变频器屏蔽

合集下载

变频器如何抗干扰变频器干扰解决方法

变频器如何抗干扰变频器干扰解决方法

变频器如何抗干扰变频器干扰解决方法一、变频器干扰的原因变频器在工作过程中会产生一定的电磁干扰,主要有以下几个原因:1.高频脉冲干扰:变频器由电机驱动器和电子器件组成,电子器件工作时会产生高频脉冲干扰,对周围电子设备产生辐射干扰。

2.电磁辐射:变频器中的电路部件和电机线圈会产生电磁场辐射,导致周围电子设备受到电磁干扰。

3.电源线干扰:变频器需要接入电源,当供电电源线路不稳定或存在电磁干扰时,会影响变频器正常工作并产生干扰。

二、变频器抗干扰的解决方法1.优化变频器布局:合理安排变频器及其接线的位置,将尽量远离其他敏感设备,减少电磁辐射对其它设备的干扰。

2.使用屏蔽电缆:通过使用屏蔽电缆连接变频器与电机,减少电磁辐射和电磁感应,从而减小干扰。

3.安装滤波器:安装电力滤波器来滤除变频器输出端的高频脉冲干扰,减少对周围设备的辐射。

4.增加电磁隔离屏蔽:在变频器周围添加金属屏蔽罩或者设施屏蔽屏蔽间隔来减少电磁波的辐射,从而保护周围设备。

5.优化供电电源:通过增加稳压器、滤波电容、终端电阻等措施,保证供电线路稳定,减少电源线干扰。

6.地线连接优化:保证变频器、电机、控制系统等设备都接地良好,减少电磁波的辐射和对其他设备的干扰。

7.使用额外的电磁屏蔽材料:在关键部位使用电磁屏蔽材料,如电磁屏蔽垫、屏蔽套管等,减少电磁波干扰。

8.添加滤波和降压器:通过在变频器的输入端添加滤波器,滤除电网的高频干扰信号,降低输入电源的干扰。

9.使用低噪声电源:选择低噪声的电源供应系统,减少输入变频器的电源噪声。

三、变频器干扰预防1.确保变频器本身具备较低的辐射性和敏感性,选择正规生产厂家和合格产品。

2.在购买变频器时,要选择具有良好抗干扰能力的产品,并参考其抗干扰性能指标。

3.对变频器进行适当的屏蔽和隔离设计,加强变频器周围环境的电磁兼容性。

4.在使用变频器时,要仔细阅读和遵守变频器的使用说明书,正确安装和接线,避免出现安装错误和使用不当的情况。

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案一、引言变频器是一种广泛应用于工业领域的电子设备,它通过改变电源频率来控制电机的转速。

然而,变频器在工作过程中会产生一定的电磁干扰,可能对其他设备造成干扰。

本文将详细介绍变频器产生的干扰类型及其解决方案。

二、变频器产生的干扰类型1. 电磁辐射干扰:变频器在工作时会产生高频电磁波,这些电磁波可能会干扰附近的电子设备,如无线通信设备、计算机等。

干扰可能表现为信号丢失、数据错误等问题。

2. 电源干扰:变频器工作时会对电源系统产生一定的干扰,可能导致其他设备的电源质量下降,甚至引起设备故障。

3. 传导干扰:变频器通过电缆与电机连接,电缆可能成为传导干扰的途径,将干扰信号传递给其他设备。

三、解决方案1. 电磁辐射干扰的解决方案:(1)屏蔽:在变频器周围设置金属屏蔽罩,将电磁波限制在一定范围内,减少对其他设备的干扰。

(2)滤波器:安装滤波器可以减少变频器输出端的高频噪声,降低电磁辐射干扰。

(3)距离隔离:将变频器与其他设备保持一定距离,减少电磁波传播的机会。

2. 电源干扰的解决方案:(1)电源滤波器:安装电源滤波器可以减少变频器对电源系统的干扰,提高电源质量。

(2)稳压器:使用稳压器可以保持电源稳定,减少电源干扰对其他设备的影响。

3. 传导干扰的解决方案:(1)电缆屏蔽:使用屏蔽电缆可以减少传导干扰的发生,将干扰信号限制在电缆内部,不影响其他设备。

(2)地线连接:良好的地线连接可以降低传导干扰的发生,将干扰信号引入地线,减少对其他设备的干扰。

四、结论变频器在工作过程中会产生不同类型的干扰,对其他设备造成影响。

通过采取相应的解决方案,可以有效减少干扰的发生,保障其他设备的正常运行。

在实际应用中,应根据具体情况选择合适的解决方案,并严格按照标准进行安装和调试,以确保设备的稳定性和可靠性。

变频器干扰解决方法

变频器干扰解决方法

变频器干扰解决方法
变频器干扰是指变频器在运行时产生的电磁干扰对其他设备或系统造成的影响。

以下是一些解决变频器干扰的方法:
1. 选择合适的变频器:选择质量可靠的变频器,它应该符合相应的国家标准和认证。

2. 使用滤波器:安装电磁滤波器可以有效地减少变频器产生的电磁干扰。

这些滤波器可以安装在电源线路上,也可以安装在变频器输入输出端口上。

3. 接地和屏蔽:确保变频器和受干扰设备都有良好的接地,使用金属屏蔽来减少电磁辐射。

4. 电磁隔离:对于特别敏感的设备,可以考虑使用电磁隔离技术,将变频器与其他设备隔离开来,减少干扰。

5. 优化布线:合理布置电源线和信号线,避免它们相互干扰。

6. 选择合适的工作频率:变频器的工作频率选择对干扰有一定影响。

根据被干扰设备的特点和要求,选择合适的工作频率。

7. 增加滤波元件:在变频器输入和输出端口上增加电容、电感等滤波元件,可
以进一步减少干扰。

8. 定期维护和检测:定期检查和维护变频器和相关设备,及时发现和排除问题,减少干扰的可能性。

9. 软起动:使用软起动功能可以减少变频器启动时的电磁干扰。

10. 良好的排风散热:保持变频器的良好散热,可以减少电磁干扰。

以上是一些常见的解决变频器干扰的方法,具体选择和采取哪些方法要根据具体情况和需要进行综合考虑。

变频器抗干扰方法

变频器抗干扰方法

变频器抗干扰方法变频器是一种用来控制电动机转速的装置,广泛应用于工业生产中。

然而,由于变频器的调节过程中涉及到高频开关过程,就会产生电磁干扰,对其它电子设备和通信系统造成干扰。

因此,为了减少变频器的电磁干扰对周围设备的影响,需要采取一系列抗干扰措施。

首先,为了降低变频器的辐射干扰,可以采取以下措施:1.优化布线:合理布设电源线、控制线和信号线,使其远离敏感的模拟控制线路和通信线路,减少干扰的传递。

2.使用屏蔽线缆:将电源线、以及输入输出信号线采用带有屏蔽层的线缆,以减少干扰的辐射和传递。

3.增加滤波器:在变频器输入端安装滤波器,能够滤除高频噪声,减少干扰的辐射。

4.安装金属屏蔽罩:在变频器周围安装金属屏蔽罩,能够有效屏蔽辐射干扰。

其次,为了降低变频器的传导干扰,需要采取以下措施:1.使用滤波器:在变频器输入端和输出端都安装滤波器,以减少输入输出电缆的传导干扰。

2.分开供电:变频器的电源线和控制信号线分开供电,减少共模干扰。

3.添加低噪声电源:为变频器提供低噪声的电源,减少变频器输出端的电磁噪声。

4.选择合适的电缆:使用屏蔽效果好的电缆线材以减少传导干扰。

此外,为了提高变频器的抗干扰能力,还可以采取以下措施:1.优化地线:建立良好的接地系统,确保变频器和其它设备的共同接地,减少干扰的传导。

2.合理设置工作频率:选择合适和规范的工作频率范围,减少对其它设备的干扰。

3.添加滤波电容:在变频器输入端和输出端添加滤波电容,以降低高频噪声和干扰。

4.合理布置设备:将变频器和其它设备互相隔离,减少干扰传递。

最后,为了保证变频器的抗干扰性能,需要进行电磁兼容性测试和评估。

这样能够及早发现问题,并对干扰源进行识别和消除。

总结来说,为了降低变频器的电磁干扰对周围设备的影响,我们可以从减少辐射干扰、传导干扰和提高抗干扰能力等方面进行考虑。

通过合理的设备布局,优化的电路设计以及合适的滤波措施,能够有效地降低变频器的干扰程度,确保其正常稳定的运行。

变频器OC报警维修分析及报警屏蔽方法

变频器OC报警维修分析及报警屏蔽方法

变频器OC报警维修分析及报警屏蔽方法。

万川达变频器厂家分享:变频器的电路检修中,尤其是将驱动电路与主电路脱开检修的过程中,经常碰到OC故障报警现象,而此时变频器处于故障保护状态,脉冲传输通道被关闭,那么脉冲传输通道、驱动IC电路是否能正常工作呢?这就需要采取措施,暂时先屏蔽OC 报警,便于检测脉冲传输通道的故障。

本文以采用PC929驱动IC的电路为例(见图1),探讨一下OC故障信号的特性及其屏蔽方法。

我们先看一下OC故障的生成机制,再进而找到屏蔽OC故障的方法。

OC信号的特性:由PC929内部的IGBT保护电路的电路特性可知,IGBT保护电路可等效为2输入端与门电路,逻辑关系式为AB=Y。

在A、B端两路输入信号均为高电平时,输出端Y端为高电平时,输出OC信号。

OC信号的生成条件:1)驱动IC处于脉冲传输状态,有正常脉冲信号输入,输入端11脚也有正常脉冲信号输出;2)OC故障检测信号输入端9脚同时为高电平。

满足内部IGBT 保护电路的OC信号输出动作条件,从8脚输出OC信号。

图1 屏蔽OC故障报警示意图OC信号的“瞬态”特性:PC929的输出OC信号,经光耦合器进行光电转换和隔离后,传输至MCU主板电路,MCU接受OC信号后,判断IGBT出现严重过载故障,故停止脉冲信号的传输,同时在操作显示面板给出OC故障报警(显示OC或SC故障代码);随后,PC929内部IGBT保护电路因A 端信号为低电平,AB=Y的逻辑关系不再成立,OC信号随之消失。

这说明PC929输出的OC信号是一个“瞬态信号”,不是在故障发生后一直“保持住”的。

当变频器实施OC报警、停机保护动作后,我们在驱动电路(参见图1)PC929的8脚或PC2的输出端4脚,并不能检测到OC信号——OC信号输出时(PC1的8脚)表现为-9V*低电平和(PC2的4脚)0V低电平,此时驱动IC的报警过程“实际上”已经结束。

变频器说明书以对OC故障的注释:过电流,变频器输出电流超额定值的200%;变频器输出侧(负载)短路;功率模块短路。

变频器抗电磁干扰措施有哪些

变频器抗电磁干扰措施有哪些

变频器抗电磁干扰措施有哪些变频器是一种用于调节电动机转速的设备,它通过改变电源频率来控制电机的转速。

然而,由于其工作原理和电磁特性,变频器在工作过程中容易受到电磁干扰的影响。

为了保证变频器的正常工作和延长设备的使用寿命,必须采取一定的措施来抗电磁干扰。

1. 电磁屏蔽。

电磁屏蔽是最常见的抗电磁干扰措施之一。

通过在变频器的外壳和内部电路上添加屏蔽层,可以有效地阻止外部电磁波对设备的干扰。

屏蔽层通常采用导电材料制成,如铜箔、铝箔等,能够有效地吸收和屏蔽外部电磁波,保护设备的正常工作。

2. 地线连接。

良好的接地是抗电磁干扰的重要措施之一。

通过将变频器的外壳和内部电路与地线连接,可以有效地排除设备内部的静电和电磁干扰,保证设备的正常运行。

此外,地线连接还可以减少设备与外部环境的电磁耦合,提高设备的抗干扰能力。

3. 滤波器。

在变频器的输入端和输出端添加滤波器是抗电磁干扰的有效措施之一。

输入端滤波器主要用于滤除电源输入端的高频干扰信号,输出端滤波器主要用于滤除电机输出端的高频干扰信号。

通过滤波器的作用,可以有效地减少电磁干扰对设备的影响,保证设备的正常运行。

4. 等效电路设计。

在变频器的电路设计中,采用合理的等效电路设计是抗电磁干扰的重要手段之一。

通过合理设计电路的布局和连接方式,可以减少电路间的电磁耦合,减小电磁干扰的影响。

此外,合理设计电路的等效电路参数,可以提高电路的抗干扰能力,保证设备的正常工作。

5. 屏蔽电缆。

在变频器和电机之间采用屏蔽电缆连接是抗电磁干扰的有效措施之一。

屏蔽电缆通常具有导电屏蔽层,可以有效地阻止外部电磁波对信号传输的干扰,保证信号的准确传输。

此外,屏蔽电缆还可以减少电磁波对设备的影响,提高设备的抗干扰能力。

6. 环境监测。

定期对变频器周围的电磁环境进行监测是抗电磁干扰的重要手段之一。

通过监测周围的电磁干扰情况,可以及时发现和排除电磁干扰的影响,保证设备的正常运行。

此外,监测环境的变化还可以为设备的抗干扰措施提供参考依据,保证设备的稳定运行。

变频器有效的抗干扰措施

变频器有效的抗干扰措施

变频器有效的抗干扰措施变频器是一种电力设备,主要用于控制电动机的转速和频率。

由于其工作原理的特殊性,变频器在使用过程中容易受到干扰,从而影响工作的稳定性和性能。

为了提高变频器的抗干扰能力,下面列举了一些有效的措施。

1.地线连接良好:变频器的金属外壳和内部的各个部件都需要通过地线进行连接,确保设备的安全接地。

地线是变频器有效抗干扰的基础,良好的接地可以有效地降低干扰电压和干扰电流。

2.电源滤波:变频器电源端通常会存在电源波动、杂散干扰等问题,可以通过选用电源滤波器来过滤这些干扰。

电源滤波器可以将电源端的高频噪声滤掉,使得输入电源稳定,从而提高变频器的抗干扰能力。

3.屏蔽措施:通过给变频器的各个输入输出端口进行屏蔽处理,可以有效地防止外界的电磁干扰。

具体的屏蔽方式可以采用金属屏蔽罩、屏蔽隔离光耦、屏蔽线缆等。

屏蔽措施可以减少变频器对外界的敏感度,提高其抗干扰能力。

4.选择合适的电缆:变频器的输入输出端口通常需要连接电缆,合适的电缆选择可以降低电磁干扰的影响。

选用屏蔽性能好的电缆,并且尽量缩短电缆的长度,可以有效减少电磁干扰。

5.避免共模干扰:变频器内部的电源和控制信号线路之间通常会存在共模干扰问题,其中一种常见的共模干扰是电源端的地线干扰。

为了避免共模干扰,可以采用双层绕线、降低绕线电阻、增加绕线间距等措施。

6.引入滤波器:在变频器的输入端和输出端引入滤波器可以有效地降低电磁干扰的影响。

输入端滤波器可以将外界电磁干扰滤掉,使得变频器在供电稳定的情况下运行;输出端滤波器则可以减少变频器对外界设备的电磁干扰。

7.防止回流干扰:变频器在工作过程中会产生回流,即原电源线上产生的噪声通过电源线传播回来影响其它设备。

为了防止回流干扰,可以使用阻抗匹配网络、电源滤波器等措施,将回流电流的传播途径阻断,从而降低干扰的影响。

总结起来,变频器有效的抗干扰措施包括地线连接良好、电源滤波、屏蔽措施、选择合适的电缆、避免共模干扰、引入滤波器、防止回流干扰等。

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案一、引言在工业生产过程中,变频器被广泛应用于控制电机的转速和运行。

然而,变频器的使用也带来了一些问题,其中之一就是产生的干扰。

本文将详细介绍变频器产生的干扰的原因和影响,并提供一些解决方案,以帮助企业有效地解决这一问题。

二、变频器产生的干扰原因1. 高频电磁干扰:变频器在工作过程中会产生高频电磁干扰,这些干扰信号会通过电源线、信号线和地线传播到其他设备和系统中。

2. 电源线谐波干扰:变频器的输入端会引入谐波电流,这些谐波电流会对电源系统造成干扰,导致其他设备的正常工作受到影响。

3. 电磁辐射干扰:变频器在工作时会产生电磁辐射,这些辐射会干扰周围的设备和系统,导致它们的正常工作受到影响。

三、变频器产生的干扰影响1. 信号干扰:变频器产生的干扰信号可能会影响其他设备和系统的正常工作,导致信号传输错误或丢失。

2. 电源系统不稳定:变频器引入的谐波电流会导致电源系统的电压波动,进而影响其他设备的正常工作。

3. 电机故障:变频器产生的干扰信号可能会对电机的正常运行产生影响,导致电机故障或损坏,进而影响生产效率。

四、解决变频器产生的干扰的方案1. 滤波器的使用:安装滤波器可以有效地减少变频器产生的高频电磁干扰。

滤波器可以在变频器的输入端或输出端安装,通过滤波器对干扰信号进行滤波,减少干扰的传播。

2. 接地措施:合理的接地系统可以有效地降低变频器产生的电磁辐射干扰。

确保变频器和其他设备都良好接地,减少接地电阻,提高接地效果。

3. 屏蔽措施:对变频器和其他设备进行屏蔽处理,可以有效地减少电磁辐射干扰。

使用金属屏蔽罩、屏蔽线缆等材料对设备进行屏蔽,减少干扰信号的传播。

4. 谐波滤波器的应用:安装谐波滤波器可以有效地减少变频器引入的谐波电流对电源系统的干扰。

谐波滤波器可以将谐波电流滤波,使其不会对其他设备和系统造成影响。

5. 电磁兼容性测试:进行电磁兼容性测试可以帮助企业了解变频器产生的干扰情况,并采取相应的措施进行干扰的消除和防护。

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案一、引言变频器作为一种常见的电力设备,广泛应用于工业生产过程中。

然而,它也会产生一定的电磁干扰,对周围的电子设备和系统造成不良影响。

本文将详细介绍变频器产生的干扰原因、干扰类型以及解决方案。

二、干扰原因1. 高频谐波变频器工作时,由于非线性元件的存在,会产生高频谐波。

这些高频谐波会通过电源线、信号线以及空气传播,引起附近设备的故障或干扰。

2. 电磁辐射变频器内部的高频电流和高频电压会产生电磁辐射。

这些电磁辐射会通过空气传播,干扰附近的电子设备。

3. 地线干扰变频器的电源和信号线都需要接地,而地线的电位差可能会引起地线干扰。

地线干扰会通过共模电流的形式,干扰附近设备的正常工作。

三、干扰类型1. 电源线干扰变频器的高频谐波会通过电源线传播,引起附近设备的电源线干扰。

这种干扰表现为电源电压波动、电源电压失真等现象。

2. 信号线干扰变频器的高频电磁辐射会通过信号线传播,引起附近设备的信号线干扰。

这种干扰表现为信号失真、信号丢失等现象。

3. 地线干扰地线干扰主要通过共模电流的形式传播,干扰附近设备的正常工作。

这种干扰表现为设备工作不稳定、噪声增加等现象。

四、解决方案1. 滤波器的使用在变频器的输入端和输出端加装合适的滤波器,可以有效地抑制高频谐波和电磁辐射,减少干扰对周围设备的影响。

2. 电磁屏蔽在变频器的外壳上加装电磁屏蔽材料,可以有效地减少电磁辐射,降低干扰对周围设备的影响。

3. 优化接地系统合理设计变频器的接地系统,采用良好的接地方式,可以减少地线干扰的发生。

例如,使用大面积的接地铜板,减小接地电阻,提高接地效果。

4. 电缆布线合理布置变频器的电源线和信号线,避免与其他设备的线路交叉,减少干扰的传播。

5. 屏蔽电缆的使用在变频器的输入端和输出端使用屏蔽电缆,可以有效地减少信号线干扰。

6. 隔离变压器的使用在变频器的输入端和输出端加装隔离变压器,可以有效地隔离电源线干扰和信号线干扰。

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案一、引言随着工业自动化的快速发展,变频器作为一种重要的电力调节设备,被广泛应用于工业生产中。

然而,变频器在工作过程中产生的电磁干扰问题也逐渐凸显出来。

本文将详细介绍变频器产生的干扰原因及解决方案。

二、变频器产生的干扰原因1. 高频脉冲干扰:变频器内部的开关元件工作时,会产生高频脉冲信号,这些高频脉冲信号会通过电源线和信号线传播,导致其他设备受到干扰。

2. 电磁辐射干扰:变频器内部的高频电流和电压变化会产生电磁场,这些电磁场会辐射到周围环境中,干扰其他设备的正常工作。

3. 地线干扰:变频器的地线接触不良或电阻过大,会导致地线电压的变化,进而引起其他设备的干扰。

三、变频器产生的干扰对设备的影响1. 信号干扰:变频器产生的高频脉冲信号会干扰其他设备的信号传输,导致数据传输错误或丢失。

2. 电磁辐射干扰:变频器产生的电磁辐射会影响其他设备的正常工作,甚至可能引起设备故障。

3. 电源干扰:变频器产生的高频脉冲信号会通过电源线传播,影响其他设备的电源稳定性,导致设备不能正常工作。

四、变频器干扰解决方案1. 滤波器的应用:在变频器的输入端和输出端分别安装滤波器,可以有效地抑制变频器产生的高频脉冲信号和电磁辐射。

2. 地线的优化:确保变频器的地线接触良好,并使用低阻抗的地线,以减小地线电压的变化,降低地线干扰的可能性。

3. 屏蔽措施:对变频器进行屏蔽处理,可以减少电磁辐射干扰。

同时,在变频器的输入端和输出端分别安装屏蔽罩,以阻挡电磁辐射的传播。

4. 接地措施:在变频器的输入端和输出端分别设置良好的接地装置,以减小电磁辐射的影响范围。

5. 信号隔离:对变频器的输入端和输出端进行信号隔离,可以有效地防止信号干扰的传播。

6. 电源滤波:在变频器的输入端安装电源滤波器,可以减小高频脉冲信号对电源的干扰,保证其他设备的电源稳定性。

五、结论变频器作为重要的电力调节设备,在工业生产中起到了关键的作用。

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案一、引言变频器是一种用于调节机电转速的设备,它通过改变电源频率来改变机电的转速。

然而,变频器在工业应用中往往会产生电磁干扰,对周围的电子设备和通信系统造成不利影响。

本文将详细介绍变频器产生的干扰原因、干扰类型以及相应的解决方案。

二、干扰原因变频器产生的干扰主要源于以下几个方面:1. 高频噪声:变频器工作时,会产生高频噪声,这些噪声会通过电源线、信号线和地线传播,导致附近设备的干扰。

2. 脉冲干扰:变频器输出的电压和电流波形不彻底是正弦波,而是由一系列脉冲组成的,这些脉冲会对其他设备产生干扰。

3. 电磁辐射:变频器内部的电子元件和电路会产生电磁辐射,这种辐射会干扰附近的电子设备和通信系统。

三、干扰类型变频器产生的干扰主要表现为以下几种类型:1. 电源干扰:变频器的高频噪声会通过电源线传播,影响到其他电子设备的正常工作。

2. 信号干扰:变频器的脉冲干扰会通过信号线传播,导致其他设备接收到干扰信号,影响其正常工作。

3. 辐射干扰:变频器的电磁辐射会干扰附近的电子设备和通信系统,导致其工作异常或者信号质量下降。

四、解决方案为了解决变频器产生的干扰问题,可以采取以下一些解决方案:1. 滤波器:在变频器的输入端和输出端添加合适的滤波器,可以有效地抑制高频噪声和脉冲干扰。

2. 屏蔽措施:对变频器进行屏蔽处理,减少其电磁辐射对周围设备的影响。

可以采用金属屏蔽罩、金属隔离板等方式进行屏蔽。

3. 接地措施:合理的接地设计可以有效地减少变频器产生的干扰。

可以采用单点接地、多点接地等方式,确保设备的接地电阻符合要求。

4. 电缆布线:合理的电缆布线可以减少变频器对其他设备的干扰。

可以采用屏蔽电缆、远离敏感设备等方式进行布线。

5. 电磁兼容性测试:对变频器进行电磁兼容性测试,确保其符合相关标准要求,减少对其他设备的干扰。

五、结论变频器产生的干扰是工业应用中常见的问题,但通过合理的解决方案,可以有效地减少干扰对其他设备和通信系统的影响。

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案一、引言变频器作为现代工业控制系统中的重要设备,广泛应用于机电控制和调速领域。

然而,变频器在工作过程中会产生一定的电磁干扰,对其他设备和系统造成影响。

本文将探讨变频器产生的干扰问题,并提供相应的解决方案。

二、变频器产生的干扰类型及原因1. 电磁辐射干扰:变频器在工作时会产生高频电磁辐射,这种辐射会干扰附近的无线电设备、电子设备等。

2. 电源电磁干扰:变频器的电源输入端和输出端的电磁干扰会通过电源线和信号线传播到其他设备,影响其正常工作。

3. 电磁感应干扰:变频器的电磁场会感应到附近的导体,导致电磁感应干扰,影响其他设备的正常工作。

三、变频器产生的干扰对设备和系统的影响1. 无线电设备干扰:变频器的高频电磁辐射可能干扰无线电设备的正常通信,导致通信质量下降或者信号中断。

2. 控制系统干扰:变频器的电磁干扰可能干扰其他控制系统的信号传输,导致控制系统的稳定性降低,甚至浮现误操作。

3. 电子设备干扰:变频器的电磁干扰可能对附近的电子设备产生干扰,导致设备故障或者数据丢失。

四、变频器干扰解决方案1. 电磁屏蔽:在变频器和受影响设备之间设置电磁屏蔽装置,如金属屏蔽罩、屏蔽隔离器等,有效减少电磁辐射和电磁感应干扰。

2. 滤波器:在变频器的输入端和输出端安装滤波器,可以滤除电源电磁干扰和输出端的高频噪声,保证电源和信号的纯净。

3. 接地保护:合理设置变频器和受影响设备的接地,确保接地电阻低、接地路线短,减少电磁干扰的传播。

4. 电缆布线:合理布置电缆路线,避免电源线和信号线相互干扰,采用屏蔽电缆可有效减少电磁干扰。

5. 选择合适的变频器:在选购变频器时,应选择具有较低电磁干扰的产品,如采用先进的PWM调制技术、电磁兼容性好的元器件等。

五、变频器干扰解决方案的效果评估1. 测试电磁辐射:通过电磁辐射测试仪对变频器工作时的电磁辐射进行测试,评估电磁屏蔽的效果。

2. 测试电磁感应:通过电磁感应测试仪对变频器工作时的电磁感应干扰进行测试,评估电磁屏蔽和接地保护的效果。

变频器干扰的解决方法

变频器干扰的解决方法

变频器干扰的解决方法1.电源线的处理:-使用屏蔽电源线:屏蔽电源线可以有效地减少高频电磁辐射对周围设备的影响。

可以使用带有金属屏蔽层的电源线或者使用有预制的金属外壳的电源线。

-增加滤波器:安装滤波器可以有效地滤除变频器产生的高频电磁辐射。

可以在变频器电源线的输入端和输出端分别安装滤波器,以减少干扰。

2.接地的处理:-良好的接地:通过确保设备的良好接地,可以有效地减少变频器产生的电磁干扰。

接地必须是可靠的,并且要尽量避免接地回路的干扰。

-分离地:在使用变频器时,尽量将变频器的接地与其他设备的接地分离开来,以避免地线回路的相互干扰。

3.电磁屏蔽的处理:-金属屏蔽:在变频器周围加装金属屏蔽罩或金属壳体,能够有效地隔离高频电磁辐射,减少对周围设备的干扰。

-电磁屏蔽材料:使用电磁屏蔽材料制作电磁屏蔽罩,例如使用铁、铜或者其他合金材料制作可靠的屏蔽罩。

4.信号处理的优化:-添加滤波器:在电源输入端和输出端添加滤波器,以减少变频器产生的高频噪声。

滤波器应根据具体的变频器工作频率进行选择。

-圆滑信号:通过对变频器的输出信号进行平滑处理,可以减少信号的峰值,并降低其高频部分对其他设备的干扰。

5.电缆布线的改进:-使用屏蔽电缆:使用具有屏蔽层的电缆可以有效地减少高频电磁辐射和电磁感应。

尽量使用屏蔽电缆对变频器和其他设备进行连接。

-避免并行布线:尽量避免并行布置电缆,特别是高频电缆和低频电缆的并行布线容易引起干扰。

应尽量采用交错布线的方式。

6.间隔与屏蔽:-增加间隔:将变频器与其他设备之间的物理间隔增加,以减少电磁辐射的传导。

-增加物理屏蔽:在变频器和其他设备之间设置屏蔽隔离板,可以有效地减少电磁辐射以及电磁感应。

7.增加电磁兼容性测试:-定期进行电磁兼容性(EMC)测试:通过定期对变频器及其周围设备进行电磁兼容性测试,可以及时发现和解决干扰问题。

在测试过程中,可以对变频器的输入和输出电磁干扰进行评估,并对相关问题进行优化。

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案一、引言变频器作为一种常见的电力调节设备,在工业生产中得到了广泛的应用。

然而,变频器在运行过程中会产生一定的电磁干扰,对其他设备和系统造成不利影响。

本文将详细介绍变频器产生的干扰原因及其解决方案。

二、变频器产生的干扰原因1. 高频噪声干扰:变频器在工作时会产生高频噪声,这些噪声会通过电源线、信号线以及空气传导到其他设备和系统中,造成干扰。

2. 电磁辐射干扰:变频器内部的电子元件在工作时会产生电磁辐射,这些辐射会通过电磁波的形式传播到周围环境中,对其他设备和系统造成干扰。

3. 电源波形失真:变频器在将直流电源转换为交流电源时,会引入波形失真,这些失真信号会干扰到其他设备和系统。

三、变频器产生的干扰解决方案1. 电磁屏蔽措施:a. 在变频器周围设置金属屏蔽罩,阻挡电磁辐射的传播,减少对周围设备的干扰。

b. 使用电磁屏蔽材料对变频器进行包裹,有效减少电磁辐射。

c. 优化变频器的布局,减少电磁辐射的产生。

2. 滤波措施:a. 在变频器的输入端和输出端分别安装滤波器,滤除高频噪声和电磁干扰。

b. 使用电源滤波器对电源进行滤波,减少电源波形失真。

3. 接地措施:a. 对变频器进行良好的接地,减少电磁辐射和电磁干扰。

b. 对其他设备和系统进行良好的接地,提高其抗干扰能力。

4. 信号隔离措施:a. 使用光电耦合器等信号隔离器件,将变频器的控制信号与其他设备隔离,减少干扰的传播。

b. 优化信号线的布线,减少信号线的长度和交叉,降低干扰的可能性。

5. 故障监测与处理:a. 定期对变频器进行故障监测,及时发现并处理可能导致干扰的故障。

b. 配备专业的维护人员,及时处理变频器故障,减少干扰对生产的影响。

四、结论变频器产生的干扰对其他设备和系统的正常运行造成为了一定的影响。

为了解决这一问题,我们可以采取电磁屏蔽、滤波、接地、信号隔离以及故障监测与处理等措施。

通过这些解决方案的应用,可以有效减少变频器产生的干扰,保障生产设备和系统的正常运行。

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案一、引言随着工业自动化的快速发展,变频器作为一种重要的电力调节设备,在工业生产中得到了广泛应用。

然而,变频器在正常工作过程中会产生电磁干扰,给周围的电子设备和系统带来负面影响。

本文将详细介绍变频器产生的干扰类型及其对电子设备的影响,并提供一些解决方案来降低变频器干扰。

二、变频器产生的干扰类型1. 电磁辐射干扰:变频器在工作过程中会产生高频电磁辐射,这种辐射会干扰周围的电子设备,导致其正常工作受阻或者产生误差。

2. 电源线干扰:变频器的高频脉冲电流会通过电源线传导到其他设备,干扰其正常工作。

3. 电磁感应干扰:变频器的高频电磁场会感应到周围的导体,导致感应电流产生,从而干扰其他设备。

三、变频器干扰对电子设备的影响1. 电子设备故障:变频器产生的干扰可能导致电子设备的故障,如芯片损坏、电路板烧毁等,从而影响生产效率和设备寿命。

2. 信号干扰:变频器干扰还可能导致信号传输的错误或者丢失,影响数据的准确性和可靠性。

3. 电磁兼容性问题:变频器干扰可能导致系统中其他设备之间的电磁兼容性问题,从而影响整个系统的稳定性和可靠性。

四、变频器干扰的解决方案1. 电磁屏蔽:通过在变频器周围设置金属屏蔽罩或者屏蔽箱,可以有效地阻挠电磁辐射的传播,减少干扰对周围设备的影响。

2. 滤波器的使用:在变频器的输入和输出端加装滤波器,可以有效地滤除高频噪声和脉冲,减少对其他设备的干扰。

3. 接地措施:良好的接地系统可以有效地减少变频器的电磁辐射和感应干扰。

确保变频器、其他设备和建造物的接地良好,并采用合适的接地方法。

4. 电缆屏蔽:使用屏蔽性能良好的电缆,可以有效地减少变频器干扰信号通过电缆传播到其他设备的可能性。

5. 隔离放大器:在需要保护的电子设备输入端使用隔离放大器,可以实现输入和输出之间的电气隔离,减少干扰的传播。

6. 电磁兼容性测试:在安装变频器之前,进行电磁兼容性测试,确保变频器符合相关标准和要求,减少干扰对其他设备的影响。

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案一、引言随着工业自动化的快速发展,变频器作为调节电机转速的重要设备,被广泛应用于各个行业。

然而,变频器在工作过程中会产生一定的电磁干扰,对其他电子设备和系统造成负面影响。

本文将详细介绍变频器产生的干扰及其解决方案。

二、变频器产生的干扰类型1. 电磁辐射干扰:变频器工作时,电源和电机之间会产生高频电流和电压,导致电磁辐射干扰,影响周围电子设备的正常工作。

2. 电源电压波动干扰:变频器在工作时,由于电机负载的变化,会引起电源电压波动,对其他设备的电源供应造成干扰。

3. 电磁感应干扰:变频器的高频电流和电压会在电源线和控制线上引起电磁感应,进而对周围设备和系统产生干扰。

三、变频器干扰的影响1. 对其他电子设备的干扰:变频器产生的电磁辐射干扰可能导致其他电子设备的噪声增加、通信异常、数据传输错误等问题。

2. 对电源系统的干扰:变频器的电源电压波动干扰可能引起其他设备的电源不稳定,甚至导致设备损坏。

3. 对控制系统的干扰:变频器的电磁感应干扰可能导致控制系统的误差增加,影响系统的稳定性和精度。

四、变频器干扰的解决方案1. 电磁屏蔽措施:通过在变频器和电机之间安装屏蔽罩、屏蔽线缆等措施,减少电磁辐射干扰的传播。

2. 滤波器的应用:在变频器的输入端和输出端安装滤波器,可以有效抑制电源电压波动干扰和电磁感应干扰。

3. 接地措施:合理的接地设计可以降低变频器产生的干扰,例如使用良好的接地网、接地线等。

4. 优化布线:合理布置电源线和控制线,减少电磁感应干扰的可能性。

5. 选择合适的变频器:在购买变频器时,应选择具有良好抗干扰性能的产品,降低干扰的概率。

五、干扰测试与评估为了确保变频器的干扰问题得到解决,可以进行干扰测试和评估。

测试过程中可以使用专业的测试设备,如频谱分析仪、示波器等,对变频器产生的干扰进行定量分析。

评估结果可用于判断干扰是否达到标准要求,并指导后续的干扰解决方案。

六、结论变频器产生的干扰对其他电子设备和系统造成不可忽视的影响。

变频器驱动板屏蔽方法

变频器驱动板屏蔽方法

变频器驱动板屏蔽方法
变频器驱动板的屏蔽方法主要有以下几种:
1. 金属屏蔽法:这是变频器最常用的屏蔽方法之一。

主要原理是使用金属屏蔽措施对电磁干扰产生的影响进行限制。

金属屏蔽材料常用的有铁板、铝板等。

在变频器周围合理布置金属屏蔽保护,可以大大缓解干扰问题,提高产品稳定性。

2. 电源线滤波法:这是针对电源干扰的屏蔽方法。

当电源中存在噪声时,使用电源线滤波器可以将噪声滤除,从而使变频器能够更好地工作和保护传感器等配件。

电源线滤波器只能保护电源侧的干扰问题。

3. 信号线距离法:指对变频器和传感器之间的距离进行控制。

通常,变频器和传感器之间距离越远、引入噪声的风险就越高。

因此,在线路的规划和设计中,需要合理布置信号线距离,以减少信号线引入噪声的风险。

4. 布线优化法:指优化变频器布线、信号线和电源线的走向和长度,减少干扰的产生。

变频器的布线应按照规范进行安装,减少电源线和信号线的交叉,避免同轴电缆与低电平信号线和控制线的交叉干扰。

5. 拆掉模块后运行屏蔽方法:根据具体的模块类型和电路设计,可能需要采取一系列的短接和连接操作来进行屏蔽。

这些操作可能涉及到将模块的特定引脚孔短接,将光耦初级短接,以及连接芯片的特定输出脚等。

这些步骤需
要详细的电路知识和操作经验,如果不确定如何进行,建议寻求专业人士的帮助。

以上是变频器驱动板的屏蔽方法,可以根据具体情况选择合适的屏蔽方法。

在实际生产中,变频器驱动板的屏蔽是必须要重视的问题,只有保证屏蔽措施的得当,才能保证设备的正常运转和生产质量。

如何屏蔽变频器IGBT保护电路的OC故障报警信号

如何屏蔽变频器IGBT保护电路的OC故障报警信号

如何屏蔽变频器IGBT保护电路的OC故障报警信号变频器的电路检修中,尤其是将驱动电路与主电路脱开检修的过程中,经常碰到OC故障报警现象,而此时变频器处于故障保护状态,脉冲传输通道被关闭,那么脉冲传输通道、驱动IC电路是否能正常工作呢?这就需要采取措施,暂时先屏蔽OC报警,便于检测脉冲传输通道的故障。

本文以采用PC929驱动IC的电路为例(见图1),探讨一下OC 故障信号的特性及其屏蔽方法。

曾有不少网友发帖子询问这个问题,在这里算是比较全面的做一个回复。

采用PC929驱动IC的驱动电路,由于具有IGBT导通管压降检测和OC故障报警功能,在连接电源驱动板和MCU主板,使驱动电路与IGBT相脱离的状态下进行检修时,PC923的输入端一旦输入脉冲信号,因VT1未接入电路中,电路c点一直保持高电平状态,不能满足PC929内部IGBT保护电路的“IGBT正常开通”检测信号输入的要求,PC2即向MCU主板送出OC报警信号,使MCU主板中止脉冲信号的输出,使检修者无法检测和判断脉冲传输通道(含驱动IC电路)是否正常。

我们先看一下OC故障的生成机制,再进而找到屏蔽OC故障的方法。

1、OC信号的特性、来源及原因OC信号的特性:由PC929内部的IGBT保护电路的电路特性可知,IGBT保护电路可等效为2输入端与门电路,逻辑关系式为AB=Y。

在A、B端两路输入信号均为高电平时,输出端Y端为高电平时,输出OC信号。

OC信号的生成条件:1)驱动IC处于脉冲传输状态,有正常脉冲信号输入,输入端11脚也有正常脉冲信号输出;2)OC故障检测信号输入端9脚同时为高电平。

满足内部IGBT保护电路的OC信号输出动作条件,从8脚输出OC信号。

OC信号的“瞬态”特性:PC929的输出OC信号,经光耦合器进行光电转换和隔离后,传输至MCU主板电路,MCU接受OC信号后,判断IGBT出现严重过载故障,故停止脉冲信号的传输,同时在操作显示面板给出OC故障报警(显示OC或SC故障代码);随后,PC929内部IGBT保护电路因A端信号为低电平,AB=Y的逻辑关系不再成立,OC信号随之消失。

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案一、引言随着现代工业的发展,变频器作为一种重要的电力调节设备,在工业生产中得到广泛应用。

然而,变频器在工作过程中会产生一定的电磁干扰,给周围的电子设备和系统带来不利影响。

本文将详细介绍变频器产生的干扰原因及解决方案。

二、变频器产生的干扰原因1. 高频噪声:变频器内部的开关器件工作频率较高,会产生高频噪声,对周围的电子设备造成干扰。

2. 电磁辐射:变频器在工作时会产生电磁辐射,这种辐射会干扰周围的电子设备的正常工作。

3. 电源谐波:变频器的输入端需要接入电源,其工作过程中会产生电源谐波,对电网和其他设备造成干扰。

4. 地线干扰:变频器的接地电流会通过接地线路传播,对周围的设备产生干扰。

三、解决方案1. 电磁屏蔽:在变频器周围设置电磁屏蔽罩,有效阻挡变频器产生的电磁辐射,减少对周围设备的干扰。

2. 滤波器:通过在变频器输入端安装滤波器,可以有效抑制电源谐波,减少对电网和其他设备的干扰。

3. 线缆绝缘:使用具有良好绝缘性能的线缆,可以减少变频器产生的地线干扰,保护周围设备的正常工作。

4. 接地措施:合理设置变频器的接地电流路径,避免接地电流通过其他设备产生干扰,同时保证变频器的接地电阻符合要求。

5. 滤波电容器:在变频器输出端并联安装滤波电容器,可以有效吸收高频噪声,减少对周围设备的干扰。

6. 屏蔽电缆:使用屏蔽电缆连接变频器和其他设备,可以有效防止电磁干扰的传播。

四、结论变频器作为一种重要的电力调节设备,在工业生产中发挥着重要作用。

然而,变频器产生的干扰问题也不可忽视。

通过采取合适的解决方案,如电磁屏蔽、滤波器、线缆绝缘等措施,可以有效降低变频器产生的干扰,保证周围设备的正常工作。

在今后的工程实践中,应根据具体情况选择合适的解决方案,确保变频器的稳定运行和周围设备的正常工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引言随着电力电子及其控制技术的发展,变频器及其变频调速已经被广泛应用到工业控制的各个领域,如变频调速在供水、空调设备、过程控制、电梯、机床等方面的应用,变频器的广泛应用也带来了不能忽视的干扰问题。

这种干扰表现在现场供电和其他用电设备对变频器的干扰和变频器运行时产生的高次谐波对电网和周围设备的干扰两个方面。

如果变频器的干扰问题解决不好,不仅变频器系统无法可靠运行,还会影响其周边其他电子、电气设备的正常工作。

因此,变频器应用系统中的干扰问题倍受理论界和工程应用界的广泛重视。

下面结合自己的工作实践,主要讨论变频器及其调速系统的干扰及其抑制方法。

2 变频器系统的主要干扰2.1 外部对变频器的干扰(1) 非线性用电设备对变频器的干扰由于各种整流设备、交直流互换设备、电子电压调整设备、照明设备等非线性负载的应用,这些负载成为电网中的大量谐波源,使电网电压、电流产生波形畸变。

图1示出晶闸管换相引起的畸变。

图1 晶闸管换相引起的畸变变频器的供电电源受到来自被污染的交流电网的干扰后,若不加以处理,电网噪声就会通过电网电源电路干扰变频器。

供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。

其次,共模干扰通过变频器的控制信号线也会干扰变频器的正常工作。

(2) 补偿电容器的投入和切出对变频器的干扰许多用户都在变电所内采用集中电容补偿的方法来提高功率因数,在补偿电容器投入和切出的暂态过程中,网络电压有可能出现很高的峰值,如图2所示,其结果是可能使变频器的整流管因承受过高的反电压而击穿。

图2 补偿电容投入时的电压畸变2.2 变频器对外部的干扰变频器对电网来说也是非线性负载,它所产生的谐波会对同一电网的其他电子、电气设备产生谐波干扰。

另外,逆变器采用spwm技术,当其工作于开关模式并作高速切换时,产生大量耦合性噪声,对共网的其他的电子、电气设备来说是一个电磁干扰源。

(1) 输入电流的波形ac-dc-ac压型变频器的输入侧是整流和滤波电路,只有在电源的线电压ul大于电容器两端的直流电压ud时,整流桥中才有充电电流。

因此充电电流总是出现在电源电压的振幅值附近,呈不连续的冲击波形式,如图3a)所示。

它具有很强的高次谐波成分,其中5次谐波和7次谐波分量很大,如图3b)所示。

图3 输入电流的波形及其谐波分析图4 输出电压与电流的波形(2) 输出电压与电流的波形变频器的逆变桥大多采用spwm技术,其输出电压为占空比按正弦规律分布的系列矩形波,其输出的电压和电流的功率谱是离散的,并且带有与开关频率相应的高次谐波群,如图4a)所示。

其高载波频率和场控开关器件的高速切换(dv/dt 可达1kv/μs以上)所引起的辐射干扰相当突出。

3 电磁干扰的传播途径变频器能产生功率较大的谐波,对系统其他设备干扰性较强。

其干扰途径与一般电磁干扰途径一样,有电磁辐射、电路耦合、感应耦合等[1],现分析如下。

3.1 电磁辐射变频器对电网来说是非线性负载,它所产生的谐波对接入同一电网的其它电子、电气设备产生谐波干扰。

当变频器的金属外壳带有缝隙或孔洞,则辐射强度与干扰信号的波长有关,当孔洞的大小与电磁波的波长接近时,会形成干扰辐射源向四周辐射。

而辐射场中的金属物体还可能形成二次辐射。

同样,变频器外部的辐射也会干扰变频器的正常工作。

3.2 电路耦合上述的电磁干扰除了通过与其相连的导线向外部发射,还可以通过阻抗耦合或接地回路耦合,将干扰信号带入其它电路。

比较典型的传播途径是:接自工业低压网络的变频器所产生的干扰信号可沿着配电变压器进入中压网络,并沿着其它的配电变压器最终又进入民用低压配电网络,使接自民用配电母线的电气设备成为远程的受害者。

3.3 感应耦合当变频器输入或输出电路与其它设备的电路很近时,变频器的高次谐波信号可通过感应的方式耦合到其它设备中去。

其中电流干扰信号主要以电磁感应方式传播,电压干扰信号主要以静电感应方式传播。

4 抗电磁干扰的措施及注意事项为防止干扰,可采用硬件和软件的抗干扰措施。

其中,硬件抗干扰是最基本和最重要的抗干扰措施,总的原则是抑制和消除干扰源、切断干扰对系统的耦合通道、降低系统对干扰信号的敏感性,可从“抗”和“防”两方面入手采取措施抑制干扰[2]。

4.1 正确安装、合理布线变频器对安装环境要求较高。

一般变频器使用手册对环境温度、通风、湿度、海拔高度都有明确规定。

以下几个方面的安装工艺要求值得注意:(1) 确保控制柜中的所有设备接地良好,应该使用短、粗的接地线(最好采用扁平导体或金属网,因其在高频时阻抗较低)连接到公共地线上。

按国家标准规定,其接地电阻应小于4欧姆。

另外与变频器相连的控制设备(如plc或pid控制仪)要与其共地。

(2) 安装布线时将电源线和控制电缆分开,其它设备的电源线和信号线应尽量远离变频器的输入、输出线,例如使用独立的线槽等。

如果控制电路连接线必须和电源电缆交叉,应成90°交叉布线。

(3) 使用屏蔽导线或双绞线连接控制电路时,确保未屏蔽之处尽可能短,条件允许时应采用电缆套管。

(4) 确保控制柜中的接触器有灭弧功能,交流接触器采用r-c抑制器,也可采用压敏电阻抑制器,如果接触器是通过变频器的继电器控制的,这一点特别重要。

(5) 所有的电源线和信号线都应尽量屏蔽,用屏蔽和铠装电缆作为电机接线时,要将屏蔽层双端接地。

(6) 如果变频器运行在对噪声敏感的环境中,可以采用rfi滤波器减小来自变频器的传导和辐射干扰。

为达到最优效果,滤波器与安装金属板之间应有良好的导电性。

4.2 加入电抗器在变频器的输入电流中,频率较低的谐波分量(5、7、9、11、13次谐波等)所占的比重比较高,这些谐波除了可能干扰其它设备的正常运行外,还消耗大量的无功功率,使线路的功率因数降低。

在输入电路中串入电抗器是抑制较低谐波电流的有效方法,如图5所示。

根据接线位置不同,分以下两种:图5 变频器中串入电抗器(1) 交流电抗器交流电抗器串联在电源与变频器的输入侧之间,如图5中la所示,其作用是抑制谐波电流、提高功率因数、削弱输入电路中的浪涌电流对变频器的冲击、削弱电源电压不平衡等。

(2) 直流电抗器直流电抗器串联在整流桥和滤波电容器之间,如图5中的ld,其作用是削弱输入电流中的高次谐波成分并可提高功率因数。

4.3 加入滤波器如图6所示,为减少电磁噪声和损耗,在变频器输出侧可设置输出滤波器;为减少对电源的干扰,可在变频器输入侧设置输入滤波器。

若线路中有敏感电子设备,可在电源线上设置电源噪声滤波器,抗传导干扰。

图6 滤波器接法(1)输入滤波器根据结构和作用不同,可分为线路滤波器和辐射滤波器。

线路滤波器主要由电感线圈构成,如图6中f11,通过增大线路在高频下的阻抗来削弱通过线路传播的频率较高的谐波电流。

辐射滤波器由高频电容器构成,如图6中f12所示,通过吸收的方法来削弱通过辐射传播的干扰信号。

(2) 输出滤波器在变频器的输出侧和电动机之间串入由电感构成的输出滤波器,可以有效的削弱输出电流中的高次谐波电流引起的附加转矩,改善了电动机的运行特性,如图6中的f0所示。

必须注意,在变频器的输出端不允许接入电容器,以免在逆变管导通(或关断)瞬间,产生峰值很大的充电(或放电)电流,损坏逆变管[3]。

4.4 隔离变频器输入侧的谐波电流常常从电流侧进入各种仪器,成为许多仪器的干扰源。

针对此情况,应在受干扰仪器的电源侧采取有效的隔离。

方法有电源隔离法和信号隔离法[4],如图7和图8所示。

图7中接入隔离变压器,隔离变压器的特点是一、二次绕组的匝数相等,但一、二次侧之间应由金属薄膜进行良好的隔离。

一、二次电路中都可接入电容器,如图7中的c1、c2。

图8中在信号侧接入光电耦合器进行隔离,适用于一些传感器传输线路较长,并采用电流信号的场合。

需注意的是:所用光电耦合器应是传输比为1的线性光耦合器;光电耦合器两侧的电容器对传输信号应无衰减作用,即为直流信号时电容量可大些,脉冲信号时则应根据脉冲频率的大小适当选择。

4.5 接地实践证明,接地往往是抑制噪声和防止干扰的重要手段。

良好的接地方式可在很大程度上抑制内部噪声的耦合,防止外部干扰的侵入,提高系统的抗干扰能力。

变频器本身有专用接地端子pe端,从安全和降低噪声的需要出发,必须接地。

这里须提醒大家的是:(1) 不能将地线接在电器设备的外壳上,也不能接在零线上;(2) 可用较粗的短线一端接到接地端子pe端,另一端与接地极相连,接地电阻取值<100ω,接地线长度在20m以内;(3) 注意选择合理接地方式。

变频器的接地方式有单点接地、多点接地及混合接地等几种形式,要根据具体情况采用,要注意不要因为接地不良而对设备产生干扰。

●单点接地单点接地指在一个电路或装置中,只有一个物理点定义为接地点,在低频下的性能好;●多点接多点接地是指装置中的各个接地点都直接接到距它最近的接地点,在高频下的性能好;●混合接地混合接地是根据信号频率和接地线长度,系统采用单点接地和多点接地共用的方式以上诸种抗干扰措施,可根据系统的抗干扰要求来合理选择使用。

若系统中含控制单元如微机等,还须在软件上采取抗干扰措施。

5 结束语本文通过分析变频调速系统中存在的干扰源,提出了通过设计设置抗干扰环节、注意安装工艺等实际方法,克服和抑制各种干扰。

随着变频器抗干扰技术的发展和工业现场和社会环境对变频器的要求不断提高,变频器的干扰和抗干扰问题有望通过变频器本身的功能和补偿来解决,“绿色”变频器一定会面世。

相关文档
最新文档