.(本小题满分10分),选修45-:不等式选讲已知函数()|1||23|f x x x =+--. (Ⅰ)画出()y f x =的图象; (Ⅱ)求不等式|()|1f x >的解集.{3,5}A B=a-=,由已知,得213/ 13数学试卷 第10页(共39页)数学试卷 第11页(共39页) 数学试卷 第12页(共39页)平面ABB1D平面1n所成角等于所成角的正弦值为5/ 13数学试卷 第16页(共39页)数学试卷 第17页(共39页) 数学试卷 第18页(共39页)【解析】由题意,0a b x =+,3【提示】根据向量垂直的充要条件便可得出0a b =,进行向量数量积的坐标运算即可得出关于的值.【考点】向量的数量积,坐标运算7/ 13作出二元一次不等式组①表示的平面区域,即可行域,如图中阴影部分所示.7z77z数学试卷第22页(共39页)数学试卷第23页(共39页)数学试卷第24页(共39页)18.【答案】(Ⅰ)因为P在平面ABC内的正投影为D,所以AB PD⊥.9/ 13数学试卷第29页(共39页)数学试卷第30页(共39页)11 / 13))(1,)+∞时,(,ln(2)),1,+a -,1)(ln(2),)a -+∞时,单调递增,在1,ln((2))a -单调递减)在(,1)-∞ln 2a ,则f数学试卷 第34页(共39页)数学试卷 第35页(共39页) 数学试卷 第36页(共39页)同理可证,'OO CD ⊥,所以//AB CD .13/ 13。

2016年高考 全国一卷 文科数学 (原题+解析)

2016年高考 全国一卷 文科数学 (原题+解析)

2016年普通高等学校招生全国统一考试(课标全国卷Ⅰ)文数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}2.设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=()A.-3B.-2C.2D.33.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.13B.12C.23D.564.△ABC的内角A,B,C的对边分别为a,b,c.已知a=5,c=2,cos A=23,则b=()A.2B.3C.2D.35.直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的14,则该椭圆的离心率为()A.13B.12C.23D.346.将函数y=2sin2x+π6的图象向右平移14个周期后,所得图象对应的函数为()A.y=2sin2x+π4B.y=2sin2x+π3C.y=2sin2x-π4D.y=2sin2x-π37.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是()A.17πB.18πC.20πD.28π8.若a>b>0,0<c<1,则()A.log a c<log b cB.log c a<log c bC.a c<b cD.c a>c b9.函数y=2x2-e|x|在[-2,2]的图象大致为()10.执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2xB.y=3xC.y=4xD.y=5x11.平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A.32B.22C.33D.1312.若函数f(x)=x-13sin2x+asin x在(-∞,+∞)单调递增,则a的取值范围是()A.[-1,1]B.-1,13C.-13,13D.-1,-13第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13.设向量a=(x,x+1),b=(1,2),且a⊥b,则x=.14.已知θ是第四象限角,且sin θ+π4=35,则tan θ-π4=.15.设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=23,则圆C的面积为.16.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=13,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(本小题满分12分)如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6.顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连结PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(本小题满分12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求|OH|;(Ⅱ)除H以外,直线MH与C是否有其他公共点?说明理由.21.(本小题满分12分)已知函数f(x)=(x-2)e x+a(x-1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,1OA为半径作圆.2(Ⅰ)证明:直线AB与☉O相切;(Ⅱ)点C,D在☉O上,且A,B,C,D四点共圆,证明:AB∥CD.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,曲线C1的参数方程为x=a cos t,y=1+a sin t(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x+1|-|2x-3|.(Ⅰ)画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.B∵A={1,3,5,7},B={x|2≤x≤5},∴A∩B={3,5},故选B.2.A∵(1+2i)(a+i)=(a-2)+(2a+1)i,∴a-2=2a+1,解得a=-3,故选A.3.C从红、黄、白、紫4种颜色的花中任选2种有以下选法:(红黄)、(红白)、(红紫)、(黄白)、(黄紫)、(白紫),共6种,其中红色和紫色的花不在同一花坛(亦即黄色和白色的花不在同一花坛)的选法有4种,所以所求事件的概率P=46=23,故选C.4.D由余弦定理得5=22+b2-2×2bcos A,∵cos A=23,∴3b2-8b-3=0,∴b=3 b=-13舍去.故选D.5.B如图,|OB|为椭圆中心到l的距离,则|OA|·|OF|=|AF|·|OB|,即bc=a·b2,所以e=ca=12.故选B.6.D该函数的周期为π,将其图象向右平移π4个单位后,得到的图象对应的函数为y=2sin2 x-π4+π6=2sin2x-π3,故选D.7.A由三视图知该几何体为球去掉了18所剩的几何体(如图),设球的半径为R,则78×43πR3=28π3,故R=2,从而它的表面积S=78×4πR2+34×πR2=17π.故选A.8.B∵0<c<1,∴当a>b>1时,log a c>log b c,A项错误;∵0<c<1,∴y=log c x在(0,+∞)上单调递减,又a>b>0,∴log c a<log c b,B项正确;∵0<c<1,∴函数y=x c在(0,+∞)上单调递增,又∵a>b>0,∴a c>b c,C项错误;∵0<c<1,∴y=c x在(0,+∞)上单调递减,又∵a>b>0,∴c a<c b,D项错误.故选B.9.D当x=2时,y=8-e2∈(0,1),排除A,B;易知函数y=2x2-e|x|为偶函数,当x∈[0,2]时,y=2x2-e x,求导得y'=4x-e x,当x=0时,y'<0,当x=2时,y'>0,所以存在x0∈(0,2),使得y'=0,故选D.10.C执行程序框图:当n=1时,x=0,y=1,此时02+12≥36不成立;当n=2时,x=12,y=2,此时1 22+22≥36不成立;当n=3时,x=32,y=6,此时322+62≥36成立,结束循环,输出x的值为32,y的值为6,满足y=4x,故选C.11.A设正方体ABCD-A1B1C1D1的棱长为a.将正方体ABCD-A1B1C1D1补成棱长为2a的正方体,如图所示.正六边形EFGPQR所在的平面即为平面α.点A为这个大正方体的中心,直线GR为m,直线EP为n.显然m与n所成的角为60°.所以m,n所成角的正弦值为32.故选A.12.C f'(x)=1-23cos2x+acos x=1-23(2cos2x-1)+acos x=-43cos2x+acos x+53,f(x)在R上单调递增,则f'(x)≥0在R上恒成立,令cos x=t,t∈[-1,1],则-43t2+at+53≥0在[-1,1]上恒成立,即4t2-3at-5≤0在[-1,1]上恒成立,令g(t)=4t2-3at-5,则g(1)=4-3a-5≤0,解得-13≤a≤13,故选C.二、填空题13.答案-23解析因为a⊥b,所以x+2(x+1)=0,解得x=-23.14.答案-43解析解法一:∵sin θ+π4=22×(sinθ+cosθ)=35,∴sinθ+cosθ=325①,∴2sinθcosθ=-725.∵θ是第四象限角,∴sinθ<0,cosθ>0,∴sinθ-cosθ=-1-2sinθcosθ=-425②,由①②得sinθ=-10,cosθ=710,∴tanθ=-17,∴tan θ-π4=tanθ-11+tanθ=-43.解法二:∵ θ+π4+π4-θ =π2,∴sin θ+π4=cosπ4-θ =35,又2kπ-π2<θ<2kπ,k∈Z,∴2kπ-π4<θ+π4<2kπ+π4,k∈Z,∴cos θ+π4=45,∴sinπ4-θ =45,∴tanπ4-θ =sinπ4-θcosπ-θ=43,∴tan θ-π4=-tanπ4-θ =-43.15.答案4π解析把圆C的方程化为x2+(y-a)2=2+a2,则圆心为(0,a),半径r= a2+2.圆心到直线x-y+2a=0的距离d=2.由r2=d2+|AB|22,得a2+2=a22+3,解得a2=2,则r2=4,所以圆的面积S=πr2=4π.16.答案216000解析设生产产品A x件,生产产品B y件,利润之和为z元,则z=2100x+900y.根据题意得1.5x+0.5y≤150,x+0.3y≤90,5x+3y≤600,x,y∈N,即3x+y≤300,10x+3y≤900,5x+3y≤600,x,y∈N,作出可行域(如图).由10x+3y=900,5x+3y=600得x=60,y=100.当直线2100x+900y-z=0过点A(60,100)时,z取得最大值,z max=2100×60+900×100=216 000.故所求的最大值为216000元.三、解答题17.解析(Ⅰ)由已知,a 1b2+b2=b1,b1=1,b2=13,得a1=2,(3分)所以数列{a n}是首项为2,公差为3的等差数列,通项公式为a n=3n-1.(5分)(Ⅱ)由(Ⅰ)和a n b n+1+b n+1=nb n得b n+1=b n3,(7分)因此{b n}是首项为1,公比为13的等比数列.(9分)记{b n}的前n项和为S n,则S n=1-1 3n1-1=32-12×3n-1.(12分)18.解析(Ⅰ)证明:因为P在平面ABC内的正投影为D,所以AB⊥PD.因为D在平面PAB内的正投影为E,所以AB⊥DE.(2分)又PD∩DE=D,所以AB⊥平面PED,故AB⊥PG.又由已知可得,PA=PB,从而G是AB的中点.(4分)(Ⅱ)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.(5分)理由如下:由已知可得PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,又PA∩PC=P,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.(7分)连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心,由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD=23CG.(9分)由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=23PG,DE=13PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PE=22.在等腰直角三角形EFP中,可得EF=PF=2,(11分)所以四面体PDEF的体积V=13×12×2×2×2=43.(12分)19.解析(Ⅰ)当x≤19时,y=3800;当x>19时,y=3800+500(x-19)=500x-5700,所以y与x的函数解析式为y=3 800,x≤19,500x-5 700,x>19(x∈N).(4分)(Ⅱ)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n的最小值为19.(5分)(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800元,20台的费用为4300元,10台的费用为4800元,因此这100台机器在购买易损零件上所需费用的平均数为1100(3800×70+4300×20+4800×10)=4000(元).(7分)若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000元,10台的费用为4 500元,因此这100台机器在购买易损零件上所需费用的平均数为1100(4 000×90+4 500×10)=4 050(元).(10分)比较两个平均数可知,购买1台机器的同时应购买19个易损零件.(12分)20.解析 (Ⅰ)由已知得M(0,t),P t 22p ,t .(1分)又N 为M 关于点P 的对称点,故N t 2p ,t ,ON 的方程为y=p t x,代入y 2=2px 整理得px 2-2t 2x=0,解得x 1=0,x 2=2t 2p . 因此H 2t 2p ,2t .(4分)所以N 为OH 的中点,即|OH ||ON |=2.(6分)(Ⅱ)直线MH 与C 除H 以外没有其他公共点.(7分)理由如下:直线MH 的方程为y-t=p 2t x,即x=2t p (y-t).(9分)代入y 2=2px 得y 2-4ty+4t 2=0,解得y 1=y 2=2t,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其他公共点.(12分)21.解析 (Ⅰ)f '(x)=(x-1)e x +2a(x-1)=(x-1)(e x +2a).(i)设a ≥0,则当x ∈(-∞,1)时, f '(x)<0;当x ∈(1,+∞)时, f '(x)>0.所以f(x)在(-∞,1)单调递减,在(1,+∞)单调递增.(2分)(ii)设a<0,由f '(x)=0得x=1或x=ln(-2a).①若a=-e 2,则f '(x)=(x-1)(e x -e),所以f(x)在(-∞,+∞)单调递增.②若a>-e 2,则ln(-2a)<1,故当x ∈(-∞,ln(-2a))∪(1,+∞)时, f '(x)>0;当x ∈(ln(-2a),1)时, f '(x)<0.所以f(x)在(-∞,ln(-2a)),(1,+∞)单调递增,在(ln(-2a),1)单调递减.(4分)③若a<-e 2,则ln(-2a)>1,故当x ∈(-∞,1)∪(ln(-2a),+∞)时, f '(x)>0;当x ∈(1,ln(-2a))时, f '(x)<0.所以f(x)在(-∞,1),(ln(-2a),+∞)单调递增,在(1,ln(-2a))单调递减.(6分)(Ⅱ)(i)设a>0,则由(Ⅰ)知, f(x)在(-∞,1)单调递减,在(1,+∞)单调递增.又f(1)=-e, f(2)=a,取b 满足b<0且b<ln a 2,则f(b)>a 2(b-2)+a(b-1)2=a b 2-32b >0, 所以f(x)有两个零点.(8分)(ii)设a=0,则f(x)=(x-2)e x ,所以f(x)只有一个零点.(9分)(iii)设a<0,若a ≥-e 2,则由(Ⅰ)知, f(x)在(1,+∞)单调递增,又当x ≤1时f(x)<0,故f(x)不存在两个零点;(10分)若a<-e 2,则由(Ⅰ)知, f(x)在(1,ln(-2a))单调递减,在(ln(-2a),+∞)单调递增,又当x ≤1时f(x)<0,故f(x)不存在两个零点.(11分)综上,a 的取值范围为(0,+∞).(12分)22.证明 (Ⅰ)设E 是AB 的中点,连结OE.因为OA=OB,∠AOB=120°,所以OE ⊥AB,∠AOE=60°.(2分)在Rt △AOE 中,OE=12AO,即O 到直线AB 的距离等于☉O 半径,所以直线AB 与☉O 相切.(5分)(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设O'是A,B,C,D四点所在圆的圆心,作直线OO'.(7分)由已知得O在线段AB的垂直平分线上,又O'在线段AB的垂直平分线上,所以OO'⊥AB.同理可证,OO'⊥CD.所以AB∥CD.(10分)23.解析(Ⅰ)消去参数t得到C1的普通方程:x2+(y-1)2=a2.C1是以(0,1)为圆心,a为半径的圆.(2分)将x=ρcosθ,y=ρsinθ代入C1的普通方程中,得到C1的极坐标方程为ρ2-2ρsinθ+1-a2=0.(4分)(Ⅱ)曲线C1,C2的公共点的极坐标满足方程组ρ2-2ρsinθ+1-a2=0,ρ=4cosθ.(6分)若ρ≠0,由方程组得16cos2θ-8sinθcosθ+1-a2=0,(8分)由已知tanθ=2,可得16cos2θ-8sinθcosθ=0,从而1-a2=0,解得a=-1(舍去)或a=1.a=1时,极点也为C1,C2的公共点,在C3上.所以a=1.(10分)24.解析(Ⅰ)f(x)=x-4,x≤-1,3x-2,-1<x ≤32,-x+4,x>32,(4分)y=f(x)的图象如图所示.(6分) (Ⅱ)由f(x)的表达式及图象知,当f(x)=1时,可得x=1或x=3;或x=5,(8分)当f(x)=-1时,可得x=13故f(x)>1的解集为{x|1<x<3};f(x)<-1的解集为 x|x<1或x>5.(9分)3所以|f(x)|>1的解集为 x|x<1或1<x<3或x>5.(10分)3。

2016年高考文科数学四川卷(含详细答案)

2016年高考文科数学四川卷(含详细答案)

数学试卷 第1页(共33页)数学试卷 第2页(共33页) 数学试卷 第3页(共33页)绝密★启用前 2016年普通高等学校招生全国统一考试(四川卷)数学(文史类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至3页,第Ⅱ卷4至6页,共6页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上.在本试题卷、草稿纸上答题无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑. 第Ⅰ卷共10小题.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设i 为虚数单位,则复数21i =+() ( )A .0B .2C .2iD .2+2i2. 设集合{|15}A x x =≤≤,Z 为整数集,则集合A Z 中元素的个数是( )A .6B .5C .4D .3 3. 抛物线24y x =的焦点坐标是( )A .0,2()B .0,1()C .2,0()D .1,0()4. 为了得到函数3y sin x π=+()的图像,只需把函数y sinx =的图象上所有的点( )A .向左平行移动个单位长度B .向右平行移动个单位长度C .向上平行移动个单位长度D .向下平行移动个单位长度5. 设p :实数x y ,满足1x >且1y >,q :实数x y ,满足2x y +>,则p 是q 的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6. 已知a 为函数312f x x x =-()的极小值点,则a =( )A .4-B .2-C .4D .27. 某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据: 1.120.05lg ≈, 1.30.11lg ≈,20.30lg ≈)( )A .2018年B .2019年C .2020年D .2021年8. 秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提到的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )A .35B .20C .18D .99. 已知正三角形ABC的边长为平面ABC 内的动点P ,M 满足||1AP =,PM =MC ,则2||BM 的最大值是( )A .434B .49C D10.设直线1l ,2l 分别是函数l n 01l n 1x x f x x x -⎧=⎨⎩,<<,(),>,图像上点1P ,2P 处的切线,1l 与2l 垂直相交于点P ,且1l ,2l 分别与y 轴相交于A ,B ,则PAB △的面积的取值范围是( )A .0,1()B .0,2()C .0+∞(,)D .1+∞(,)姓名________________ 准考证号_____________----------在-------------------此-------------------卷-------------------上-------------------答-------------------题--------------------无--------------------效-----------数学试卷 第4页(共33页)数学试卷 第5页(共33页) 数学试卷 第6页(共33页)第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿纸上无效.第Ⅱ卷共11小题.二、填空题:本大题共5小题,每小题5分,共25分. 11. 750sin ︒= .12. 已知某三棱锥的三视图如图所示,则该三棱锥的体积是 .13. 从2389,,,中任取两个不同的数字,分别记为a ,b ,则 log a b 为整数的概率是 .14. 若函数f x ()是定义在R 上的周期为2的奇函数,当0<1x <时,4xf x =(),则522f f -+()()= . 15. 在平面直角坐标系中,当Px y (,)不是原点时,定义P 的“伴随点”为2222'(,)y x P x y x y -++;当P 是原点时,定义P 的“伴随点”为它自身.现有下列命题:①若点A 的“伴随点”是A ',则点A '的“伴随点”是点A ; ②单位圆上的点的“伴随点”仍在单位圆上;③若两点关于x 轴对称,则它们的“伴随点”关于y 轴对称; ④若三点在同一条直线上,则它们的“伴随点”一定共线. 其中真命题是 (写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)我国是世界上严重缺水的国家,某市 为了制定合理的节水方案,对居民用 水情况进行了调查.通过抽样,获得了 某年100位居民每人的月均用水量 (单位:吨).将数据按照[0,0.5), [0.5,1),…[4,4.5]分成9组,制成了如图所示的频率分布直方图. (Ⅰ)求直方图中a 的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (Ⅲ)估计居民月均用水量的中位数.17. (本小题满分12分)如图,在四棱锥P ABCD -中,PA CD ⊥,ADBC ,90ADC PAB ∠=∠=︒,BC =12CD AD =.(Ⅰ)在平面PAD 内找一点M ,使得直线CM 平面PAB ,并说明理由;(Ⅱ)证明:平面PAB ⊥平面PBD .18. (本小题满分12分)在ABC △中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos cos sin +=A B Ca b c. (Ⅰ)证明:sin sin sin A B C =;(Ⅱ)若22265b c a bc +-=,求tan B .19. (本小题满分12分)已知数列{}n a 的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+,其中0q >,*n ∈N .(Ⅰ)若2a ,3a ,23a a +成等差数列,且数列{}n a 的通项公式;(Ⅱ)设双曲线2221ny x a -=的离心率为n e ,且22e =,求22212n e e e ++⋯+.20. (本小题满分13)已知椭圆()2222:10x y E a b a b+=>>的一个焦点与短轴的两个端点是正三角形的三个顶点,点12P ,)在椭圆E 上.(Ⅰ)求椭圆E 的方程;(Ⅱ)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|| |||| ||MA MB MC MD =.21. (本小题满分14分)设函数2ln f x ax a x =--(),1=x eg x x e-(),其中a ∈R ,e =2.718…为自然对数的底数.(Ⅰ)讨论f x ()的单调性; (Ⅱ)证明:当1x >时,0gx ()>; (Ⅲ)确定a 的所有可能取值,使得f x g x ()>()在区间1+∞(,)内恒成立.{1,2,3,4,5}Z A Z中元素的个数为A=A=的元素一一列举出来即可【提示】把集合{【考点】集合中交集的运算3 / 11数学试卷 第10页(共33页)数学试卷 第11页(共33页)数学试卷 第12页(共33页)|||DB|||2DA DC ===,,以3).设(,)P x y ,由已知||1AP =,得131,x y x PM MC M BM ⎛⎫⎛-++== ⎪ ,∴,∴22(1)(||x y BM ++=∴()2max||44BM=2DA DB DC===,因此的轨迹是圆,则2(xBM=【考点】平面向量的计算121B Pxxx=+【提示】先设出切点坐标,利用切线垂直求出这两点横坐标的关系,同时得出切线方程,从而得点5 / 11数学试卷第16页(共33页)数学试卷第17页(共33页)数学试卷第18页(共33页)7 / 11数学试卷 第23页(共33页) 数学试卷 第24页(共33页)ABAP A =,PBD ⊂平面【提示】(Ⅰ)先证明线线平行,再利用线面平行的判定定理证明线面平行;9 / 11222(1)(11)(1)[1]n n e q q -++=++++++222(1)1]n n q q--++数学试卷 第28页(共33页)数学试卷 第29页(共33页)数学试卷第30页(共33页)555(2)(2)(2224MC MD m m =-++=222121211[()()]44MA MB AB x x y y ==-+-=24(2m m -=MA MB MC MD .【提示】(Ⅰ)利用点在椭圆上,列出方程,解出(,),(,x y x y MA MB 用1x ,【考点】直线与圆锥曲线的交线11 / 11。

2016年普通高等学校招生全国统一考试(四川卷)数学试题 (文科)解析版

2016年普通高等学校招生全国统一考试(四川卷)数学试题 (文科)解析版

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设i 为虚数单位,则复数2(1)i +=( )(A) 0 (B)2 (C)2i (D)2+2i 【答案】C 【解析】试题分析:由题意,22(1)122i i i i +=++=,故选C. 考点:复数的运算.【名师点睛】本题考查复数的运算.数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.2. 设集合{|15}A x x =≤≤,Z 为整数集,则集合A ∩Z 中元素的个数是( )(A)6 (B) 5 (C)4 (D)3 【答案】B考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.3. 抛物线24y x =的焦点坐标是( )(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0) 【答案】D 【解析】试题分析:由题意,24y x =的焦点坐标为(1,0),故选D. 考点:抛物线的定义.【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单的性质是我们重点要掌握的内容,一定要熟记掌握.4. 为了得到函数sin()3y x π=+的图象,只需把函数y=sinx 的图象上所有的点( )(A)向左平行移动3π个单位长度 (B) 向右平行移动3π个单位长度 (C) 向上平行移动3π个单位长度 (D) 向下平行移动3π个单位长度 【答案】A考点:三角函数图像的平移.【名师点睛】本题考查三角函数的图象平移,函数()y f x =的图象向右平移a 个单位得()y f x a =-的图象,而函数()y f x =的图象向上平移a 个单位得()y f x a =+的图象.左右平移涉及的是x 的变化,上下平移涉及的是函数值()f x 加减平移的单位.5. 设p:实数x ,y 满足1x >且1y >,q: 实数x ,y 满足2x y +>,则p 是q 的( ) (A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件 【答案】A 【解析】试题分析:由题意,1x >且1y >,则2x y +>,而当2x y +>时不能得出,1x >且1y >.故p 是q 的充分不必要条件,选A. 考点:充分必要条件.【名师点睛】本题考查充分性与必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识结合起来考.有许多情况下可利用充分性、必要性和集合的包含关系得出结论.6. 已知a 函数3()12f x x x =-的极小值点,则a =( ) (A)-4 (B) -2 (C)4 (D)2 【答案】D 【解析】试题分析:()()()2312322f x x x x '=-=+-,令()0f x '=得2x =-或2x =,易得()f x 在()2,2-上单调递减,在()2,+∞上单调递增,故()f x 极小值为()2f ,由已知得2a =,故选D.考点:函数导数与极值.【名师点睛】本题考查函数的极值.在可导函数中函数的极值点0x 是方程'()0f x =的解,但0x 是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在0x 附近,如果0x x <时,'()0f x <,0x x >时'()0f x >,则0x 是极小值点,如果0x x <时,'()0f x >,0x x >时,'()0f x <,则0x 是极大值点,7. 某公司为激励创新,计划逐年加大研发奖金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)(A)2018年 (B) 2019年 (C)2020年 (D)2021年 【答案】B考点:1.增长率问题;2.常用对数的应用.【名师点睛】本题考查等比数列的实际应用.在实际问题中平均增长率问题可以看作是等比数列的应用,解题时要注意把哪个作为数列的首项,然后根据等比数列的通项公式写出通项,列出不等式或方程就可解得结论.8. 秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )(A)35 (B) 20 (C)18 (D)9 【答案】C考点:1.程序与框图;2.秦九韶算法;3.中国古代数学史.【名师点睛】程序框图是高考的热点之一,几乎是每年必考内容,多半是考循环结构,基本方法是将每次循环的结果一一列举出来,与判断条件比较即可.9. 已知正三角形ABC 的边长为32,平面ABC 内的动点P ,M 满足1AP =uu u r ,PM MC =uuu r uuu r ,则2BMuuu r的最大值是( ) (A)443 (B) 449(C) 43637+ (D) 433237+【答案】B 【解析】考点:1.向量的数量积运算;2.向量的夹角;3.解析几何中与圆有关的最值问题.【名师点睛】本题考查平面向量的数量积与向量的模,由于结论是要求向量模的平方的最大值,因此我们要把它用一个参数表示出来,解题时首先对条件进行化简变形,本题中得出120ADC ADB BDC ∠=∠=∠=︒,且2DA DBDC ===,因此我们采用解析法,即建立直角坐标系,写出,,,A B C D 坐标,同时动点P 的轨迹是圆,()(22214x y BM +++=,因此可用圆的性质得出最值.因此本题又考查了数形结合的数学思想.10. 设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( ) (A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞) 【答案】A 【解析】试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A x B x -++又1l 与2l 的交点为221111112222111121121,ln .1,1,0111211PAB A B P PAB x x x x P x x S y y x S x x x x ∆∆⎛⎫-++>∴=-⋅=<=∴<< ⎪++++⎝⎭,故选A.考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围.【名师点睛】本题首先考查导数的几何意义,其次考查最值问题,解题时可设出切点坐标,利用切线垂直求出这两点的关系,同时得出切线方程,从而得点,A B 坐标,由两直线相交得出P 点坐标,从而求得面积,题中把面积用1x 表示后,可得它的取值范围.解决本题可以是根据题意按部就班一步一步解得结论.这也是我们解决问题的一种基本方法,朴实而基础,简单而实用.二、填空题:本大题共5小题,每小题5分,共25分.11.0750sin = .【答案】12考点:三角函数诱导公式【名师点睛】本题也可以看作是一个来自于课本的题,直接利用课本公式解题,这告诉我们一定要立足于课本.有许多三角函数的求值问题一般都是通过三角函数的公式把函数化为特殊角的三角函数值而求解.12.已知某三菱锥的三视图如图所示,则该三菱锥的体积.侧视图俯视图【答案】3【解析】试题分析:由三视图可知该几何体是一个三棱锥,且底面积为112S =⨯=1,所以该几何体的体积为11133V Sh ===考点:1.三视图;2.几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.13.从2、3、8、9任取两个不同的数值,分别记为a 、b ,则log a b 为整数的概率= . 【答案】16考点:古典概型.【名师点睛】本题考查古典概型,解题关键是求出基本事件的总数,本题中所给数都可以作为对数的底面,因此所有对数的个数就相当于4个数中任取两个的全排列,个数为44A ,而满足题意的只有2个,由概率公式可得概率.在求事件个数时,涉及到排列组合的应用,涉及到两个有理的应用,解题时要善于分析.14.已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4xf x =,则5()(1)2f f -+= .【答案】-2考点:1.函数的奇偶性;2.函数的周期性.【名师点睛】本题考查函数的奇偶性与周期性.属于基础题,在涉及函数求值问题中,可利用周期性()()f x f x T =+,化函数值的自变量到已知区间或相邻区间,如果是相邻区间再利用奇偶性转化到已知区间上,再由函数式求值即可.15.在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为'2222(,)y xP x y x y -++;当P 是原点时,定义P 的“伴随点”为它自身,现有下列命题: ①若点A 的“伴随点”是点'A ,则点'A 的“伴随点”是点A. ②单元圆上的“伴随点”还在单位圆上.③若两点关于x 轴对称,则他们的“伴随点”关于y 轴对称 ④若三点在同一条直线上,则他们的“伴随点”一定共线. 其中的真命题是 . 【答案】②③ 【解析】 试题分析:对于①,若令(1,1)P ,则其伴随点为11(,)22P '-,而11(,)22P '-的伴随点为(1,1)--,而不是P ,故①错误;对于②,设曲线(,)0f x y =关于x 轴对称,则(,)0f x y -=对曲线(,)0f x y =表示同一曲线,其伴随曲线考点:1.新定义问题;2.曲线与方程.【名师点睛】本题考查新定义问题,属于创新题,符合新高考的走向.它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.本题新概念“伴随”实质是一个变换,一个坐标变换,只要根据这个变换得出新的点的坐标,然后判断,问题就得以解决.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16、(12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),……[4,4.5]分成9组,制成了如图所示的频率分布直方图.0.500.42(I)求直方图中的a值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;(Ⅲ)估计居民月均用水量的中位数.a ;(Ⅱ)36000;(Ⅲ)2.04.【答案】(Ⅰ)0.30试题解析:(Ⅰ)由频率分布直方图,可知:月用水量在[0,0.5]的频率为0.08×0.5=0.04.同理,在[0.5,1),(1.5,2],[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+.025+0.06+0.04+0.02)=0.5×a+0.5×a,解得a=0.30.(Ⅱ)由(Ⅰ),100位居民月均水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300000×0.13=36000.(Ⅲ)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5所以2≤x<2.5.由0.50×(x–2)=0.5–0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.考点:频率分布直方图、频率、频数的计算公式【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题解决问题的能力.在频率分布直方图中,第个小矩形面积就是相应的频率或概率,所有小矩形面积之和为1,这是解题的关键,也是识图的基础.17、(12分)如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,12BC CD AD==.D CBAP(I)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(II)证明:平面PAB⊥平面PBD.【答案】(Ⅰ)取棱AD的中点M,证明详见解析;(Ⅱ)证明详见解析. 试题解析:M D CBAP(I)取棱AD的中点M(M∈平面P AD),点M即为所求的一个点.理由如下:因为AD‖BC,BC=12AD,所以BC‖AM, 且BC=AM.所以四边形AMCB是平行四边形,从而CM‖AB.又AB⊂平面P AB,CM ⊄平面P AB,所以CM∥平面P AB.(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点) (II)由已知,P A⊥AB, P A⊥CD,因为AD∥BC,BC=12AD,所以直线AB与CD相交,所以P A⊥平面ABCD. 从而P A⊥BD.因为AD∥BC,BC=12 AD,所以BC∥MD,且BC=MD.所以四边形BCDM是平行四边形.所以BM=CD=12AD,所以BD⊥AB.又AB∩AP=A,所以BD⊥平面P AB.又BD⊂平面PBD,所以平面P AB⊥平面PBD.考点:线面平行、线线平行、线线垂直、线面垂直.【名师点睛】本题考查线面平行、面面垂直的判断,考查空间想象能力、分析问题的能力、计算能力.证明线面平行时,可根据判定定理的条件在平面内找一条平行线,而这条平行线一般是由过面外的直线的一个平面与此平面相交而得,证明时注意定理的另外两个条件(线在面内,线在面外)要写全,否则会被扣分,求线面角(以及其他角),证明面面垂直时,要证线面垂直,要善于从图形中观察有哪些线线垂直,从而可能有哪个线面垂直,确定要证哪个线线垂直,切忌不加思考,随便写.18、(本题满分12分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos cos sin A B C a b c +=. (I )证明:sin sin sin A B C =;(II )若22265b c a bc +-=,求tan B . 【答案】(Ⅰ)证明详见解析;(Ⅱ)4.试题解析:(Ⅰ)根据正弦定理,可设sin a A =sin b B =sin c C =k (k >0). 则a =k sin A ,b =k sin B ,c =k sin C . 代入cos A a +cos B b =sin C c中,有 cos sin A k A +cos sin B k B =sin sin C k C,变形可得 sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π–C )=sin C ,所以sin A sin B =sin C .(Ⅱ)由已知,b 2+c 2–a 2=65bc ,根据余弦定理,有 cos A =2222b c a bc +-=35.所以sin A =45. 由(Ⅰ),sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B , 故sin tan 4cos B B B ==. 考点:正弦定理、余弦定理、商数关系、平方关系.【名师点睛】本题考查正弦定理、余弦定理、商数关系等基础知识,考查学生的分析问题的能力和计算能力.在解三角形的应用中,凡是遇到等式中有边又有角时,可用正弦定理进行边角互化,一种是化为三角函数问题,一般是化为代数式变形问题.在角的变化过程中注意三角形的内角和为180︒这个结论,否则难以得出结论.19、(本小题满分12分)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q >0,*n N ∈ . (Ⅰ)若2323,,a a a a + 成等差数列,求{}n a 的通项公式; (Ⅱ)设双曲线2221n y x a -= 的离心率为n e ,且22e = ,求22212n e e e ++⋅⋅⋅+. 【答案】(Ⅰ)1=n n a q -;(Ⅱ)1(31)2n n +-.(Ⅱ)先利用双曲线的离心率定义得到n e 的表达式,再由22e =解出q 的值,最后利用等比数列的求和公式求解计算.试题解析:(Ⅰ)由已知,1211,1,n n n n S qS S qS +++=+=+ 两式相减得到21,1n n a qa n ++=?.又由211S qS =+得到21a qa =,故1n n a qa +=对所有1n ³都成立.所以,数列{}n a 是首项为1,公比为q 的等比数列.从而1=n n a q -.由2323+a a a a ,,成等差数列,可得32232=a a a a ++,所以32=2,a a ,故=2q .所以1*2()n n a n -=?N.考点:数列的通项公式、双曲线的离心率、等比数列的求和公式【名师点睛】本题考查数列的通项公式、双曲线的离心率、等比数列的求和公式等基础知识,考查学生的分析问题解决问题的能力、计算能力.在第(Ⅰ)问中,已知的是n S 的递推式,在与n S 的关系式中,经常用1n -代换n (2n ≥),然后两式相减,可得n a 的递推式,利用这种方法解题时要注意1a ;在第(Ⅱ)问中,按题意步步为营,认真计算.不需要多少解题技巧,符合文科生的特点.20、(本小题满分13分)已知椭圆E :22221(0)x y a b a b+=>>的一个焦点与短轴的两个端点是正三角形的三个顶点,点1)2P 在椭圆E 上. (Ⅰ)求椭圆E 的方程;(Ⅱ)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:MA MB MC MD ⋅=⋅.【答案】(1)2214x y +=;(2)证明详见解析. 【解析】试题分析:(Ⅰ)由椭圆两个焦点与短轴的一个端点是正三角形的三个顶点可得2a b =,椭圆的标准方程中可减少一个参数,再利用1)2P 在椭圆上,可解出b 的值,从而得到椭圆的标准方程;(Ⅱ)首先设出直线l 方程为12y x m =+,同时设交点1122(,),(,)A x y B x y ,把l 方程与椭圆方程联立后消去y 得x 的二次方程,利用根与系数关系,得1212,x x x x +,由M A M B ⋅214AB =求得MA MB ⋅(用m 表示),由OM 方程12y x =-具体地得出,C D 坐标,也可计算出MC MD ⋅,从而证得相等. 试题解析:(I )由已知,a =2b . 又椭圆22221(0)x y a b a b +=>>过点1)2P ,故2213414b b +=,解得21b =. 所以椭圆E 的方程是2214x y +=.所以25)(2)4MC MD m m m ⋅=-=-. 又222212*********[()()][()4]4416MA MB AB x x y y x x x x ⋅==-+-=+- 22255[44(22)](2)164m m m =--=-. 所以=MA MB MC MD ⋅⋅.考点:椭圆的标准方程及其几何性质.【名师点睛】本题考查椭圆的标准方程及其几何性质,考查学生的分析问题解决问题的能力和数形结合的思想.在涉及到直线与椭圆(圆锥曲线)的交点问题时,一般都设交点坐标为1122(,),(,)x y x y ,同时把直线方程与椭圆方程联立,消元后,可得1212,x x x x +,再把MA MB ⋅用12,x x 表示出来,并代入刚才的1212,x x x x +,这种方法是解析几何中的“设而不求”法.可减少计算量,简化解题过程.21、(本小题满分14分)设函数2()ln f x ax a x =--,1()xe g x x e =-,其中q R ∈,e=2.718…为自然对数的底数. (Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x >1时,g(x)>0;(Ⅲ)确定a 的所有可能取值,使得()()f x g x >在区间(1,+∞)内恒成立.【答案】(1)当x ∈(时,'()f x <0,()f x 单调递减;当x ∈+)∞时,'()f x >0,()f x 单调递增;(2)证明详见解析;(3)a ∈1+)2∞[,.(Ⅰ)的结论,缩小a 的范围,设()g x =111ex x --11x x e x xe ---,并设()s x =1e x x --,通过研究()s x 的单调性得1x >时,()0g x >,从而()0f x >,这样得出0a ≤不合题意,又102a <<时,()f x 的极小值点1x =>,且(1)0f f <=,也不合题意,从而12a ≥,此时考虑1211()2e x h x ax x x -¢=-+-得'()h x 2111x x x x>-+-0>,得此时()h x 单调递增,从而有()(1)0h x h >=,得出结论. 试题解析:(I )2121'()20).ax f x ax x x x-=-=>( 0a ≤当时, '()f x <0,()f x 在0+∞(,)内单调递减. 0a >当时,由'()f x =0,有x =当x ∈(时,'()f x <0,()f x 单调递减; 当x ∈+)∞时,'()f x >0,()f x 单调递增.因此()h x 在区间1+)∞(,单调递增.又因为(1)h =0,所以当1x >时,()h x =()f x -()g x >0,即()f x >()g x 恒成立.综上,a ∈1+)2∞[,.考点:导数的计算、利用导数求函数的单调性,最值、解决恒成立问题.【名师点睛】本题考查导数的计算、利用导数求函数的单调性,最值、解决恒成立问题,考查学生的分析问题解决问题的能力和计算能力.求函数的单调性,基本方法是求'()f x ,解方程'()0f x =,再通过'()f x 的正负确定()f x 的单调性;要证明函数不等式()()f x g x >,一般证明()()f x g x -的最小值大于0,为此要研究函数()()()h x f x g x =-的单调性.本题中注意由于函数()h x 有极小值没法确定,因此要利用已经求得的结论缩小参数取值范围.比较新颖,学生不易想到.有一定的难度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档