2017年湖北省咸宁市中考数学试题及答案

合集下载

2017年湖北省咸宁市中考数学试卷-(解析版)

2017年湖北省咸宁市中考数学试卷-(解析版)

2017年湖北省咸宁市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()A.潜山公园B.陆水湖C.隐水洞D.三湖连江【分析】将几个有理数比较后即可确定正确的选项.【解答】解:∵﹣2<﹣1<0<2,∴隐水洞的气温最低,故选C.【点评】本题考查了有理数的大小比较的知识,解题的关键是能够了解正数大于0,负数小于0,两个负数比较绝对值大的反而小,难度不大.2.在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为()A.121×104B.12.1×105C.1.21×105D.1.21×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:1210000=1.21×106.故选:D.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)3【分析】根据合并同类项对A进行判断;根据同底数幂的乘法对B进行判断;根据同底数幂的除法对C进行判断;根据幂的乘方对D进行判断.【解答】解:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;D、原式=a6,所以D选项错误.故选B.【点评】本题考查了同底数幂的除法:底数不变,指数相减.也考查了同底数幂的乘法和幂的乘方.4.如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】根据三棱柱的特点求解即可.【解答】解:主视图是三角形,俯视图是两个矩形,左视图是矩形,得几何体是三棱柱,故选:A.【点评】本题考查了三视图,利用三棱柱的特点得出几何体是解题关键.5.由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【解答】解:∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/千克,∴2月份鸡的价格为24(1﹣a%),∵3月份比2月份下降b%,∴三月份鸡的价格为24(1﹣a%)(1﹣b%),故选D.【点评】本题主要考查了列代数式的知识,解题的关键是掌握每个月份的数量增长关系.6.已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断【分析】先利用第二象限点的坐标特征得到ac<0,则判断△>0,然后根据判别式的意义判断方程根的情况.【解答】解:∵点P(a,c)在第二象限,∴a<0,c>0,∴ac<0,∴△=b2﹣4ac>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.πB.C.2πD.3π【分析】由圆内接四边形的性质和圆周角定理求出∠A=60°,得出∠BOD=120°,再由弧长公式即可得出答案.【解答】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的长==2π;故选:C.【点评】本题考查了弧长公式、圆内接四边形的性质、圆周角定理;熟练掌握圆内接四边形的性质和圆周角定理,求出∠BOD=120°是解决问题的关键.8.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0) C.(,0)D.(3,0)【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B 的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选(C)【点评】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.二、填空题(每小题3分,共24分)9.8的立方根是2.【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.10.化简:÷=x﹣1.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式==x﹣1故答案为:x﹣1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.11.分解因式:2a2﹣4a+2=2(a﹣1)2.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.故答案为:2(a﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是x<﹣1或x>4.【分析】观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<﹣1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>4.故答案为:x<﹣1或x>4.【点评】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.13.小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:在每天所走的步数这组数据中,众数和中位数分别是 1.4,1.35.【分析】把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数,在这组数据中出现次数最多的是1.4,得到这组数据的众数.【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第4、5个两个数的平均数是(1.3+1.4)÷2=1.35,所以中位数是1.35,在这组数据中出现次数最多的是1.4,即众数是1.4.故答案为:1.4;1.35.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.14.如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为6.【分析】由折叠的性质及矩形的性质得到OE垂直平分AC,得到AE=EC,根据AB为AC的一半确定出∠ACE=30°,进而得到OE等于EC的一半,求出EC的长,即为AE的长.【解答】解:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,设AB=AO=OC=x,则有AC=2x,∠ACB=30°,在Rt△ABC中,根据勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,则AE=6,故答案为:6【点评】此题考查了中心对称,矩形的性质,以及翻折变换,熟练掌握各自的性质是解本题的关键.15.如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2017时,顶点A的坐标为(2,2).【分析】将正六边形ABCDEF绕原点O顺时针旋转2017次时,点A所在的位置就是原F点所在的位置.【解答】解:2017×60°÷360°=336…1,即与正六边形ABCDEF绕原点O顺时针旋转1次时点A的坐标是一样的.当点A按顺时针旋转60°时,与原F点重合.连接OF,过点F作FH⊥x轴,垂足为H;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF是等边三角形,∴OF=EF=4,∴F(2,2),即旋转2017后点A的坐标是(2,2),故答案是:(2,2).【点评】此题主要考查了正六边形的性质,坐标与图形的性质﹣旋转.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是①②(把你认为正确结论的序号都填上).【分析】①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以OA=AC;②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;③如图2,当∠ABO=30°时,易证四边形OACB是矩形,此时AB与CO互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.【解答】解:在Rt△ABC中,∵BC=2,∠BAC=30°,∴AB=4,AC==2,①若C、O两点关于AB对称,如图1,∴AB是OC的垂直平分线,则OA=AC=2;所以①正确;②如图1,取AB的中点为E,连接OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE=AB=2,当OC经过点E时,OC最大,则C、O两点距离的最大值为4;所以②正确;③如图2,当∠ABO=30°时,∠OBC=∠AOB=∠ACB=90°,∴四边形AOBC是矩形,∴AB与OC互相平分,但AB与OC的夹角为60°、120°,不垂直,所以③不正确;④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的,则:=π,所以④不正确;综上所述,本题正确的有:①②;故答案为:①②.【点评】本题是三角形的综合题,考查了直角三角形30°的性质、直角三角形斜边中线的性质、等腰三角形的性质、轴对称的性质、线段垂直平分线的性质、动点运动路径问题、弧长公式,熟练掌握直角三角形斜边中线等于斜边一半是本题的关键,难度适中.三、解答题(本大题共8小题,满分72分)17.(8分)(1)计算:|﹣|﹣+20170;(2)解方程:=.【分析】(1)根据实数的运算法则,零指数幂的性质计算即可;(2)根据分式方程的解法即可得到结论.【解答】解:(1):|﹣|﹣+20170=﹣4+1=1﹣3;(2)方程两边通乘以2x(x﹣3)得,x﹣3=4x,解得:x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,∴原方程的根是x=﹣1.【点评】本题考查了解分式方程,实数的运算,熟练掌握实数的运算法则是解题的关键.18.(7分)如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.【分析】(1)由SSS证明△ABC≌△DFE即可;(2)连接AF、BD,由全等三角形的性质得出∠ABC=∠DFE,证出AB∥DF,即可得出结论.【解答】证明:(1)∵BE=FC,∴BC=EF,在△ABC和△DFE中,,∴△ABC≌△DFE(SSS);(2)解:如图所示:由(1)知△ABC≌△DFE,∴∠ABC=∠DFE,∴AB∥DF,∵AB=DF,∴四边形ABDF是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.19.(8分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的两幅不完整统计图,请你根据图中信息解答下列问题:(1)补全条形统计图,“体育”对应扇形的圆心角是72度;(2)根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有700人;(3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或画树状图的方法求所抽取的2人来自不同班级的概率.【分析】(1)根据动画类人数及其百分比求得总人数,总人数减去其他类型人数可得体育类人数,用360度乘以体育类人数所占比例即可得;(2)用样本估计总体的思想解决问题;(3)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:(1)调查的学生总数为60÷30%=200(人),则体育类人数为200﹣(30+60+70)=40,补全条形图如下:“体育”对应扇形的圆心角是360°×=72°,故答案为:72;(2)估计该校2000名学生中喜爱“娱乐”的有:2000×=700(人),故答案为:700;(3)将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:所以P==.(2名学生来自不同班)【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x﹣1|的自变量x的取值范围是任意实数;(2)列表,找出y与x的几组对应值.其中,b=2;(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:函数的最小值为0(答案不唯一).【分析】(1)根据一次函数的性质即可得出结论;(2)把x=﹣1代入函数解析式,求出y的值即可;(3)在坐标系内描出各点,再顺次连接即可;(4)根据函数图象即可得出结论.【解答】解:(1)∵x无论为何值,函数均有意义,∴x为任意实数.故答案为:任意实数;(2)∵当x=﹣1时,y=|﹣1﹣1|=2,∴b=2.故答案为:2;(3)如图所示;(4)由函数图象可知,函数的最小值为0.故答案为:函数的最小值为0(答案不唯一).【点评】本题考查的是一次函数的性质,根据题意画出函数图象,利用数形结合求解是解答此题的关键.21.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cosA=,求DF的长.【分析】(1)证明:如图,连接OD,作OG⊥AC于点G,推出∠ODB=∠C;然后根据DF⊥AC,∠DFC=90°,推出∠ODF=∠DFC=90°,即可推出DF是⊙O的切线.(2)首先判断出:AG=AE=2,然后判断出四边形OGFD为矩形,即可求出DF 的值是多少.【解答】(1)证明:如图,连接OD,作OG⊥AC于点G,,∵OB=OD,∴∠ODB=∠B,又∵AB=AC,∴∠C=∠B,∴∠ODB=∠C,∵DF⊥AC,∴∠DFC=90°,∴∠ODF=∠DFC=90°,∴DF是⊙O的切线.(2)解:AG=AE=2,∵cosA=,∴OA===5,∴OG==,∵∠ODF=∠DFG=∠OGF=90°,∴四边形OGFD为矩形,∴DF=OG=.【点评】此题主要考查了切线的性质和应用,等腰三角形的性质和应用,以及解直角三角形的应用,要熟练掌握.22.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是330件,日销售利润是660元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?【分析】(1)根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出第24天的日销售量,再根据日销售利润=单件利润×日销售量即可求出日销售利润;(2)根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出线段DE 的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;(3)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于640元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润.【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.根据题意得:线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∴y与x之间的函数关系式为y=.(3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥640,解得:x≥16;当18<x≤30时,根据题意得:(8﹣6)×(﹣5x+450)≥640,解得:x≤26.∴16≤x≤26.26﹣16+1=11(天),∴日销售利润不低于640元的天数共有11天.∵点D的坐标为(18,360),∴日最大销售量为360件,360×2=720(元),∴试销售期间,日销售最大利润是720元.【点评】本题考查了一次函数的应用、待定系数法一次函数解析式以及解一元一次不等式,解题的关键是:(1)根据数量关系,列式计算;(2)利用待定系数法求出OD的函数关系式以及依照数量关系找出DE的函数关系式;(3)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式.23.(10分)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC 为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.【分析】(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【解答】解:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ==2,PM=1×2÷3=,由勾股定理可求得OM==,故点P的坐标(﹣,),(,).【点评】本题考查了圆的综合题,正方形的性质,勾股定理的应用,勾股定理逆定理的应用,用正方形的边长表示出△AEF的各边的平方,熟练掌握“智慧三角形”的定义是解题的关键.24.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.【分析】(1)由条件可求得B、C坐标,利用待定系数法可求得抛物线解析式,进一步可求得D点坐标;(2)过F作FG⊥x轴于点G,可设出F点坐标,利用△FAG∽△BDE,由相似三角形的性质可得到关于F点坐标的方程,可求得F点的坐标;(3)可求得P点坐标,设T为菱形对角线的交点,设出PT的长为n,从而可表示出M点的坐标,代入抛物线解析式可得到n的方程,可求得n的值,从而可求得MN的长.【解答】解:(1)∵OB=OC=6,∴B(6,0),C(0,﹣6),∴,解得,∴抛物线解析式为y=x2﹣2x﹣6,∵y=x2﹣2x﹣6=(x﹣2)2﹣8,∴点D的坐标为(2,﹣8);(2)如图1,过F作FG⊥x轴于点G,设F(x,x2﹣2x﹣6),则FG=|x2﹣2x﹣6|,在y=x2﹣2x﹣6中,令y=0可得x2﹣2x﹣6=0,解得x=﹣2或x=6,∴A(﹣2,0),∴OA=2,则AG=x+2,∵B(6,0),D(2,﹣8),∴BE=6﹣2=4,DE=8,当∠FAB=∠EDB时,且∠FGA=∠BED,∴△FAG∽△BDE,∴=,即==,当点F在x轴上方时,则有=,解得x=﹣2(舍去)或x=7,此进F 点坐标为(7,);当点F在x轴上方时,则有=﹣,解得x=﹣2(舍去)或x=5,此进F点坐标为(5,﹣);综上可知F点的坐标为(7,)或(5,﹣);(3)∵点P在x轴上,∴由菱形的对称性可知P(2,0),如图2,当MN在x轴上方时,设T为菱形对角线的交点,∵PQ=MN,∴MT=2PT,设PT=n,则MT=2n,∴M(2+2n,n),∵M在抛物线上,∴n=(2+2n)2﹣2(2+2n)﹣6,解得n=或n=,∴MN=2MT=4n=+1;当MN在x轴下方时,同理可设PT=n,则M(2+2n,﹣n),∴﹣n=(2+2n)2﹣2(2+2n)﹣6,解得n=或n=(舍去),∴MN=2MT=4n=﹣1;综上可知菱形对角线MN的长为+1或﹣1.【点评】本题为二次函数的综合应用,涉及待定系数法、相似三角形的判定和性质、菱形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中证得△FAG∽△BDE,得到关于F点坐标的方程是解题的关键,注意分F点在x轴上方和下方两种情况,在(3)中用PT的长表示出M点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

湖北省咸宁市2017年中考数学真题试题含解析

湖北省咸宁市2017年中考数学真题试题含解析

湖北省咸宁市2017年中考数学真题试题第Ⅰ卷(共24分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下表是我市四个景区今年2月份某天6时气温,其中气温最低的景区是( ) 景区 潜山公园陆水湖隐水洞三湖连江气温C 1- C 0 C 2- C 2A .潜山公园B .陆水湖C .隐水洞D .三湖连江 【答案】C.试题分析:观察表格可得﹣2<﹣1<0<2,即可得隐水洞的气温最低,故选C . 考点:有理数的大小比较.2. 在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学计数法表示为()A .410121⨯B .5101.12⨯C .51021.1⨯D .61021.1⨯ 【答案】D .试题分析:用科学记数法表示较大的数时,一般形式为a ×10n,其中1≤|a|<10,n 为整数, 所以1210000=×106.故选D . 考点:科学记数法.3.下列算式中,结果等于5a 的是()A .32a a +B .32a a ⋅C .a a ÷5D . 32)(a【答案】B .考点:整式的运算.4. 如图是某个几何体的三视图,该几何体是( )A .三棱柱B .三棱锥 C.圆柱 D .圆锥 【答案】A .试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A . 考点:由三视图判定几何体.5. 由于受97N H 禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降%a ,3月份比2月份下降%b ,已知1月份鸡的价格为24元/千克,设3月份鸡的价格为m 元/千克,则()A .%)%1(24b a m --=B .%%)1(24b a m -= C. %%24b a m --= D .%)1%)(1(24b a m --= 【答案】D .考点:列代数式.6. 已知c b a ,,为常数,点),(c a P 在第二象限,则关于x 的方程02=++c bx ax 根的情况是()A .有两个相等的实数根B .有两个不相等的实数根 C.没有实数根 D .无法判断 【答案】B .试题分析:已知点P (a ,c )在第二象限,可得a <0,c >0,所以ac <0,即可判定△=b 2﹣4ac >0,所以方程有两个不相等的实数根.故选B . 考点:根的判别式;点的坐标.7. 如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OD OB ,,若BCD BOD ∠=∠,则⋂BD 的长为()A.π B.π23C. π2 D.π3【答案】C.考点:弧长的计算;圆内接四边形的性质.8. 在平面直接坐标系xOy中,将一块含义45角的直角三角板如图放置,直角顶点C的坐标为)0,1(,顶点A的坐标为)2,0(,顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此点C的对应点C'的坐标为()A.)0,23( B.)0,2( C. )0,25( D.)0,3(【答案】C.试题分析:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,OAC BCDAOC BDCAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=kx,故选C.考点:反比例函数图象上点的坐标特征;坐标与图形变化﹣平移.第Ⅱ卷(共96分)二、填空题(每题8分,满分24分,将答案填在答题纸上)9. 8的立方根是.【答案】2.试题分析:利用立方根的定义可得8的立方根为2.考点:立方根.10. 化简:xx x x 112++- . 【答案】x+1.试题分析:原式=2211(1)1x x x x x x x x x x-++++===+. 考点:分式的乘除法.11. 分解因式:=+-2422a a . 【答案】2(a ﹣1)2.试题分析:先提取2,再利用完全平方公式分解即可,即原式=2(a 2﹣2a+1)=2(a ﹣1)2. 考点:提公因式法与公式法的综合运用.12. 如图,直线n mx y +=与抛物线c bx ax y ++=2交于),4(),,1(q B p A -两点,则关于x 的不等式c bx ax n mx ++>+2的解集是 .【答案】x <﹣1或x >4.考点:二次函数与不等式(组).13. 小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表: 步数(万步) 1.1 2.1 3.1 4.1 5.1 天数 3 75123在每天所走的步数这组数据中,众数和中位数分别是 . 【答案】;.试题分析:把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数是(+)÷2=,,在这组数据中出现次数最多的是,得到这组数据的众数是.考点:众数;中位数.14. 如图,点O 的矩形纸片ABCD 的对称中心,E 是BC 上一点,将纸片沿AE 折叠后,点B 恰好与点O 重合,若3=BE ,则折痕AE 的长为 .【答案】6.试题分析:由题意得:AB=AO=CO ,即AC=2AB ,且OE 垂直平分AC ,则AE=6考点:矩形的性质;翻折变换(折叠问题).15. 如图,边长为4的正六边形ABCDEF 的中心与坐标原点O 重合,x AF //轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转60,当2017=n 时,顶点A 的坐标为 .【答案】(2,3试题分析:2017×60°÷360°=336…1,即与正六边形ABCDEF 绕原点O 顺时针旋转1次时点A 的坐标是一样的.当点A 按顺时针旋转60°时,与原F 点重合.连接OF ,过点F 作FH ⊥x 轴,垂足为H ;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF 是等边三角形,∴OF=EF=4,∴F (2,23 ),即旋转2017后点A 的坐标是(2,23).考点:坐标与图形变化﹣旋转;规律型:点的坐标.16. 如图,在ACB Rt ∆中,30,2=∠=BAC BC ,斜边AB 的两个端点分别在相互垂直的射线ON OM ,上滑动,下列结论:①若O C 、两点关于AB 对称,则32=OA ; ②O C 、两点距离的最大值为4; ③若AB 平分CO ,则CO AB ⊥; ④斜边AB 的中点D 运动路径的长为2π. 其中正确的是 .【答案】①②③.∵∠AOB=∠ACB=90°,∴OE=CE=12AB=2,当OC经过点E时,OC最大,则C、O两点距离的最大值为4;综上所述,本题正确的有:①②③;考点:三角形综合题.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17. ⑴计算:0201748|3|+--;⑵解方程:3121-=x x . 【答案】(1)1﹣33;(2)x=﹣1.试题分析:(1)根据实数的运算法则,零指数幂的性质计算即可;(2)根据分式方程的解法即可得到结论. 试题解析:(1)原式=3﹣43+1=1﹣33;(2)方程两边通乘以2x (x ﹣3)得,x ﹣3=4x , 解得:x=﹣1,检验:当x=﹣1时,2x (x ﹣3)≠0, ∴原方程的根是x=﹣1. 考点:实数的运算;解分式方程.18. 如图,点F C E B ,,,在一条直线上,FC BE DE AC DF AB ===,,.⑴求证:DFE ABC ∆≅∆;⑵连接BD AF ,,求证:四边形ABDF 是平行四边形. 【答案】详见解析.试题分析:(1)由SSS 证明△ABC ≌△DFE 即可;(2)连接AF 、BD ,由全等三角形的性质得出∠ABC=∠DFE ,∵AB=DF,∴四边形ABDF是平行四边形.考点:全等三角形的判定与性质;平行四边形的判定.19. 咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如下图所示的两幅不完整统计图,请你根据图中信息解答下列问题:⑴补全条形统计图,“体育”对应扇形的圆心角是度;⑵根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有人;⑶在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或者画树状图的方法求所抽取的2人来自不同班级的概率【答案】(1)72;(2)700;(3)23.补全条形图如下:“体育”对应扇形的圆心角是360°×40200=72°;考点:扇形统计图;条形统计图;列表法与树状图法;用样本估计总体.20. 小慧根据学习函数的经验,对函数|1|-=x y 的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:⑴函数|1|-=x y 的自变量x 的取值范围是 ; ⑵列表,找出y 与x 的几组对应值.x1- 0 1 2 3yb1 01 2其中,=b ;⑶在平面直角坐标系xOy 中,描出以上表中各队对应值为坐标的点,并画出该函数的图象; ⑷写出该函数的一条性质: .【答案】(1)任意实数;(2)2;(3)详见解析;(4)函数的最小值为0(答案不唯一).(3)如图所示;(4)由函数图象可知,函数的最小值为0. 故答案为:函数的最小值为0(答案不唯一). 考点:一次函数的性质;一次函数的图象.21. 如图,在ABC ∆中,AC AB =,以AB 为直径的⊙O 与边AC BC ,分别交于E D ,两点,过点D 作AC DF ⊥,垂足为点F .⑴求证:DF 是⊙O 的切线; ⑵若52cos ,4==A AE ,求DF 的长 【答案】(1)详见解析;(2)21.∵OB=OD , ∴∠ODB=∠B ,∵∠ODF=∠DFG=∠OGF=90°,∴四边形OGFD为矩形,∴DF=OG=21.考点:圆的综合题.22. 某公司开发出一款新的节能产品,该产品的成本价位6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件.工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.⑴第24天的日销售量是件,日销售利润是元;⑵求y与x之间的函数关系式,并写出x的取值范围;⑶日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?【答案】(1)330,660;(2)y=20(018)5450(1830)y x xy x x=≤≤⎧⎨=-+≤⎩;(3)720元.试题分析:(1)根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出第24天的日销售量,再根据日销售利润=单件利润×日销售量即可求出日销售利润;(2)根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;(3)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于640元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润.试题解析:根据题意得:线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450.联立两线段所表示的函数关系式成方程组,得205450y xy x=⎧⎨=-+⎩,解得18360xy=⎧⎨=⎩,∴交点D的坐标为(18,360),∴y与x之间的函数关系式为y=20(018)5450(1830) y x xy x x=≤≤⎧⎨=-+≤⎩.(3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥640,解得:x≥16;考点:一次函数的应用. 23.定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.理解:⑴如图1,已知B A ,是⊙O 上两点,请在圆上找出满足条件的点C ,使ABC ∆为“智慧三角形”(画出点C 的位置,保留作图痕迹);⑵如图2,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CD CF 41=,试判断AEF ∆是否为“智慧三角形”,并说明理由; 运用:⑶如图3,在平面直角坐标系xOy 中,⊙O 的半径为1,点Q 是直线3=y 上的一点,若在⊙O 上存在一点P ,使得OPQ ∆为“智慧三角形”,当其面积取得最小值时,直接写出此时点P 的坐标.【答案】(1)详见解析;(2)详见解析;(3)P的坐标(﹣223,13),(223,13).试题分析:(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF 为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:故点P 的坐标(﹣223,13),(223,13).考点:圆的综合题. 24.如图,抛物线c bx x y ++=221与x 轴交于B A 、两点,与y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,已知6==OC OB .⑴求抛物线的解析式及点D 的坐标;⑵连接F BD ,为抛物线上一动点,当EDB FAB ∠=∠时,求点F 的坐标;⑶平行于x 轴的直线交抛物线于N M ,两点,以线段MN 为对角线作菱形MPNQ ,当点P 在x 轴上,且MN PQ 21=时,求菱形对角线MN 的长.【答案】(1)y=12x2﹣2x﹣6,D(2,﹣8);(2)F点的坐标为(7,92)或(5,﹣72);(3)菱形对角线MN的长为65+1或65﹣1.试题分析:(1)由条件可求得B、C坐标,利用待定系数法可求得抛物线解析式,进一步可求得D点坐标;(2)过F作FG⊥x轴于点G,可设出F点坐标,利用△FAG∽△BDE,由相似三角形的性质可得到关于F点坐标的方程,可求得F点的坐标;(3)可求得P点坐标,设T 为菱形对角线的交点,设出PT的长为n,从而可表示出M点的坐标,代入抛物线解析式可得到n的方程,可求得n的值,从而可求得MN的长.试题解析:(2)如图1,过F作FG⊥x轴于点G,设F(x,12x2﹣2x﹣6),则FG=|12x2﹣2x﹣6|,在y=12x2﹣2x﹣6中,令y=0可得12x2﹣2x﹣6=0,解得x=﹣2或x=6,∴A(﹣2,0),∴OA=2,则AG=x+2,综上可知F点的坐标为(7,92)或(5,﹣72);(3)∵点P在x轴上,∴由菱形的对称性可知P(2,0),如图2,当MN在x轴上方时,设T为菱形对角线的交点,∵PQ=12 MN,考点:二次函数综合题.。

2017年湖北省咸宁市中考数学试题(解析版)

2017年湖北省咸宁市中考数学试题(解析版)

2017年湖北省咸宁市中考数学试卷第I 卷(选择题,共24分)一、选择题(每小题3分,共8小题,合计24分)1.(2017湖北咸宁,1,3分)下表是我市四个景区今年2月份某天6时的气温,其中气温最低景区 潜山公园 陆水湖 隐水洞 三湖连江 气温-1℃0℃-2℃2℃A. 答案:C解析:∵-2<-1<0<2,∴气温最低的景区是隐水洞.故选C.2.(2017湖北咸宁,2,3分)在绿洲鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为( ) A. 121×104 B. 12.1×105 C. 1.21×105 D.1.21×106 答案:D解析:1210000=1.21×106. 3.(2017湖北咸宁,3,3分)下列算式中,结果等于5a 的是( )A .32a a +B .32a a ⋅C .a a ÷5D .32)(a答案:B解析:∵32a a +中的23a a 、不是同类项,无法合并,∴A 错误; ∵23235=a a aa +⋅=,∴B 正确; ∵55145a a a a a -÷==≠,∴A 错误;∵232365()=a aa a ⨯=≠,∴D 错误.故选B.4.(2017湖北咸宁,4,3分) 如图是某个几何体的三视图,该几何体是( )A .三棱柱B .三棱锥 C.圆柱 D .圆锥答案:A解析:∵三棱柱的三视图符合所给的三视图的形状,∴A 正确; ∵三棱锥的三视图是三角形,与所给三视图不一致,∴B 错误; ∵圆柱的俯视图是圆,与所给三视图不一致,∴C 错误;∵圆锥主视图、左视图都是三角形、俯视图是圆形,与所给三视图不一致,∴D 错误. 故选A.5.(2017湖北咸宁,5,3分)由于受79H N 禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克,设3月份鸡的价格为m 元/千克,则( )A .%)%1(24b a m --=B .%%)1(24b a m -= C. %%24b a m --= D .%)1%)(1(24b a m --=答案:D解析:∵1月份鸡的价格为24元/千克,2月份鸡的价格比1月份下降a%, ∴2月份鸡的价格为24(1%)a -. 又∵3月份比2月份下降b%,∴3月份鸡的价格%)1%)(1(24b a m --=.故选D.6.(2017湖北咸宁,6,3分)已知a 、b 、c 为常数,点P(a ,c)在第二象限,则关于x 的方程02=++c bx ax 根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根 C.没有实数根 D .无法判断 答案:B解析:∵点P(a ,c)在第二象限, ∴a <0,c >0, ∴ac <0, ∴-4ac >0. 又∵20b ≥, ∴△=24b ac ->0,∴关于x 的方程02=++c bx ax 有两个不相等的实数根.故选B.7.(2017湖北咸宁,7,3分)如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OB 、OD ,若∠BOD=∠BCD ,则»BD的长为( )A .π B.π23C. π2 D .π3 答案:C 解析:∵∠BAD=12∠BOD=12∠BCD ,∠BAD+∠BCD=180°, ∴∠BOD=120°.又∵⊙O 的半径为3,∴»BD的长为1203=2180ππ⋅.故选C. 8.(2017湖北咸宁,8,3分)在平面直接坐标系xOy 中,将一块含义45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此点C 的对应点C '的坐标为( )A .)0,23(B .)0,2( C. )0,25( D .)0,3(答案:C解析:如图,过点B 作BD ⊥x 轴于点D ,则∠AOC=∠CDB=∠ACB=90°,AC=CB.∵∠ACO+∠BCD=90°,∠ACO+∠CAO=90°, ∴∠CAO=∠BCD.在△AOC 与△CDB 中,AOC CDB CAO BCD AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△CDB(AAS). ∴OC=BD ,OA=CD.又∵点C 的坐标为(1,0),点A 的坐标为(0,2), ∴BD=OC=1,CD=OA=2, ∴OD=OC+CD=1+2=3, ∴点B 的坐标为(3,1).设双曲线的解析式为k y x =,则13k =, ∴k=3,∴双曲线的解析式为3y x=. ∵将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动, ∴平移后点A 的对应点A ′的纵坐标为2, ∴由32x =可以求得其横坐标为32. ∵平移后点C 的对应点C ′的横坐标比点A ′的横坐标大1, ∴点C ′的横坐标为32+1=52, ∴点C ′的坐标为)0,25(.故选C .二、填空题(每小题3分,共8小题,合计24分)9.(2017湖北咸宁,9,3分) 8的立方根是 . 答案:2解析:∵32=8,∴8的立方根是2.10.(2017湖北咸宁,10,3分)化简:211÷x x x x-+= . 答案:x-1解析:211÷x x x x -+=(1)(1)1x x xx x +-⋅+=x-1. 11.(2017湖北咸宁,11,3分)分解因式:=+-2422a a . 答案:22(1)a -解析:=+-2422a a 22(21)a a -+=22(1)a -.12.(2017湖北咸宁,12,3分) 如图,直线y=mx+n 与抛物线c bx ax y ++=2交于A(-1,p),B(4,q)两点,则关于x 的不等式c bx ax n mx ++>+2的解集是 .答案:x <-1或x >4解析:由函数图象可知:在点A 的左侧和点B 的右侧,一次函数的函数值都大于二次函数的函数值,∵A(-1,p),B(4,q),∴关于x 的不等式c bx ax n mx ++>+2的解集是x <-1或x >4.13.(2017湖北咸宁,13,3分)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:步数(万步)1.1 1.2 1.3 1.4 1.5 天数375123在每天所走的步数这组数据中,众数和中位数分别是 . 答案:1.4;1.35解析:∵1.4出现的次数最多(12次), ∴众数为1.4.∵数据的总个数为30,∴中位数是第15个数和第16个数的平均数,即1.3 1.41.352+=. 14.(2017湖北咸宁,14,3分)如图,点O 的矩形纸片ABCD 的对称中心,E 是BC 上一点,将纸片沿AE 折叠后,点B 恰好与点O 重合,若BE=3,则折痕AE 的长为 .答案:6解析:由题意得:OE=BE=3,OE ⊥AC ,OA=OC=12AC ,设AE=x ,则CE=AE=x , ∴BC=x+3,2222239OC CE OE x x ---∴AC=2OC=229x -∵△COE ∽△CBA , ∴=CO CECB CA, 即229329x x x -+-,化简,得23180x x --=, 解得16x =,23x =-(舍去).∴AE=6.15.(2017湖北咸宁,15,3分)如图,边长为4的正六边形ABCDEF 的中心与坐标原点O 重合,AF ∥x 轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转ο60,当n=2017时,顶点A 的坐标为 .答案:(2,23)解析:如图所示,连接OA ,设AF 与y 轴交于点M ,则△AOB 为等边三角形. ∵正六边形ABCDEF 的边长为4,∴OA=AB=OB=4,∠OAM=60°. ∴点B 的坐标为(-4,0).∵AF ∥x 轴, ∴∠AMO=90°,∴AM=OA·sin ∠OAM=OA·sin60°=4×12=2, OM=OA·cos ∠OAM=OA·cos60°=4×32=23 ∴点A 的坐标为(-2,3∵正六边形是轴对称图形,∴点C 的坐标为(-2,23-,点D 的坐标为(2,3-,点F 的坐标为(2,23,∴点E 的坐标为(4,0).∵将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转ο60, ∴每旋转6次,点A 都回到初始位置. 当n=2017时,∵2017÷6=336……1, ∴顶点A 旋转到点F 的位置, ∴顶点A 的坐标为(2,23).16.(2017湖北咸宁,16,3分)如图,在Rt △ACB 中,BC=2,∠BAC=30°,斜边AB 的两个端点分别在相互垂直的射线OM 、ON 上滑动,下列结论:①若C 、O 两点关于AB 对称,则32=OA ; ②C 、O 两点距离的最大值为4; ③若AB 平分CO ,则AB ⊥CO ; ④斜边AB 的中点D 运动路径的长为2π. 其中正确的是 . 答案:①②解析:∵Rt △ACB 中,BC=2,∠BAC=30°, ∴AB=2BC=4,22224223AC AB BC =-=-=∵C 、O 两点关于AB 对称,∴23OA AC ==,∴①正确;∵当OC 过点D 时,C 、O 两点间的距离最大,最大值为4,∴②正确;∵AB 平分CO 时,OA 不一定与AC 相等,∴AB ⊥CO 不一定成立,∴③错误; ∵斜边AB 的中点D 运动路径是以点O 为圆心,2为半径的圆周长的14,∴点D 运动路径的长为122=42πππ⨯⨯≠,∴④错误. 三、解答题(共8小题,合计72分)17.(2017湖北咸宁,17,8分)⑴计算:0201748|3|+--;⑵解方程:3121-=x x . 思路分析:(1)首先利用绝对值的求法、二次根式的化简公式、0指数的意义将每一部分进行化简,然后再进行合并,即可得到结果;(2)先去分母转化为整式方程,再解整式方程,最后通过检验确定原分式方程的解.解:(1)0201748|3|+--3431 …… 3分=33+1- …… 4分(2)两边同时乘以2x(x-3),得x-3-4x ,…… 5分 解得x=-1, …… 6分 检验:当x=-1时, 2x(x-3)=2×(-1)×(-1-3)=8≠0, …… 7分 ∴原分式方程的解为x=-1. …… 8分 18.(2017湖北咸宁,18,7分)如图,点B 、E 、C 、F 在一条直线上,AB=DF ,AC=DE ,BE=FC.⑴求证:△ABC ≌△DFE ;⑵连接AF 、BD ,求证:四边形ABDF 是平行四边形.思路分析:(1)首先利用线段的和差关系与等式的性质证明BC=FE ,然后使用“SSS ”证明三角形全等;(2)借助(1)中的三角形全等证明AB 与DF 平行且相等,进而得到四边形ABDF 是平行四边形.证明:(1)∵BE=FC ,∴BC=FE. ……2分 在△ABC 与△DFE 中,AB DF AC DE BC FE =⎧⎪=⎨⎪=⎩, ∴△ABC ≌△DFE(SSS). ……4分 (2)连接AF 、BD ,∵△ABC ≌△DFE ,∴∠ABC=∠DFE , ……5分 ∴AB ∥DF. ……6分 又∵AB=DF ,∴四边形ABDF 是平行四边形. ……7分19.(2017湖北咸宁,19,8分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如下图所示的两幅不完整统计图,请你根据图中信息解答下列问题:⑴补全条形统计图,“体育”对应扇形的圆心角是度;⑵根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有人;⑶在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或者画树状图的方法求所抽取的2人来自不同班级的概率.思路分析:(1)由统计图知动画的人数为60,对应的百分比为30%,∴总人数为:60÷30%=200.∴喜欢体育的人数为:200-30-60-70=40,∴“体育”对应扇形的圆心角是:360°×40200=72°.(2)∵样本中喜爱“娱乐”的百分比为:70100%=35% 200,∴估计该校2000名学生中喜爱“娱乐”的人数为:2000×35%=700.(3)画树状图如下:利用树状图可以求出所抽取的2人来自不同班级的概率.解:(1)补充图如下:……1分72. ……2分 (2)700. ……4分 (3)画树状图如下:……6分从树状图可以看出,共有12种等可能结果,其中,抽取的2人来自不同班级的有8种, ∴所抽取的2人来自不同班级的概率为82=123. ……8分 20.(2017湖北咸宁,20,8分)小慧根据学习函数的经验,对函数|1|-=x y 的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:⑴函数|1|-=x y 的自变量x 的取值范围是 ; ⑵列表,找出y 与x 的几组对应值.xΛ-1 0 1 2 3ΛyΛb 1 0 1 2Λ其中,b= ;⑶在平面直角坐标系xOy 中,描出以上表中各队对应值为坐标的点,并画出该函数的图象; ⑷写出该函数的一条性质: .思路分析:(1)由于|1|-=x y 对x 没有任何限制, ∴自变量x 的取值范围是任意实数(或全体实数). (2)当x=-1时,y=|-1-1|=|-2|=2, ∴b=2.(3)描点画图如下:(4)答案不唯一,可以从函数图象经过的象限、增减性、对称性、最值等角度进行分析. 解:(1)任意实数(或全体实数). ……1分 (2)2. ……2分 (3)描点,画函数图象如下图所示:(说明:描点1分,画图象2分,图象画成线段扣1分) ……5分(4)参考答案:①函数的最小值为0;②函数图象的对称轴为直线x=1;③当x>1时,y随x的增大而增大;④当x<1时,y随x的减小而减小;……8分21.(2017湖北咸宁,21,9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DF⊥AC,垂足为点F.⑴求证:DF是⊙O的切线;⑵若AE=4,cosA=25,求DF的长.思路分析:(1)由于点D 是圆上一点,所以要证明DF是⊙O的切线,只要连接OD,证明OD⊥DF即可;(2)由于已知AE=4,cosA=25,所以只要过点O作OG⊥AC,垂足为G,就可以使用垂径定理求出AG=12AE=2,再使用三角函数定义求出OA=5,然后使用勾股定理求得OG,最后利用正方形ODFG的性质求出DF. 解:(1)连接OD.∵OB=OD,∴∠ODB=∠B.又∵AB=AC,∴∠C=∠B.∴∠ODB=∠C,∴OD∥AC. ……2分∵DF⊥AC,∴∠DFC=90°,∴∠ODF=∠DFC=90°,∴DF 是⊙O 的切线. ……4分 (2)过点O 作OG ⊥AC ,垂足为G .∴AG=12AE=2. ……5分 ∵cosA=AGOA ,∴=5cos AGOA A=,∴2221OG OA AG =-=.……7分 ∵∠ODF=∠DFG=∠OGF=90°, ∴四边形OGFD 是矩形,∴DF=OG=21. ……9分22.(2017湖北咸宁,22,10分)某公司开发出一款新的节能产品,该产品的成本价位6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件.工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ODE 表示日销售量y (件)与销售时间x (天)之间的函数关系,已知线段DE 表示的函数关系中,时间每增加1天,日销售量减少5件.⑴第24天的日销售量是 件,日销售利润是 元; ⑵求y 与x 之间的函数关系式,并写出x 的取值范围;⑶日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元? 思路分析:(1)∵线段DE 表示的函数关系中,时间每增加1天,日销售量减少5件, ∴第24天的日销售量是340-5×(24-22)=330(件). ∵该产品的成本价位6元/件,售价为8元/件, ∴日销售利润是330×(8-6)=660(元).(2)∵OD 是正比例函数,且过点(17,340), DE 是一次函数,且过点(22,340)(24,330),∴利用待定系数法可以求出y与x之间的函数关系式,结合函数图象的交点坐标可以写出x 的取值范围.(3)利用“日销售利润不低于640元”,结合两个函数解析式可以求出x的取值范围,再确定天数和日销售最大利润.解:(1)330. ……1分660. ……2分(2)设线段OD所表示的y与x之间的函数解析式为:y=kx.∵y=kx的图象过点(17,340),∴17k=340,解得k=20.∴线段OD所表示的y与x之间的函数解析式为:y=20x. ……3分由题意得,线段DE所表示的y与x之间的函数解析式为:y=340-5(x-22)=-5x+450. ……4分∵D是线段OD与线段DE的交点,解方程组205450y xy x=⎧⎨=-+⎩得18360xy=⎧⎨=⎩,∴D的坐标为(18,360). ……5分∴20(018)5450(1830)x xyx x⎧=⎨-+⎩≤≤<≤. ……6分(3)当0≤x≤18时,由题意得(8-6)×20x≥640,解得x≥16;当18≤x≤30时,由题意得(8-6)×(-5x+450)≥640,解得x≤26.∴16≤x≤26. ……7分∵26-16+1=11,∴日销售利润不低于640元的天数共有11天. ……8分∵D的坐标为(18,360),∴日销售最大销售量为360件,∴日销售最大利润是(8-6)×360=720(元). ……10分23.(2017湖北咸宁,23,10分)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.图1 图2 图3理解:⑴如图1,已知A 、B 是⊙O 上两点,请在圆上找出满足条件的点C ,使△ABC 为“智慧三角形”(画出点C 的位置,保留作图痕迹);⑵如图2,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF=14CD ,试判断△AEF 是否为“智慧三角形”,并说明理由; 运用:⑶如图3,在平面直角坐标系xOy 中,⊙O 的半径为1,点Q 是直线y=3上的一点,若在⊙O 上存在一点P ,使得△OPQ 为“智慧三角形”,当其面积取得最小值时,直接写出此时点P 的坐标.思路分析:(1)利用直角三角形的性质可以知道:直角三角形斜边上的中线等于斜边的一半,所以只要在圆中画出以点A 、B 为顶点的直角三角形即可,利用圆周角定理的推论可知:直径所对的圆周角是90°,所以只要画出过点A 、B 的直径即可找到顶点C ;(2)根据“智慧三角形”的概念,要判断△AEF 是否为“智慧三角形”,只要判断判断△AEF 是否为直角三角形即可.先利用正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF=14CD ,可以证明△ECF ∽△ABE ,再利用相似三角形的性质证明∠AEF=90°,最后利用“智慧三角形”的概念,判断△AEF 是“智慧三角形”;(3)如图所示,当点Q 坐标为(0,3)时,△OPQ 面积取得最小值,此时点1P 与点2P 关于y 轴对称,1OP ⊥1QP ,1OP =1,OQ=3,∴2222113122PQ OQ OP =-=-=.作1P A ⊥x 轴于点A ,则△1P AO ∽△1OPQ , ∴1111==P A PO AO OP OQ PQ ,即11=1322P A , ∴11=3P A ,2=3AO ,∴1221()33P -,. ∵点1P 与点2P 关于y 轴对称, ∴2221()33P ,.解:(1)如图所示:(说明:画对一个给1分,无画图痕迹不给分) ……2分 (2)△AEF 是“智慧三角形”,理由如下: ……3分 ∵四边形ABCD 是正方形, ∴∠B=∠C=90°,AB=BC=CD.∴BE=EC=12BC=12AB ,CF=14AB. ∴1==2CF EC BE AB . 又∵∠B=∠C=90°, ∴△ECF ∽△ABE ,∴∠CEF=∠BAE . ……4分 ∵∠BAE+∠AEB=90°, ∴∠CEF+∠AEB=90°, ∴∠AEF=90°,∴△AEF 是直角三角形. ……5分 ∵Rt △AEF 斜边AF 上的中线等于AF 的一半,∴△AEF 是“智慧三角形”. ……6分 (3)1221()3P ,,2221()3P , ……8分 24.(2017湖北咸宁,24,12分)如图,抛物线c bx x y ++=221与x 轴交于A 、B 两点,与y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,已知OB=OC=6.⑴求抛物线的解析式及点D 的坐标;⑵连接BD ,F 为抛物线上一动点,当∠FAB=∠EDB 时,求点F 的坐标;⑶平行于x 轴的直线交抛物线于M 、N 两点,以线段MN 为对角线作菱形MPNQ ,当点P 在x 轴上,且PQ=12MN 时,求菱形对角线MN 的长. 思路分析:(1)利用OB=OC=6得到点B(6,0),C(0,-6),将其代入抛物线的解析可以求出b 、c 的值,进而得到抛物线的解析式,最后通过配方得到顶点坐标; (2)由于F 为抛物线上一动点,∠FAB=∠EDB ,可以分两种情况求解:一是点F 在x 轴上方;二是点F 在x 轴下方.每一种情况都可以作FG ⊥x 轴于点G ,构造Rt △AFG 与Rt △DBE 相似,利用对应边成比例或三角函数的定义求点F 的坐标.(3)首先根据MN 与x 轴的位置关系画出符合要求的两种图形:一是MN 在x 轴上方;二是MN 在x 轴下方. 设菱形对角线的交点T 到x 轴的距离为n ,利用PQ=12MN ,得到MT=2n ,进而得到点M 的坐标为(2+2n ,n),再由点M 在抛物线上,得21(22)2(22)62n n n =+-+-,求出n 的值,最后可以求得MN=2MT=4n 的两个值. 解:(1)∵OB=OC=6, ∴B(6,0),C(0,-6).∴216+6026b c c ⎧⨯+=⎪⎨⎪=-⎩, 解得26b c =-⎧⎨=-⎩,∴抛物线的解析式为21262y x x =--. ……2分∵21262y x x =--=21(2)82x --, ∴点D 的坐标为(2,-8). ……4分(2)如图,当点F 在x 轴上方时,设点F 的坐标为(x ,21262x x --).过点F 作FG ⊥x 轴于点G ,易求得OA=2,则AG=x+2,FG=21262x x --.∵∠FAB=∠EDB ,∴tan ∠FAG=tan ∠BDE ,即21261222x x x --=+,解得17x =,22x =-(舍去). 当x=7时,y=92, ∴点F 的坐标为(7,92). ……6分 当点F 在x 轴下方时,设同理求得点F 的坐标为(5,72-).综上所述,点F 的坐标为(7,92)或(5,72-). ……8分(3)∵点P 在x 轴上,∴根据菱形的对称性可知点P 的坐标为(2,0).如图,当MN 在x 轴上方时,设T 为菱形对角线的交点.∵PQ=12MN , ∴MT=2PT.设TP=n ,则MT=2n. ∴M(2+2n ,n).∵点M 在抛物线上, ∴21(22)2(22)62n n n =+-+-, 即2280n n --=. 解得11654n +=,21654n =(舍去). ∴65+1. ……10分当MN 在x 轴下方时,设TP=n ,得M(2+2n ,-n).∵点M 在抛物线上, ∴21(22)2(22)62n n n -=+-+-, 即22+80n n -=. 解得1165n -+=,2165n --=(舍去). ∴651.综上所述,菱形对角线MN 65+1651-. ……12分。

2017年湖北省咸宁市中考数学试卷

2017年湖北省咸宁市中考数学试卷

2017年湖北省咸宁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是( )2.(3分)在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为( )A.121×104B.12.1×105C.1.21×105D.1.21×1063.(3分)下列算式中,结果等于a5的是( )A.a2+a3B.a2•a3C.a5÷a D.(a2)34.(3分)如图是某个几何体的三视图,该几何体是( )A.三棱柱B.三棱锥C.圆柱D.圆锥5.(3分)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则( )A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b%C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)6.(3分)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断7.(3分)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为( )A.πB.C.2πD.3π8.(3分)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为( )A.(,0)B.(2,0)C.(,0)D.(3,0)二、填空题(每小题3分,共24分)9.(3分)8的立方根是 .10.(3分)化简:÷= .11.(3分)分解因式:2a2﹣4a+2= .12.(3分)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B (4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是 .13.(3分)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:在每天所走的步数这组数据中,众数和中位数分别是 .14.(3分)如图,点O 是矩形纸片ABCD 的对称中心,E 是BC 上一点,将纸片沿AE 折叠后,点B 恰好与点O 重合.若BE=3,则折痕AE的长为 .15.(3分)如图,边长为4的正六边形ABCDEF 的中心与坐标原点O 重合,AF ∥x 轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转60°.当n=2017时,顶点A的坐标为 .16.(3分)如图,在Rt △ABC 中,BC=2,∠BAC=30°,斜边AB 的两个端点分别在相互垂直的射线OM 、ON 上滑动,下列结论:①若C 、O 两点关于AB 对称,则OA=2;②C 、O 两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是 (把你认为正确结论的序号都填上).三、解答题(本大题共8小题,满分72分)17.(8分)(1)计算:|﹣|﹣+20170;(2)解方程:=.18.(7分)如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.19.(8分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的两幅不完整统计图,请你根据图中信息解答下列问题:(1)补全条形统计图,“体育”对应扇形的圆心角是 度;(2)根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有 人;(3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或画树状图的方法求所抽取的2人来自不同班级的概率.20.(8分)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x﹣1|的自变量x的取值范围是 ;(2)列表,找出y与x的几组对应值.b= ;(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质: .21.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cosA=,求DF的长.22.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是 件,日销售利润是 元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?23.(10分)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC 为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.24.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.2017年湖北省咸宁市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2017•咸宁)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是( )【分析】将几个有理数比较后即可确定正确的选项.【解答】解:∵﹣2<﹣1<0<2,∴隐水洞的气温最低,故选C.【点评】本题考查了有理数的大小比较的知识,解题的关键是能够了解正数大于0,负数小于0,两个负数比较绝对值大的反而小,难度不大.2.(3分)(2017•咸宁)在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为( )A.121×104B.12.1×105C.1.21×105D.1.21×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:1210000=1.21×106.故选:D.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)(2017•咸宁)下列算式中,结果等于a5的是( )A.a2+a3B.a2•a3C.a5÷a D.(a2)3【分析】根据合并同类项对A进行判断;根据同底数幂的乘法对B进行判断;根据同底数幂的除法对C进行判断;根据幂的乘方对D进行判断.【解答】解:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;D、原式=a6,所以D选项错误.故选B.【点评】本题考查了同底数幂的除法:底数不变,指数相减.也考查了同底数幂的乘法和幂的乘方.4.(3分)(2017•咸宁)如图是某个几何体的三视图,该几何体是( )A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】根据三棱柱的特点求解即可.【解答】解:主视图是三角形,俯视图是两个矩形,左视图是矩形,得几何体是三棱柱,故选:A.【点评】本题考查了三视图,利用三棱柱的特点得出几何体是解题关键.5.(3分)(2017•咸宁)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则( )A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b%C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【解答】解:∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/千克,∴2月份鸡的价格为24(1﹣a%),∵3月份比2月份下降b%,∴三月份鸡的价格为24(1﹣a%)(1﹣b%),故选D.【点评】本题主要考查了列代数式的知识,解题的关键是掌握每个月份的数量增长关系.6.(3分)(2017•咸宁)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断【分析】先利用第二象限点的坐标特征得到ac<0,则判断△>0,然后根据判别式的意义判断方程根的情况.【解答】解:∵点P(a,c)在第二象限,∴a<0,c>0,∴ac<0,∴△=b2﹣4ac>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•咸宁)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为( )A.πB.C.2πD.3π【分析】由圆内接四边形的性质和圆周角定理求出∠A=60°,得出∠BOD=120°,再由弧长公式即可得出答案.【解答】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的长==2π;故选:C.【点评】本题考查了弧长公式、圆内接四边形的性质、圆周角定理;熟练掌握圆内接四边形的性质和圆周角定理,求出∠BOD=120°是解决问题的关键.8.(3分)(2017•咸宁)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为( )A.(,0)B.(2,0)C.(,0)D.(3,0)【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选(C)【点评】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.二、填空题(每小题3分,共24分)9.(3分)(2017•咸宁)8的立方根是 2 .【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.10.(3分)(2017•咸宁)化简:÷= x﹣1 .【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式==x﹣1故答案为:x﹣1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键. 11.(3分)(2017•咸宁)分解因式:2a2﹣4a+2= 2(a﹣1)2 .【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.故答案为:2(a﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)(2017•咸宁)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是 x<﹣1或x>4 .【分析】观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<﹣1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>4.故答案为:x<﹣1或x>4.【点评】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.13.(3分)(2017•咸宁)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:在每天所走的步数这组数据中,众数和中位数分别是 1.4,1.35 .【分析】把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数,在这组数据中出现次数最多的是1.4,得到这组数据的众数.【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第4、5个两个数的平均数是(1.3+1.4)÷2=1.35,所以中位数是1.35,在这组数据中出现次数最多的是1.4,即众数是1.4.故答案为:1.4;1.35.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.14.(3分)(2017•咸宁)如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为 6 .【分析】由折叠的性质及矩形的性质得到OE垂直平分AC,得到AE=EC,根据AB 为AC的一半确定出∠ACE=30°,进而得到OE等于EC的一半,求出EC的长,即为AE的长.【解答】解:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,设AB=AO=OC=x,则有AC=2x,∠ACB=30°,在Rt△ABC中,根据勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,则AE=6,故答案为:6【点评】此题考查了中心对称,矩形的性质,以及翻折变换,熟练掌握各自的性质是解本题的关键.15.(3分)(2017•咸宁)如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2017时,顶点A的坐标为 (2,2) .【分析】将正六边形ABCDEF绕原点O顺时针旋转2017次时,点A所在的位置就是原F点所在的位置.【解答】解:2017×60°÷360°=336…1,即与正六边形ABCDEF绕原点O顺时针旋转1次时点A的坐标是一样的.当点A按顺时针旋转60°时,与原F点重合.连接OF,过点F作FH⊥x轴,垂足为H;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF是等边三角形,∴OF=EF=4,∴F(2,2),即旋转2017后点A的坐标是(2,2),故答案是:(2,2).【点评】此题主要考查了正六边形的性质,坐标与图形的性质﹣旋转.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.(3分)(2017•咸宁)如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是 ①② (把你认为正确结论的序号都填上).【分析】①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以OA=AC;②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;③如图2,当∠ABO=30°时,易证四边形OACB是矩形,此时AB与CO互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC 不一定垂直;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.【解答】解:在Rt△ABC中,∵BC=2,∠BAC=30°,∴AB=4,AC==2,①若C、O两点关于AB对称,如图1,∴AB是OC的垂直平分线,则OA=AC=2;所以①正确;②如图1,取AB的中点为E,连接OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE=AB=2,当OC经过点E时,OC最大,则C、O两点距离的最大值为4;所以②正确;③如图2,当∠ABO=30°时,∠OBC=∠AOB=∠ACB=90°,∴四边形AOBC是矩形,∴AB与OC互相平分,但AB与OC的夹角为60°、120°,不垂直,所以③不正确;④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的,则:=π,所以④不正确;综上所述,本题正确的有:①②;故答案为:①②.【点评】本题是三角形的综合题,考查了直角三角形30°的性质、直角三角形斜边中线的性质、等腰三角形的性质、轴对称的性质、线段垂直平分线的性质、动点运动路径问题、弧长公式,熟练掌握直角三角形斜边中线等于斜边一半是本题的关键,难度适中.三、解答题(本大题共8小题,满分72分)17.(8分)(2017•咸宁)(1)计算:|﹣|﹣+20170;(2)解方程:=.【分析】(1)根据实数的运算法则,零指数幂的性质计算即可;(2)根据分式方程的解法即可得到结论.【解答】解:(1):|﹣|﹣+20170=﹣4+1=1﹣3;(2)方程两边通乘以2x(x﹣3)得,x﹣3=4x,解得:x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,∴原方程的根是x=﹣1.【点评】本题考查了解分式方程,实数的运算,熟练掌握实数的运算法则是解题的关键.18.(7分)(2017•咸宁)如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.【分析】(1)由SSS证明△ABC≌△DFE即可;(2)连接AF、BD,由全等三角形的性质得出∠ABC=∠DFE,证出AB∥DF,即可得出结论.【解答】证明:(1)∵BE=FC,∴BC=EF,在△ABC和△DFE中,,∴△ABC≌△DFE(SSS);(2)解:如图所示:由(1)知△ABC≌△DFE,∴∠ABC=∠DFE,∴AB∥DF,∵AB=DF,∴四边形ABDF是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键. 19.(8分)(2017•咸宁)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的两幅不完整统计图,请你根据图中信息解答下列问题:(1)补全条形统计图,“体育”对应扇形的圆心角是 72 度;(2)根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有 700 人;(3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或画树状图的方法求所抽取的2人来自不同班级的概率.【分析】(1)根据动画类人数及其百分比求得总人数,总人数减去其他类型人数可得体育类人数,用360度乘以体育类人数所占比例即可得;(2)用样本估计总体的思想解决问题;(3)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:(1)调查的学生总数为60÷30%=200(人),则体育类人数为200﹣(30+60+70)=40,补全条形图如下:“体育”对应扇形的圆心角是360°×=72°,故答案为:72;(2)估计该校2000名学生中喜爱“娱乐”的有:2000×=700(人),故答案为:700;(3)将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:所以P(2名学生来自不同班)==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)(2017•咸宁)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x﹣1|的自变量x的取值范围是 任意实数 ;(2)列表,找出y与x的几组对应值.b= 2 ;(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质: 函数的最小值为0(答案不唯一) .【分析】(1)根据一次函数的性质即可得出结论;(2)把x=﹣1代入函数解析式,求出y的值即可;(3)在坐标系内描出各点,再顺次连接即可;(4)根据函数图象即可得出结论.【解答】解:(1)∵x无论为何值,函数均有意义,∴x为任意实数.故答案为:任意实数;(2)∵当x=﹣1时,y=|﹣1﹣1|=2,∴b=2.故答案为:2;(3)如图所示;(4)由函数图象可知,函数的最小值为0.故答案为:函数的最小值为0(答案不唯一).【点评】本题考查的是一次函数的性质,根据题意画出函数图象,利用数形结合求解是解答此题的关键.21.(9分)(2017•咸宁)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cosA=,求DF的长.【分析】(1)证明:如图,连接OD,作OG⊥AC于点G,推出∠ODB=∠C;然后根据DF⊥AC,∠DFC=90°,推出∠ODF=∠DFC=90°,即可推出DF是⊙O的切线.(2)首先判断出:AG=AE=2,然后判断出四边形OGFD为矩形,即可求出DF的值是多少.【解答】(1)证明:如图,连接OD,作OG⊥AC于点G,,∵OB=OD,∴∠ODB=∠B,又∵AB=AC,∴∠C=∠B,∴∠ODB=∠C,∵DF⊥AC,∴∠DFC=90°,∴∠ODF=∠DFC=90°,∴DF是⊙O的切线.(2)解:AG=AE=2,∵cosA=,∴OA===5,∴OG==,∵∠ODF=∠DFG=∠OGF=90°,∴四边形OGFD为矩形,∴DF=OG=.【点评】此题主要考查了切线的性质和应用,等腰三角形的性质和应用,以及解直角三角形的应用,要熟练掌握.22.(10分)(2017•咸宁)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是 330 件,日销售利润是 660 元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?【分析】(1)根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出第24天的日销售量,再根据日销售利润=单件利润×日销售量即可求出日销售利润;(2)根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;(3)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x 的取值范围,有起始和结束时间即可求出日销售利润不低于640元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润.【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.根据题意得:线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∴y与x之间的函数关系式为y=.(3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥640,解得:x≥16;当18<x≤30时,根据题意得:(8﹣6)×(﹣5x+450)≥640,解得:x≤26.∴16≤x≤26.26﹣16+1=11(天),∴日销售利润不低于640元的天数共有11天.∵点D的坐标为(18,360),∴日最大销售量为360件,360×2=720(元),∴试销售期间,日销售最大利润是720元.【点评】本题考查了一次函数的应用、待定系数法一次函数解析式以及解一元一次不等式,解题的关键是:(1)根据数量关系,列式计算;(2)利用待定系数法求出OD的函数关系式以及依照数量关系找出DE的函数关系式;(3)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式.23.(10分)(2017•咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC 为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.【分析】(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【解答】解:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ==2,PM=1×2÷3=,由勾股定理可求得OM==,故点P的坐标(﹣,),(,).【点评】本题考查了圆的综合题,正方形的性质,勾股定理的应用,勾股定理逆定理的应用,用正方形的边长表示出△AEF的各边的平方,熟练掌握“智慧三角形”的定义是解题的关键.24.(12分)(2017•咸宁)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y 轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.【分析】(1)由条件可求得B、C坐标,利用待定系数法可求得抛物线解析式,进一步可求得D点坐标;(2)过F作FG⊥x轴于点G,可设出F点坐标,利用△FAG∽△BDE,由相似三角形的性质可得到关于F点坐标的方程,可求得F点的坐标;。

湖北省咸宁市中考数学试卷

湖北省咸宁市中考数学试卷

2017年湖北省咸宁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)(3分)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()1.A.潜山公园B.陆水湖C.隐水洞D.三湖连江2.(3分)在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为()A.121×104B.12.1×105C.1.21×105D.1.21×1063.(3分)下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)34.(3分)如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥5.(3分)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%) B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)6.(3分)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根 D.无法判断7.(3分)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.πB.C.2π D.3π8.(3分)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)二、填空题(每小题3分,共24分)9.(3分)8的立方根是.10.(3分)化简:÷= .11.(3分)分解因式:2a2﹣4a+2= .12.(3分)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.13.(3分)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:在每天所走的步数这组数据中,众数和中位数分别是.14.(3分)如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为.15.(3分)如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2017时,顶点A的坐标为.16.(3分)如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是(把你认为正确结论的序号都填上).三、解答题(本大题共8小题,满分72分)17.(8分)(1)计算:|﹣|﹣+20170;(2)解方程:=.18.(7分)如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.19.(8分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的两幅不完整统计图,请你根据图中信息解答下列问题:(1)补全条形统计图,“体育”对应扇形的圆心角是度;(2)根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有人;(3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或画树状图的方法求所抽取的2人来自不同班级的概率.20.(8分)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x﹣1|的自变量x的取值范围是;(2)列表,找出y与x的几组对应值.其中,b= ;(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:.21.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E 两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cosA=,求DF的长.22.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?23.(10分)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.24.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P 在x轴上,且PQ=MN时,求菱形对角线MN的长.2017年湖北省咸宁市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2017•咸宁)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()A.潜山公园B.陆水湖C.隐水洞D.三湖连江【分析】将几个有理数比较后即可确定正确的选项.【解答】解:∵﹣2<﹣1<0<2,∴隐水洞的气温最低,故选C.【点评】本题考查了有理数的大小比较的知识,解题的关键是能够了解正数大于0,负数小于0,两个负数比较绝对值大的反而小,难度不大.2.(3分)(2017•咸宁)在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为()A.121×104B.12.1×105C.1.21×105D.1.21×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:1210000=1.21×106.故选:D.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)(2017•咸宁)下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)3【分析】根据合并同类项对A进行判断;根据同底数幂的乘法对B进行判断;根据同底数幂的除法对C进行判断;根据幂的乘方对D进行判断.【解答】解:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;D、原式=a6,所以D选项错误.故选B.【点评】本题考查了同底数幂的除法:底数不变,指数相减.也考查了同底数幂的乘法和幂的乘方.4.(3分)(2017•咸宁)如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】根据三棱柱的特点求解即可.【解答】解:主视图是三角形,俯视图是两个矩形,左视图是矩形,得几何体是三棱柱,故选:A.【点评】本题考查了三视图,利用三棱柱的特点得出几何体是解题关键.5.(3分)(2017•咸宁)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%) B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【解答】解:∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/千克,∴2月份鸡的价格为24(1﹣a%),∵3月份比2月份下降b%,∴三月份鸡的价格为24(1﹣a%)(1﹣b%),故选D.【点评】本题主要考查了列代数式的知识,解题的关键是掌握每个月份的数量增长关系.6.(3分)(2017•咸宁)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根 D.无法判断【分析】先利用第二象限点的坐标特征得到ac<0,则判断△>0,然后根据判别式的意义判断方程根的情况.【解答】解:∵点P(a,c)在第二象限,∴a<0,c>0,∴ac<0,∴△=b2﹣4ac>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•咸宁)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.πB.C.2π D.3π【分析】由圆内接四边形的性质和圆周角定理求出∠A=60°,得出∠BOD=120°,再由弧长公式即可得出答案.【解答】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的长==2π;故选:C.【点评】本题考查了弧长公式、圆内接四边形的性质、圆周角定理;熟练掌握圆内接四边形的性质和圆周角定理,求出∠BOD=120°是解决问题的关键.8.(3分)(2017•咸宁)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选(C)【点评】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.二、填空题(每小题3分,共24分)9.(3分)(2017•咸宁)8的立方根是 2 .【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.10.(3分)(2017•咸宁)化简:÷= x﹣1 .【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式==x﹣1故答案为:x﹣1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.11.(3分)(2017•咸宁)分解因式:2a2﹣4a+2= 2(a﹣1)2.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.故答案为:2(a﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)(2017•咸宁)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B (4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是x<﹣1或x>4 .【分析】观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<﹣1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c 的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>4.故答案为:x<﹣1或x>4.【点评】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.13.(3分)(2017•咸宁)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:在每天所走的步数这组数据中,众数和中位数分别是 1.4,1.35 .【分析】把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数,在这组数据中出现次数最多的是1.4,得到这组数据的众数.【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第4、5个两个数的平均数是(1.3+1.4)÷2=1.35,所以中位数是1.35,在这组数据中出现次数最多的是1.4,即众数是1.4.故答案为:1.4;1.35.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.14.(3分)(2017•咸宁)如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为 6 .【分析】由折叠的性质及矩形的性质得到OE垂直平分AC,得到AE=EC,根据AB为AC的一半确定出∠ACE=30°,进而得到OE等于EC的一半,求出EC的长,即为AE的长.【解答】解:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,设AB=AO=OC=x,则有AC=2x,∠ACB=30°,在Rt△ABC中,根据勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,则AE=6,故答案为:6【点评】此题考查了中心对称,矩形的性质,以及翻折变换,熟练掌握各自的性质是解本题的关键.15.(3分)(2017•咸宁)如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2017时,顶点A的坐标为(2,2).【分析】将正六边形ABCDEF绕原点O顺时针旋转2017次时,点A所在的位置就是原F 点所在的位置.【解答】解:2017×60°÷360°=336…1,即与正六边形ABCDEF绕原点O顺时针旋转1次时点A的坐标是一样的.当点A按顺时针旋转60°时,与原F点重合.连接OF,过点F作FH⊥x轴,垂足为H;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF是等边三角形,∴OF=EF=4,∴F(2,2),即旋转2017后点A的坐标是(2,2),故答案是:(2,2).【点评】此题主要考查了正六边形的性质,坐标与图形的性质﹣旋转.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.(3分)(2017•咸宁)如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是①②(把你认为正确结论的序号都填上).【分析】①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以OA=AC;②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;③如图2,当∠ABO=30°时,易证四边形OACB是矩形,此时AB与CO互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.【解答】解:在Rt△ABC中,∵BC=2,∠BAC=30°,∴AB=4,AC==2,①若C、O两点关于AB对称,如图1,∴AB是OC的垂直平分线,则OA=AC=2;所以①正确;②如图1,取AB的中点为E,连接OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE=AB=2,当OC经过点E时,OC最大,则C、O两点距离的最大值为4;所以②正确;③如图2,当∠ABO=30°时,∠OBC=∠AOB=∠ACB=90°,∴四边形AOBC是矩形,∴AB与OC互相平分,但AB与OC的夹角为60°、120°,不垂直,所以③不正确;④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的,则:=π,所以④不正确;综上所述,本题正确的有:①②;故答案为:①②.【点评】本题是三角形的综合题,考查了直角三角形30°的性质、直角三角形斜边中线的性质、等腰三角形的性质、轴对称的性质、线段垂直平分线的性质、动点运动路径问题、弧长公式,熟练掌握直角三角形斜边中线等于斜边一半是本题的关键,难度适中.三、解答题(本大题共8小题,满分72分)17.(8分)(2017•咸宁)(1)计算:|﹣|﹣+20170;(2)解方程:=.【分析】(1)根据实数的运算法则,零指数幂的性质计算即可;(2)根据分式方程的解法即可得到结论.【解答】解:(1):|﹣|﹣+20170=﹣4+1=1﹣3;(2)方程两边通乘以2x(x﹣3)得,x﹣3=4x,解得:x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,∴原方程的根是x=﹣1.【点评】本题考查了解分式方程,实数的运算,熟练掌握实数的运算法则是解题的关键.18.(7分)(2017•咸宁)如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.【分析】(1)由SSS证明△ABC≌△DFE即可;(2)连接AF、BD,由全等三角形的性质得出∠ABC=∠DFE,证出AB∥DF,即可得出结论.【解答】证明:(1)∵BE=FC,∴BC=EF,在△ABC和△DFE中,,∴△ABC≌△DFE(SSS);(2)解:如图所示:由(1)知△ABC≌△DFE,∴∠ABC=∠DFE,∴AB∥DF,∵AB=DF,∴四边形ABDF是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.19.(8分)(2017•咸宁)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的两幅不完整统计图,请你根据图中信息解答下列问题:(1)补全条形统计图,“体育”对应扇形的圆心角是72 度;(2)根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有700 人;(3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或画树状图的方法求所抽取的2人来自不同班级的概率.【分析】(1)根据动画类人数及其百分比求得总人数,总人数减去其他类型人数可得体育类人数,用360度乘以体育类人数所占比例即可得;(2)用样本估计总体的思想解决问题;(3)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:(1)调查的学生总数为60÷30%=200(人),则体育类人数为200﹣(30+60+70)=40,补全条形图如下:“体育”对应扇形的圆心角是360°×=72°,故答案为:72;(2)估计该校2000名学生中喜爱“娱乐”的有:2000×=700(人),故答案为:700;(3)将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:==.所以P(2名学生来自不同班)【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)(2017•咸宁)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x﹣1|的自变量x的取值范围是任意实数;(2)列表,找出y与x的几组对应值.其中,b= 2 ;(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:函数的最小值为0(答案不唯一).【分析】(1)根据一次函数的性质即可得出结论;(2)把x=﹣1代入函数解析式,求出y的值即可;(3)在坐标系内描出各点,再顺次连接即可;(4)根据函数图象即可得出结论.【解答】解:(1)∵x无论为何值,函数均有意义,∴x为任意实数.故答案为:任意实数;(2)∵当x=﹣1时,y=|﹣1﹣1|=2,∴b=2.故答案为:2;(3)如图所示;(4)由函数图象可知,函数的最小值为0.故答案为:函数的最小值为0(答案不唯一).【点评】本题考查的是一次函数的性质,根据题意画出函数图象,利用数形结合求解是解答此题的关键.21.(9分)(2017•咸宁)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC 分别交于D、E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cosA=,求DF的长.【分析】(1)证明:如图,连接OD,作OG⊥AC于点G,推出∠ODB=∠C;然后根据DF⊥AC,∠DFC=90°,推出∠ODF=∠DFC=90°,即可推出DF是⊙O的切线.(2)首先判断出:AG=AE=2,然后判断出四边形OGFD为矩形,即可求出DF的值是多少.【解答】(1)证明:如图,连接OD,作OG⊥AC于点G,,∵OB=OD,∴∠ODB=∠B,又∵AB=AC,∴∠C=∠B,∴∠ODB=∠C,∵DF⊥AC,∴∠DFC=90°,∴∠ODF=∠DFC=90°,∴DF是⊙O的切线.(2)解:AG=AE=2,∵cosA=,∴OA===5,∴OG==,∵∠ODF=∠DFG=∠OGF=90°,∴四边形OGFD为矩形,∴DF=OG=.【点评】此题主要考查了切线的性质和应用,等腰三角形的性质和应用,以及解直角三角形的应用,要熟练掌握.22.(10分)(2017•咸宁)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE 表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是330 件,日销售利润是660 元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?【分析】(1)根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出第24天的日销售量,再根据日销售利润=单件利润×日销售量即可求出日销售利润;(2)根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;(3)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于640元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润.【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.根据题意得:线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∴y与x之间的函数关系式为y=.(3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥640,解得:x≥16;当18<x≤30时,根据题意得:(8﹣6)×(﹣5x+450)≥640,解得:x≤26.∴16≤x≤26.26﹣16+1=11(天),∴日销售利润不低于640元的天数共有11天.∵点D的坐标为(18,360),∴日最大销售量为360件,360×2=720(元),∴试销售期间,日销售最大利润是720元.【点评】本题考查了一次函数的应用、待定系数法一次函数解析式以及解一元一次不等式,解题的关键是:(1)根据数量关系,列式计算;(2)利用待定系数法求出OD的函数关系式以及依照数量关系找出DE的函数关系式;(3)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式.23.(10分)(2017•咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.【分析】(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【解答】解:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ==2,PM=1×2÷3=,由勾股定理可求得OM==,故点P的坐标(﹣,),(,).【点评】本题考查了圆的综合题,正方形的性质,勾股定理的应用,勾股定理逆定理的应用,用正方形的边长表示出△AEF的各边的平方,熟练掌握“智慧三角形”的定义是解题的关键.24.(12分)(2017•咸宁)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P 在x轴上,且PQ=MN时,求菱形对角线MN的长.。

2017年湖北省咸宁市中考数学试卷

2017年湖北省咸宁市中考数学试卷

2017年湖北省咸宁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()景区潜山公园陆水湖隐水洞三湖连江气温﹣1℃0℃﹣2℃2℃A.潜山公园B.陆水湖C.隐水洞D.三湖连江2.(3分)在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为()A.121×104B.12.1×105 C.1.21×105 D.1.21×1063.(3分)下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)34.(3分)如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥5.(3分)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)6.(3分)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断7.(3分)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.πB .C.2πD.3π8.(3分)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A .(,0)B.(2,0)C .(,0) D.(3,0)二、填空题(每小题3分,共24分)9.(3分)8的立方根是.10.(3分)化简:÷=.11.(3分)分解因式:2a2﹣4a+2=.12.(3分)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.13.(3分)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:1.1 1.2 1.3 1.4 1.5步数(万步)天数375123在每天所走的步数这组数据中,众数和中位数分别是.14.(3分)如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为.15.(3分)如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2017时,顶点A的坐标为.16.(3分)如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是(把你认为正确结论的序号都填上).三、解答题(本大题共8小题,满分72分)17.(8分)(1)计算:|﹣|﹣+20170;(2)解方程:=.18.(7分)如图,点B、E、C、F在一条直线上,AB=DF,AC=DF,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.19.(8分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的两幅不完整统计图,请你根据图中信息解答下列问题:(1)补全条形统计图,“体育”对应扇形的圆心角是度;(2)根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有人;(3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或画树状图的方法求所抽取的2人来自不同班级的概率.20.(8分)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x﹣1|的自变量x的取值范围是;(2)列表,找出y与x的几组对应值.x…﹣10123…y…b1012…其中,b=;(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:.21.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cosA=,求DF的长.22.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?23.(10分)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF 是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.24.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P 在x轴上,且PQ=MN时,求菱形对角线MN的长.2017年湖北省咸宁市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2017•咸宁)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()景区潜山公园陆水湖隐水洞三湖连江气温﹣1℃0℃﹣2℃2℃A.潜山公园B.陆水湖C.隐水洞D.三湖连江【分析】将几个有理数比较后即可确定正确的选项.【解答】解:∵﹣2<﹣1<0<2,∴隐水洞的气温最低,故选C.【点评】本题考查了有理数的大小比较的知识,解题的关键是能够了解正数大于0,负数小于0,两个负数比较绝对值大的反而小,难度不大.2.(3分)(2017•咸宁)在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为()A.121×104B.12.1×105 C.1.21×105 D.1.21×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:1210000=1.21×106.故选:D.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)(2017•咸宁)下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)3【分析】根据合并同类项对A进行判断;根据同底数幂的乘法对B进行判断;根据同底数幂的除法对C进行判断;根据幂的乘方对D进行判断.【解答】解:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;D、原式=a6,所以D选项错误.故选B.【点评】本题考查了同底数幂的除法:底数不变,指数相减.也考查了同底数幂的乘法和幂的乘方.4.(3分)(2017•咸宁)如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】根据三棱柱的特点求解即可.【解答】解:主视图是三角形,俯视图是两个矩形,左视图是矩形,得几何体是三棱柱,故选:A.【点评】本题考查了三视图,利用三棱柱的特点得出几何体是解题关键.5.(3分)(2017•咸宁)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【解答】解:∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/千克,∴2月份鸡的价格为24(1﹣a%),∵3月份比2月份下降b%,∴三月份鸡的价格为24(1﹣a%)(1﹣b%),故选D.【点评】本题主要考查了列代数式的知识,解题的关键是掌握每个月份的数量增长关系.6.(3分)(2017•咸宁)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断【分析】先利用第二象限点的坐标特征得到ac<0,则判断△>0,然后根据判别式的意义判断方程根的情况.【解答】解:∵点P(a,c)在第二象限,∴a<0,c>0,∴ac<0,∴△=b2﹣4ac>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•咸宁)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.πB.C.2πD.3π【分析】由圆内接四边形的性质和圆周角定理求出∠A=60°,得出∠BOD=120°,再由弧长公式即可得出答案.【解答】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的长==2π;故选:C.【点评】本题考查了弧长公式、圆内接四边形的性质、圆周角定理;熟练掌握圆内接四边形的性质和圆周角定理,求出∠BOD=120°是解决问题的关键.8.(3分)(2017•咸宁)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0) D.(3,0)【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选(C)【点评】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.二、填空题(每小题3分,共24分)9.(3分)(2017•咸宁)8的立方根是2.【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.10.(3分)(2017•咸宁)化简:÷=x﹣1.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式==x﹣1故答案为:x﹣1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.11.(3分)(2017•咸宁)分解因式:2a2﹣4a+2=2(a﹣1)2.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.故答案为:2(a﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)(2017•咸宁)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B (4,q)两点,则关于x的不等式mx+n>ax2+bx+c 的解集是x<﹣1或x>4.【分析】观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<﹣1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>4.故答案为:x<﹣1或x>4.【点评】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.13.(3分)(2017•咸宁)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:1.1 1.2 1.3 1.4 1.5步数(万步)天数375123在每天所走的步数这组数据中,众数和中位数分别是 1.4,1.35.【分析】把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数,在这组数据中出现次数最多的是1.4,得到这组数据的众数.【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第4、5个两个数的平均数是(1.3+1.4)÷2=1.35,所以中位数是1.35,在这组数据中出现次数最多的是1.4,即众数是1.4.故答案为:1.4;1.35.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.14.(3分)(2017•咸宁)如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为6.【分析】由折叠的性质及矩形的性质得到OE垂直平分AC,得到AE=EC,根据AB为AC的一半确定出∠ACE=30°,进而得到OE等于EC的一半,求出EC的长,即为AE的长.【解答】解:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,设AB=AO=OC=x,则有AC=2x,∠ACB=30°,在Rt△ABC中,根据勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,则AE=6,故答案为:6【点评】此题考查了中心对称,矩形的性质,以及翻折变换,熟练掌握各自的性质是解本题的关键.15.(3分)(2017•咸宁)如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF ∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2017时,顶点A 的坐标为(2,2).【分析】将正六边形ABCDEF绕原点O顺时针旋转2017次时,点A所在的位置就是原F点所在的位置.【解答】解:2017×60°÷360°=336…1,即与正六边形ABCDEF绕原点O顺时针旋转1次时点A 的坐标是一样的.当点A按顺时针旋转60°时,与原F点重合.连接OF,过点F作FH⊥x轴,垂足为H;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF是等边三角形,∴OF=EF=4,∴F(2,2),即旋转2017后点A的坐标是(2,2),故答案是:(2,2).【点评】此题主要考查了正六边形的性质,坐标与图形的性质﹣旋转.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.(3分)(2017•咸宁)如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是①②③(把你认为正确结论的序号都填上).【分析】①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB 是OC的垂直平分线,所以OA=AC;②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;③如图2,根据等腰三角形三线合一可知:AB⊥OC;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.【解答】解:在Rt△ABC中,∵BC=2,∠BAC=30°,∴AB=4,AC==2,①若C、O两点关于AB对称,如图1,∴AB是OC的垂直平分线,则OA=AC=2;所以①正确;②如图1,取AB的中点为E,连接OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE=AB=2,当OC经过点E时,OC最大,则C、O两点距离的最大值为4;所以②正确;③如图2,同理取AB的中点E,则OE=CE,∵AB平分CO,∴OF=CF,∴AB⊥OC,所以③正确;④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的,则:=π.所以④不正确;综上所述,本题正确的有:①②③;故答案为:①②③.【点评】本题是三角形的综合题,考查了直角三角形30°的性质、直角三角形斜边中线的性质、等腰三角形的性质、轴对称的性质、线段垂直平分线的性质、动点运动路径问题、弧长公式,熟练掌握直角三角形斜边中线等于斜边一半是本题的关键,难度适中.三、解答题(本大题共8小题,满分72分)17.(8分)(2017•咸宁)(1)计算:|﹣|﹣+20170;(2)解方程:=.【分析】(1)根据实数的运算法则,零指数幂的性质计算即可;(2)根据分式方程的解法即可得到结论.【解答】解:(1):|﹣|﹣+20170=﹣4+1=1﹣3;(2)方程两边通乘以2x(x﹣3)得,x﹣3=4x,解得:x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,∴原方程的根是x=﹣1.【点评】本题考查了解分式方程,实数的运算,熟练掌握实数的运算法则是解题的关键.18.(7分)(2017•咸宁)如图,点B、E、C、F在一条直线上,AB=DF,AC=DF,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.【分析】(1)由SSS证明△ABC≌△DFE即可;(2)连接AF、BD,由全等三角形的性质得出∠ABC=∠DFE,证出AB∥DF,即可得出结论.【解答】证明:(1)∵BE=FC,∴BC=EF,在△ABC和△DFE中,,∴△ABC≌△DFE(SSS);(2)解:连接AF、BD,如图所示:由(1)知△ABC≌△DFE,∴∠ABC=∠DFE,∴AB∥DF,∵AB=DF,∴四边形ABDF是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.19.(8分)(2017•咸宁)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的两幅不完整统计图,请你根据图中信息解答下列问题:(1)补全条形统计图,“体育”对应扇形的圆心角是72度;(2)根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有700人;(3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或画树状图的方法求所抽取的2人来自不同班级的概率.【分析】(1)根据动画类人数及其百分比求得总人数,总人数减去其他类型人数可得体育类人数,用360度乘以体育类人数所占比例即可得;(2)用样本估计总体的思想解决问题;(3)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:(1)调查的学生总数为60÷30%=200(人),则体育类人数为200﹣(30+60+70)=40,补全条形图如下:“体育”对应扇形的圆心角是360°×=72°,故答案为:72;(2)估计该校2000名学生中喜爱“娱乐”的有:2000×=700(人),故答案为:700;(3)将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:==.所以P(2名学生来自不同班)【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)(2017•咸宁)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x﹣1|的自变量x的取值范围是任意实数;(2)列表,找出y与x的几组对应值.x…﹣10123…y…b1012…其中,b=2;(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:函数的最小值为0(答案不唯一).【分析】(1)根据一次函数的性质即可得出结论;(2)把x=﹣1代入函数解析式,求出y的值即可;(3)在坐标系内描出各点,再顺次连接即可;(4)根据函数图象即可得出结论.【解答】解:(1)∵x无论为何值,函数均有意义,∴x为任意实数.故答案为:任意实数;(2)∵当x=﹣1时,y=|﹣1﹣1|=2,∴b=2.故答案为:2;(3)如图所示;(4)由函数图象可知,函数的最小值为0.故答案为:函数的最小值为0(答案不唯一).【点评】本题考查的是一次函数的性质,根据题意画出函数图象,利用数形结合求解是解答此题的关键.21.(9分)(2017•咸宁)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cosA=,求DF的长.【分析】(1)证明:如图,连接OD,作OG⊥AC于点G,推出∠ODB=∠C;然后根据DF⊥AC,∠DFC=90°,推出∠ODF=∠DFC=90°,即可推出DF是⊙O的切线.(2)首先判断出:AG=AE=2,然后判断出四边形OGFD为矩形,即可求出DF的值是多少.【解答】(1)证明:如图,连接OD,作OG⊥AC于点G,,∵OB=OD,∴∠ODB=∠B,又∵AB=AC,∴∠C=∠B,∴∠ODB=∠C,∵DF⊥AC,∴∠DFC=90°,∴∠ODF=∠DFC=90°,∴DF是⊙O的切线.(2)解:AG=AE=2,∵cosA=,∴OA===5,∴OG==,∵∠ODF=∠DFG=∠OGF=90°,∴四边形OGFD为矩形,∴DF=OG=.【点评】此题主要考查了切线的性质和应用,等腰三角形的性质和应用,以及解直角三角形的应用,要熟练掌握.22.(10分)(2017•咸宁)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是330件,日销售利润是660元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?【分析】(1)根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出第24天的日销售量,再根据日销售利润=单件利润×日销售量即可求出日销售利润;(2)根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;(3)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于640元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润.【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.根据题意得:线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∴y与x之间的函数关系式为y=.(3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥640,解得:x≥16;当18<x≤30时,根据题意得:(8﹣6)×(﹣5x+450)≥640,解得:x≤26.∴16≤x≤26.26﹣16+1=11(天),∴日销售利润不低于640元的天数共有11天.∵点D的坐标为(18,360),∴日最大销售量为360件,360×2=720(元),∴试销售期间,日销售最大利润是720元.【点评】本题考查了一次函数的应用、待定系数法一次函数解析式以及解一元一次不等式,解题的关键是:(1)根据数量关系,列式计算;(2)利用待定系数法求出OD的函数关系式以及依照数量关系找出DE的函数关系式;(3)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式.23.(10分)(2017•咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF 是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.【分析】(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【解答】解:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ==2,PM=1×2÷3=,由勾股定理可求得OM==,故点P的坐标(﹣,),(,).【点评】本题考查了圆的综合题,正方形的性质,勾股定理的应用,勾股定理逆定理的应用,用正方形的边长表示出△AEF的各边的平方,熟练掌握“智慧三角形”的定义是解题的关键.24.(12分)(2017•咸宁)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P 在x轴上,且PQ=MN时,求菱形对角线MN的长.。

2017年湖北省 咸宁市 中考 数学试卷

2017年湖北省 咸宁市 中考 数学试卷

2017年湖北省咸宁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()景区潜山公园陆水湖隐水洞三湖连江气温﹣1℃0℃﹣2℃2℃A.潜山公园B.陆水湖C.隐水洞D.三湖连江2.(3分)在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为()A.121×104B.12.1×105C.1.21×105D.1.21×1063.(3分)下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)3(3分)如图是某个几何体的三视图,该几何体是()4.5.(3分)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b%1D.m=24(1﹣a%)(1﹣b%)6.(3分)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断7.(3分)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若,则的长为()∠BOD=∠BCD8.(3分)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲C的对应点C′的坐标为()线上时停止运动,则此时点二、填空题(每小题3分,共24分)29.(3分)8的立方根是.10.(3分)化简:÷=.11.(3分)分解因式:2a2﹣4a+2=.12.(3分)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.13.(3分)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:步数(万步) 1.1 1.2 1.3 1.4 1.5天数375123在每天所走的步数这组数据中,众数和中位数分别是.14.(3分)如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为.15.(3分)如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF ∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2017时,顶点A的坐标为.316.(3分)如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是(把你认为正确结论的序号都填上).三、解答题(本大题共8小题,满分72分)17.(8分)(1)计算:|﹣|﹣+20170;(2)解方程:=.18.(7分)如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.4519.(8分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的两幅不完整统计图,请你根据图中信息解答下列问题:(1)补全条形统计图,“体育”对应扇形的圆心角是 度;(2)根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有 人; (3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或画树状图的方法求所抽取的2人来自不同班级的概率.20.(8分)小慧根据学习函数的经验,对函数y=|x ﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x ﹣1|的自变量x 的取值范围是 ; (2)列表,找出y 与x 的几组对应值. x … ﹣1 0 1 2 3 … y…b112…其中,b= ;(3)在平面直角坐标系xOy 中,描出以上表中对对应值为坐标的点,并画出该。

2017年湖北省咸宁市中考数学试卷

2017年湖北省咸宁市中考数学试卷

2017年湖北省咸宁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()景区潜山公园陆水湖隐水洞三湖连江气温﹣1℃0℃﹣2℃2℃A.潜山公园B.陆水湖C.隐水洞D.三湖连江2.(3分)在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为()A.121×104B.12.1×105C.1.21×105D.1.21×1063.(3分)下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)34.(3分)如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥5.(3分)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)6.(3分)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根 D.无法判断7.(3分)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.πB.C.2πD.3π8.(3分)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)二、填空题(每小题3分,共24分)9.(3分)8的立方根是.10.(3分)化简:÷=.11.(3分)分解因式:2a2﹣4a+2=.12.(3分)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.13.(3分)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:步数(万步) 1.1 1.2 1.3 1.4 1.5天数375123在每天所走的步数这组数据中,众数和中位数分别是.14.(3分)如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为.15.(3分)如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2017时,顶点A的坐标为.16.(3分)如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是(把你认为正确结论的序号都填上).三、解答题(本大题共8小题,满分72分)17.(8分)(1)计算:|﹣|﹣+20170;(2)解方程:=.18.(7分)如图,点B、E、C、F在一条直线上,AB=DF,AC=DF,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.19.(8分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的两幅不完整统计图,请你根据图中信息解答下列问题:(1)补全条形统计图,“体育”对应扇形的圆心角是度;(2)根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有人;(3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或画树状图的方法求所抽取的2人来自不同班级的概率.20.(8分)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x﹣1|的自变量x的取值范围是;(2)列表,找出y与x的几组对应值.x…﹣10123…y…b1012…其中,b=;(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:.21.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cosA=,求DF的长.22.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?23.(10分)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.24.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.2017年湖北省咸宁市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2017•咸宁)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()景区潜山公园陆水湖隐水洞三湖连江气温﹣1℃0℃﹣2℃2℃A.潜山公园B.陆水湖C.隐水洞D.三湖连江【分析】将几个有理数比较后即可确定正确的选项.【解答】解:∵﹣2<﹣1<0<2,∴隐水洞的气温最低,故选C.【点评】本题考查了有理数的大小比较的知识,解题的关键是能够了解正数大于0,负数小于0,两个负数比较绝对值大的反而小,难度不大.2.(3分)(2017•咸宁)在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为()A.121×104B.12.1×105C.1.21×105D.1.21×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:1210000=1.21×106.故选:D.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)(2017•咸宁)下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)3【分析】根据合并同类项对A进行判断;根据同底数幂的乘法对B进行判断;根据同底数幂的除法对C进行判断;根据幂的乘方对D进行判断.【解答】解:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;D、原式=a6,所以D选项错误.故选B.【点评】本题考查了同底数幂的除法:底数不变,指数相减.也考查了同底数幂的乘法和幂的乘方.4.(3分)(2017•咸宁)如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】根据三棱柱的特点求解即可.【解答】解:主视图是三角形,俯视图是两个矩形,左视图是矩形,得几何体是三棱柱,故选:A.【点评】本题考查了三视图,利用三棱柱的特点得出几何体是解题关键.5.(3分)(2017•咸宁)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【解答】解:∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/千克,∴2月份鸡的价格为24(1﹣a%),∵3月份比2月份下降b%,∴三月份鸡的价格为24(1﹣a%)(1﹣b%),故选D.【点评】本题主要考查了列代数式的知识,解题的关键是掌握每个月份的数量增长关系.6.(3分)(2017•咸宁)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根 D.无法判断【分析】先利用第二象限点的坐标特征得到ac<0,则判断△>0,然后根据判别式的意义判断方程根的情况.【解答】解:∵点P(a,c)在第二象限,∴a<0,c>0,∴ac<0,∴△=b2﹣4ac>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•咸宁)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.πB.C.2πD.3π【分析】由圆内接四边形的性质和圆周角定理求出∠A=60°,得出∠BOD=120°,再由弧长公式即可得出答案.【解答】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的长==2π;故选:C.【点评】本题考查了弧长公式、圆内接四边形的性质、圆周角定理;熟练掌握圆内接四边形的性质和圆周角定理,求出∠BOD=120°是解决问题的关键.8.(3分)(2017•咸宁)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选(C)【点评】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.二、填空题(每小题3分,共24分)9.(3分)(2017•咸宁)8的立方根是2.【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.10.(3分)(2017•咸宁)化简:÷=x﹣1.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式==x﹣1故答案为:x﹣1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.11.(3分)(2017•咸宁)分解因式:2a2﹣4a+2=2(a﹣1)2.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.故答案为:2(a﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)(2017•咸宁)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是x<﹣1或x>4.【分析】观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<﹣1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c 的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>4.故答案为:x<﹣1或x>4.【点评】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.13.(3分)(2017•咸宁)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:步数(万步) 1.1 1.2 1.3 1.4 1.5天数375123在每天所走的步数这组数据中,众数和中位数分别是 1.4,1.35.【分析】把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数,在这组数据中出现次数最多的是1.4,得到这组数据的众数.【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第4、5个两个数的平均数是(1.3+1.4)÷2=1.35,所以中位数是1.35,在这组数据中出现次数最多的是1.4,即众数是1.4.故答案为:1.4;1.35.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.14.(3分)(2017•咸宁)如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为6.【分析】由折叠的性质及矩形的性质得到OE垂直平分AC,得到AE=EC,根据AB为AC 的一半确定出∠ACE=30°,进而得到OE等于EC的一半,求出EC的长,即为AE的长.【解答】解:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,设AB=AO=OC=x,则有AC=2x,∠ACB=30°,在Rt△ABC中,根据勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,则AE=6,故答案为:6【点评】此题考查了中心对称,矩形的性质,以及翻折变换,熟练掌握各自的性质是解本题的关键.15.(3分)(2017•咸宁)如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2017时,顶点A的坐标为(2,2).【分析】将正六边形ABCDEF绕原点O顺时针旋转2017次时,点A所在的位置就是原F 点所在的位置.【解答】解:2017×60°÷360°=336…1,即与正六边形ABCDEF绕原点O顺时针旋转1次时点A的坐标是一样的.当点A按顺时针旋转60°时,与原F点重合.连接OF,过点F作FH⊥x轴,垂足为H;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF是等边三角形,∴OF=EF=4,∴F(2,2),即旋转2017后点A的坐标是(2,2),故答案是:(2,2).【点评】此题主要考查了正六边形的性质,坐标与图形的性质﹣旋转.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.(3分)(2017•咸宁)如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是①②③(把你认为正确结论的序号都填上).【分析】①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以OA=AC;②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;③如图2,根据等腰三角形三线合一可知:AB⊥OC;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.【解答】解:在Rt△ABC中,∵BC=2,∠BAC=30°,∴AB=4,AC==2,①若C、O两点关于AB对称,如图1,∴AB是OC的垂直平分线,则OA=AC=2;所以①正确;②如图1,取AB的中点为E,连接OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE=AB=2,当OC经过点E时,OC最大,则C、O两点距离的最大值为4;所以②正确;③如图2,同理取AB的中点E,则OE=CE,∵AB平分CO,∴OF=CF,∴AB⊥OC,所以③正确;④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的,则:=π.所以④不正确;综上所述,本题正确的有:①②③;故答案为:①②③.【点评】本题是三角形的综合题,考查了直角三角形30°的性质、直角三角形斜边中线的性质、等腰三角形的性质、轴对称的性质、线段垂直平分线的性质、动点运动路径问题、弧长公式,熟练掌握直角三角形斜边中线等于斜边一半是本题的关键,难度适中.三、解答题(本大题共8小题,满分72分)17.(8分)(2017•咸宁)(1)计算:|﹣|﹣+20170;(2)解方程:=.【分析】(1)根据实数的运算法则,零指数幂的性质计算即可;(2)根据分式方程的解法即可得到结论.【解答】解:(1):|﹣|﹣+20170=﹣4+1=1﹣3;(2)方程两边通乘以2x(x﹣3)得,x﹣3=4x,解得:x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,∴原方程的根是x=﹣1.【点评】本题考查了解分式方程,实数的运算,熟练掌握实数的运算法则是解题的关键.18.(7分)(2017•咸宁)如图,点B、E、C、F在一条直线上,AB=DF,AC=DF,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.【分析】(1)由SSS证明△ABC≌△DFE即可;(2)连接AF、BD,由全等三角形的性质得出∠ABC=∠DFE,证出AB∥DF,即可得出结论.【解答】证明:(1)∵BE=FC,∴BC=EF,在△ABC和△DFE中,,∴△ABC≌△DFE(SSS);(2)解:连接AF、BD,如图所示:由(1)知△ABC≌△DFE,∴∠ABC=∠DFE,∴AB∥DF,∵AB=DF,∴四边形ABDF是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.19.(8分)(2017•咸宁)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的两幅不完整统计图,请你根据图中信息解答下列问题:(1)补全条形统计图,“体育”对应扇形的圆心角是72度;(2)根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有700人;(3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或画树状图的方法求所抽取的2人来自不同班级的概率.【分析】(1)根据动画类人数及其百分比求得总人数,总人数减去其他类型人数可得体育类人数,用360度乘以体育类人数所占比例即可得;(2)用样本估计总体的思想解决问题;(3)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:(1)调查的学生总数为60÷30%=200(人),则体育类人数为200﹣(30+60+70)=40,补全条形图如下:“体育”对应扇形的圆心角是360°×=72°,故答案为:72;(2)估计该校2000名学生中喜爱“娱乐”的有:2000×=700(人),故答案为:700;(3)将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:==.所以P(2名学生来自不同班)【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)(2017•咸宁)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x﹣1|的自变量x的取值范围是任意实数;(2)列表,找出y与x的几组对应值.x…﹣10123…y…b1012…其中,b=2;(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:函数的最小值为0(答案不唯一).【分析】(1)根据一次函数的性质即可得出结论;(2)把x=﹣1代入函数解析式,求出y的值即可;(3)在坐标系内描出各点,再顺次连接即可;(4)根据函数图象即可得出结论.【解答】解:(1)∵x无论为何值,函数均有意义,∴x为任意实数.故答案为:任意实数;(2)∵当x=﹣1时,y=|﹣1﹣1|=2,∴b=2.故答案为:2;(3)如图所示;(4)由函数图象可知,函数的最小值为0.故答案为:函数的最小值为0(答案不唯一).【点评】本题考查的是一次函数的性质,根据题意画出函数图象,利用数形结合求解是解答此题的关键.21.(9分)(2017•咸宁)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC 分别交于D、E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cosA=,求DF的长.【分析】(1)证明:如图,连接OD,作OG⊥AC于点G,推出∠ODB=∠C;然后根据DF ⊥AC,∠DFC=90°,推出∠ODF=∠DFC=90°,即可推出DF是⊙O的切线.(2)首先判断出:AG=AE=2,然后判断出四边形OGFD为矩形,即可求出DF的值是多少.【解答】(1)证明:如图,连接OD,作OG⊥AC于点G,,∵OB=OD,∴∠ODB=∠B,又∵AB=AC,∴∠C=∠B,∴∠ODB=∠C,∵DF⊥AC,∴∠DFC=90°,∴∠ODF=∠DFC=90°,∴DF是⊙O的切线.(2)解:AG=AE=2,∵cosA=,∴OA===5,∴OG==,∵∠ODF=∠DFG=∠OGF=90°,∴四边形OGFD为矩形,∴DF=OG=.【点评】此题主要考查了切线的性质和应用,等腰三角形的性质和应用,以及解直角三角形的应用,要熟练掌握.22.(10分)(2017•咸宁)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是330件,日销售利润是660元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?【分析】(1)根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出第24天的日销售量,再根据日销售利润=单件利润×日销售量即可求出日销售利润;(2)根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;(3)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于640元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润.【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.根据题意得:线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∴y与x之间的函数关系式为y=.(3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥640,解得:x≥16;当18<x≤30时,根据题意得:(8﹣6)×(﹣5x+450)≥640,解得:x≤26.∴16≤x≤26.26﹣16+1=11(天),∴日销售利润不低于640元的天数共有11天.∵点D的坐标为(18,360),∴日最大销售量为360件,360×2=720(元),∴试销售期间,日销售最大利润是720元.【点评】本题考查了一次函数的应用、待定系数法一次函数解析式以及解一元一次不等式,解题的关键是:(1)根据数量关系,列式计算;(2)利用待定系数法求出OD的函数关系式以及依照数量关系找出DE的函数关系式;(3)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式.23.(10分)(2017•咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.【分析】(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【解答】解:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ==2,PM=1×2÷3=,由勾股定理可求得OM==,故点P的坐标(﹣,),(,).【点评】本题考查了圆的综合题,正方形的性质,勾股定理的应用,勾股定理逆定理的应用,用正方形的边长表示出△AEF的各边的平方,熟练掌握“智慧三角形”的定义是解题的关键.24.(12分)(2017•咸宁)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.【分析】(1)由条件可求得B、C坐标,利用待定系数法可求得抛物线解析式,进一步可求得D点坐标;(2)过F作FG⊥x轴于点G,可设出F点坐标,利用△FAG∽△BDE,由相似三角形的性质可得到关于F点坐标的方程,可求得F点的坐标;(3)可求得P点坐标,设T为菱形对角线的交点,设出PT的长为n,从而可表示出M点。

2017年湖北省咸宁市中考数学试卷

2017年湖北省咸宁市中考数学试卷

2017年湖北省咸宁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()A.潜山公园B.陆水湖C.隐水洞D.三湖连江2.(3分)在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为()A.121×104B.12.1×105C.1.21×105D.1.21×1063.(3分)下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)34.(3分)如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥5.(3分)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)6.(3分)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断7.(3分)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.πB.C.2πD.3π8.(3分)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0) C.(,0)D.(3,0)二、填空题(每小题3分,共24分)9.(3分)8的立方根是.10.(3分)化简:÷=.11.(3分)分解因式:2a2﹣4a+2=.12.(3分)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.13.(3分)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:在每天所走的步数这组数据中,众数和中位数分别是.14.(3分)如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为.15.(3分)如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF ∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2017时,顶点A的坐标为.16.(3分)如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是(把你认为正确结论的序号都填上).三、解答题(本大题共8小题,满分72分)17.(8分)(1)计算:|﹣|﹣+20170;(2)解方程:=.18.(7分)如图,点B、E、C、F在一条直线上,AB=DF,AC=DF,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.19.(8分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的两幅不完整统计图,请你根据图中信息解答下列问题:(1)补全条形统计图,“体育”对应扇形的圆心角是度;(2)根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有人;(3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或画树状图的方法求所抽取的2人来自不同班级的概率.20.(8分)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x﹣1|的自变量x的取值范围是;(2)列表,找出y与x的几组对应值.其中,b=;(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:.21.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cosA=,求DF的长.22.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?23.(10分)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC 为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.24.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.2017年湖北省咸宁市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2017•咸宁)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()A.潜山公园B.陆水湖C.隐水洞D.三湖连江【解答】解:∵﹣2<﹣1<0<2,∴隐水洞的气温最低,故选C.2.(3分)(2017•咸宁)在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为()A.121×104B.12.1×105C.1.21×105D.1.21×106【解答】解:1210000=1.21×106.故选:D.3.(3分)(2017•咸宁)下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)3【解答】解:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;D、原式=a6,所以D选项错误.故选B.4.(3分)(2017•咸宁)如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【解答】解:主视图是三角形,俯视图是两个矩形,左视图是矩形,得几何体是三棱柱,故选:A.5.(3分)(2017•咸宁)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)【解答】解:∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/千克,∴2月份鸡的价格为24(1﹣a%),∵3月份比2月份下降b%,∴三月份鸡的价格为24(1﹣a%)(1﹣b%),故选D.6.(3分)(2017•咸宁)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断【解答】解:∵点P(a,c)在第二象限,∴a<0,c>0,∴ac<0,∴△=b2﹣4ac>0,∴方程有两个不相等的实数根.故选B.7.(3分)(2017•咸宁)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.πB.C.2πD.3π【解答】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的长==2π;故选:C.8.(3分)(2017•咸宁)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0) C.(,0)D.(3,0)【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选(C)二、填空题(每小题3分,共24分)9.(3分)(2017•咸宁)8的立方根是2.【解答】解:8的立方根为2,故答案为:2.10.(3分)(2017•咸宁)化简:÷=x﹣1.【解答】解:原式==x﹣1故答案为:x﹣1.11.(3分)(2017•咸宁)分解因式:2a2﹣4a+2=2(a﹣1)2.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.故答案为:2(a﹣1)2.12.(3分)(2017•咸宁)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是x<﹣1或x >4.【解答】解:观察函数图象可知:当x<﹣1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>4.故答案为:x<﹣1或x>4.13.(3分)(2017•咸宁)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:在每天所走的步数这组数据中,众数和中位数分别是 1.4,1.35.【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第4、5个两个数的平均数是(1.3+1.4)÷2=1.35,所以中位数是1.35,在这组数据中出现次数最多的是1.4,即众数是1.4.故答案为:1.4;1.35.14.(3分)(2017•咸宁)如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为6.【解答】解:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,设AB=AO=OC=x,则有AC=2x,∠ACB=30°,在Rt△ABC中,根据勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,则AE=6,故答案为:615.(3分)(2017•咸宁)如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2017时,顶点A的坐标为(2,2).【解答】解:2017×60°÷360°=336…1,即与正六边形ABCDEF绕原点O顺时针旋转1次时点A的坐标是一样的.当点A按顺时针旋转60°时,与原F点重合.连接OF,过点F作FH⊥x轴,垂足为H;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF是等边三角形,∴OF=EF=4,∴F(2,2),即旋转2017后点A的坐标是(2,2),故答案是:(2,2).16.(3分)(2017•咸宁)如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是①②③(把你认为正确结论的序号都填上).【解答】解:在Rt△ABC中,∵BC=2,∠BAC=30°,∴AB=4,AC==2,①若C、O两点关于AB对称,如图1,∴AB是OC的垂直平分线,则OA=AC=2;所以①正确;②如图1,取AB的中点为E,连接OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE=AB=2,当OC经过点E时,OC最大,则C、O两点距离的最大值为4;所以②正确;③如图2,同理取AB的中点E,则OE=CE,∵AB平分CO,∴OF=CF,∴AB⊥OC,所以③正确;④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的,则:=π.所以④不正确;综上所述,本题正确的有:①②③;故答案为:①②③.三、解答题(本大题共8小题,满分72分)17.(8分)(2017•咸宁)(1)计算:|﹣|﹣+20170;(2)解方程:=.【解答】解:(1):|﹣|﹣+20170=﹣4+1=1﹣3;(2)方程两边通乘以2x(x﹣3)得,x﹣3=4x,解得:x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,∴原方程的根是x=﹣1.18.(7分)(2017•咸宁)如图,点B、E、C、F在一条直线上,AB=DF,AC=DF,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.【解答】证明:(1)∵BE=FC,∴BC=EF,在△ABC和△DFE中,,∴△ABC≌△DFE(SSS);(2)解:连接AF、BD,如图所示:由(1)知△ABC≌△DFE,∴∠ABC=∠DFE,∴AB∥DF,∵AB=DF,∴四边形ABDF是平行四边形.19.(8分)(2017•咸宁)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的两幅不完整统计图,请你根据图中信息解答下列问题:(1)补全条形统计图,“体育”对应扇形的圆心角是72度;(2)根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有700人;(3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或画树状图的方法求所抽取的2人来自不同班级的概率.【解答】解:(1)调查的学生总数为60÷30%=200(人),则体育类人数为200﹣(30+60+70)=40,补全条形图如下:“体育”对应扇形的圆心角是360°×=72°,故答案为:72;(2)估计该校2000名学生中喜爱“娱乐”的有:2000×=700(人),故答案为:700;(3)将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:==.所以P(2名学生来自不同班)20.(8分)(2017•咸宁)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x﹣1|的自变量x的取值范围是任意实数;(2)列表,找出y与x的几组对应值.其中,b=2;(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:函数的最小值为0(答案不唯一).【解答】解:(1)∵x无论为何值,函数均有意义,∴x为任意实数.故答案为:任意实数;(2)∵当x=﹣1时,y=|﹣1﹣1|=2,∴b=2.故答案为:2;(3)如图所示;(4)由函数图象可知,函数的最小值为0.故答案为:函数的最小值为0(答案不唯一).21.(9分)(2017•咸宁)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cosA=,求DF的长.【解答】(1)证明:如图,连接OD,作OG⊥AC于点G,,∵OB=OD,∴∠ODB=∠B,又∵AB=AC,∴∠C=∠B,∴∠ODB=∠C,∵DF⊥AC,∴∠DFC=90°,∴∠ODF=∠DFC=90°,∴DF是⊙O的切线.(2)解:AG=AE=2,∵cosA=,∴OA===5,∴OG==,∵∠ODF=∠DFG=∠OGF=90°,∴四边形OGFD为矩形,∴DF=OG=.22.(10分)(2017•咸宁)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是330件,日销售利润是660元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.根据题意得:线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∴y与x之间的函数关系式为y=.(3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥640,解得:x≥16;当18<x≤30时,根据题意得:(8﹣6)×(﹣5x+450)≥640,解得:x≤26.∴16≤x≤26.26﹣16+1=11(天),∴日销售利润不低于640元的天数共有11天.∵点D的坐标为(18,360),∴日最大销售量为360件,360×2=720(元),∴试销售期间,日销售最大利润是720元.23.(10分)(2017•咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC 为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.【解答】解:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ==2,PM=1×2÷3=,由勾股定理可求得OM==,故点P的坐标(﹣,),(,).24.(12分)(2017•咸宁)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.【解答】解:(1)∵OB=OC=6,∴B(6,0),C(0,﹣6),∴,解得,∴抛物线解析式为y=x2﹣2x﹣6,∵y=x2﹣2x﹣6=(x﹣2)2﹣8,∴点D的坐标为(2,﹣8);(2)如图1,过F作FG⊥x轴于点G,设F(x,x2﹣2x﹣6),则FG=|x2﹣2x﹣6|,在y=x2﹣2x﹣6中,令y=0可得x2﹣2x﹣6=0,解得x=﹣2或x=6,∴A(﹣2,0),∴OA=2,则AG=x+2,∵B(6,0),D(2,﹣8),∴BE=6﹣2=4,DE=8,当∠FAB=∠EDB时,且∠FGA=∠BED,∴△FAG∽△BDE,∴=,即==,当点F在x轴上方时,则有=,解得x=﹣2(舍去)或x=7,此进F点坐标为(7,);当点F在x轴上方时,则有=﹣,解得x=﹣2(舍去)或x=5,此进F点坐标为(5,﹣);综上可知F点的坐标为(7,)或(5,﹣);(3)∵点P在x轴上,∴由菱形的对称性可知P(2,0),如图2,当MN在x轴上方时,设T为菱形对角线的交点,∵PQ=MN,∴MT=2PT,设PT=n,则MT=2n,∴M(2+2n,n),∵M在抛物线上,∴n=(2+2n)2﹣2(2+2n)﹣6,解得n=或n=,∴MN=2MT=4n=+1;当MN在x轴下方时,同理可设PT=n,则M(2+2n,﹣n),∴﹣n=(2+2n)2﹣2(2+2n)﹣6,解得n=或n=(舍去),∴MN=2MT=4n=﹣1;综上可知菱形对角线MN的长为+1或﹣1.参与本试卷答题和审题的老师有:sjzx;放飞梦想;gsls;2300680618;733599;家有儿女;神龙杉;sks;fangcao;曹先生;HJJ;dbz1018;tcm123;王学峰;三界无我;ZJX;HLing;Ldt(排名不分先后)菁优网2017年7月5日。

最新题库2017年湖北省咸宁市中考数学试卷-(27281)

最新题库2017年湖北省咸宁市中考数学试卷-(27281)

2017年湖北省咸宁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()景区潜山公园陆水湖隐水洞三湖连江气温﹣1℃0℃﹣2℃2℃A.潜山公园 B.陆水湖C.隐水洞 D.三湖连江2.(3分)在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为()A.121×104B.12.1×105C. 1.21×105 D.1.21×1063.(3分)下列算式中,结果等于a5的是()A.a2+a3 B.a2?a3C.a5÷a D.(a2)34.(3分)如图是某个几何体的三视图,该几何体是()A.三棱柱 B.三棱锥C.圆柱 D.圆锥5.(3分)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)6.(3分)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.无法判断7.(3分)如图,⊙O的半径为3,四边形ABCD 内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.πB. C.2πD.3π8.(3分)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)二、填空题(每小题3分,共24分)9.(3分)8的立方根是.10.(3分)化简:÷= .11.(3分)分解因式:2a2﹣4a+2= .12.(3分)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.13.(3分)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:1.1 1.2 1.3 1.4 1.5步数(万步)天数 3 7 5 12 3在每天所走的步数这组数据中,众数和中位数分别是.14.(3分)如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为.15.(3分)如图,边长为4的正六边形ABCDEF 的中心与坐标原点O重合,AF∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2017时,顶点A的坐标为.16.(3分)如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是(把你认为正确结论的序号都填上).三、解答题(本大题共8小题,满分72分)17.(8分)(1)计算:|﹣|﹣+20170;(2)解方程:=.18.(7分)如图,点B、E、C、F在一条直线上,AB=DF,AC=DF,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.19.(8分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的两幅不完整统计图,请你根据图中信息解答下列问题:(1)补全条形统计图,“体育”对应扇形的圆心角是度;(2)根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有人;(3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或画树状图的方法求所抽取的2人来自不同班级的概率.20.(8分)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x﹣1|的自变量x的取值范围是;(2)列表,找出y与x的几组对应值.0 1 2 3 …x …﹣1y … b 1 0 1 2 …其中,b= ;(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:.21.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cosA=,求DF的长.22.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求y与x之间的函数关系式,并写出x 的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?23.(10分)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O 的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.24.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.2017年湖北省咸宁市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2017?咸宁)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()景区潜山公园陆水湖隐水洞三湖连江气温﹣1℃0℃﹣2℃2℃A.潜山公园 B.陆水湖C.隐水洞 D.三湖连江【分析】将几个有理数比较后即可确定正确的选项.【解答】解:∵﹣2<﹣1<0<2,∴隐水洞的气温最低,故选C.【点评】本题考查了有理数的大小比较的知识,解题的关键是能够了解正数大于0,负数小于0,两个负数比较绝对值大的反而小,难度不大.2.(3分)(2017?咸宁)在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为()A.121×104B.12.1×105C. 1.21×105 D.1.21×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:1210000=1.21×106.故选:D.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)(2017?咸宁)下列算式中,结果等于a5的是()A.a2+a3 B.a2?a3C.a5÷a D.(a2)3【分析】根据合并同类项对A进行判断;根据同底数幂的乘法对B进行判断;根据同底数幂的除法对C进行判断;根据幂的乘方对D进行判断.【解答】解:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;D、原式=a6,所以D选项错误.故选B.【点评】本题考查了同底数幂的除法:底数不变,指数相减.也考查了同底数幂的乘法和幂的乘方.4.(3分)(2017?咸宁)如图是某个几何体的三视图,该几何体是()A.三棱柱 B.三棱锥C.圆柱 D.圆锥【分析】根据三棱柱的特点求解即可.【解答】解:主视图是三角形,俯视图是两个矩形,左视图是矩形,得几何体是三棱柱,故选:A.【点评】本题考查了三视图,利用三棱柱的特点得出几何体是解题关键.5.(3分)(2017?咸宁)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【解答】解:∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/千克,∴2月份鸡的价格为24(1﹣a%),∵3月份比2月份下降b%,∴三月份鸡的价格为24(1﹣a%)(1﹣b%),故选D.【点评】本题主要考查了列代数式的知识,解题的关键是掌握每个月份的数量增长关系.6.(3分)(2017?咸宁)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.无法判断【分析】先利用第二象限点的坐标特征得到ac <0,则判断△>0,然后根据判别式的意义判断方程根的情况.【解答】解:∵点P(a,c)在第二象限,∴a<0,c>0,∴ac<0,∴△=b2﹣4ac>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017?咸宁)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.πB. C.2πD.3π【分析】由圆内接四边形的性质和圆周角定理求出∠A=60°,得出∠BOD=120°,再由弧长公式即可得出答案.【解答】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的长==2π;故选:C.【点评】本题考查了弧长公式、圆内接四边形的性质、圆周角定理;熟练掌握圆内接四边形的性质和圆周角定理,求出∠BOD=120°是解决问题的关键.8.(3分)(2017?咸宁)在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选(C)【点评】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.二、填空题(每小题3分,共24分)9.(3分)(2017?咸宁)8的立方根是 2 .【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.10.(3分)(2017?咸宁)化简:÷= x ﹣1 .【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式==x﹣1故答案为:x﹣1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.11.(3分)(2017?咸宁)分解因式:2a2﹣4a+2= 2(a﹣1)2.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.故答案为:2(a﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)(2017?咸宁)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c 的解集是x<﹣1或x>4 .【分析】观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<﹣1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c 的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>4.故答案为:x<﹣1或x>4.【点评】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.13.(3分)(2017?咸宁)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:1.1 1.2 1.3 1.4 1.5步数(万步)天数 3 7 5 12 3在每天所走的步数这组数据中,众数和中位数分别是 1.4,1.35 .【分析】把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数,在这组数据中出现次数最多的是 1.4,得到这组数据的众数.【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第4、5个两个数的平均数是( 1.3+1.4)÷2=1.35,所以中位数是 1.35,在这组数据中出现次数最多的是 1.4,即众数是 1.4.故答案为:1.4;1.35.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.14.(3分)(2017?咸宁)如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为 6 .【分析】由折叠的性质及矩形的性质得到OE 垂直平分AC,得到AE=EC,根据AB为AC 的一半确定出∠ACE=30°,进而得到OE等于EC的一半,求出EC的长,即为AE的长.【解答】解:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,设AB=AO=OC=x,则有AC=2x,∠ACB=30°,在Rt△ABC中,根据勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,则AE=6,故答案为:6【点评】此题考查了中心对称,矩形的性质,以及翻折变换,熟练掌握各自的性质是解本题的关键.15.(3分)(2017?咸宁)如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2017时,顶点A的坐标为(2,2).【分析】将正六边形ABCDEF绕原点O顺时针旋转2017次时,点A所在的位置就是原F点所在的位置.【解答】解:2017×60°÷360°=336…1,即与正六边形ABCDEF绕原点O顺时针旋转1次时点A的坐标是一样的.当点A按顺时针旋转60°时,与原F点重合.连接OF,过点F作FH⊥x轴,垂足为H;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF是等边三角形,∴OF=EF=4,∴F(2,2),即旋转2017后点A的坐标是(2,2),故答案是:(2,2).【点评】此题主要考查了正六边形的性质,坐标与图形的性质﹣旋转.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.(3分)(2017?咸宁)如图,在Rt△ABC 中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是①②③(把你认为正确结论的序号都填上).【分析】①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以OA=AC;②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;③如图2,根据等腰三角形三线合一可知:AB ⊥OC;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.【解答】解:在Rt△ABC中,∵BC=2,∠BAC=30°,∴AB=4,AC==2,①若C、O两点关于AB对称,如图1,∴AB是OC的垂直平分线,则OA=AC=2;所以①正确;②如图1,取AB的中点为E,连接OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE=AB=2,当OC经过点E时,OC最大,则C、O两点距离的最大值为4;所以②正确;③如图2,同理取AB的中点E,则OE=CE,∵AB平分CO,∴OF=CF,∴AB⊥OC,所以③正确;④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的,则:=π.所以④不正确;综上所述,本题正确的有:①②③;故答案为:①②③.【点评】本题是三角形的综合题,考查了直角三角形30°的性质、直角三角形斜边中线的性质、等腰三角形的性质、轴对称的性质、线段垂直平分线的性质、动点运动路径问题、弧长公式,熟练掌握直角三角形斜边中线等于斜边一半是本题的关键,难度适中.三、解答题(本大题共8小题,满分72分)17.(8分)(2017?咸宁)(1)计算:|﹣|﹣+20170;(2)解方程:=.【分析】(1)根据实数的运算法则,零指数幂的性质计算即可;(2)根据分式方程的解法即可得到结论.【解答】解:(1):|﹣|﹣+20170=﹣4+1=1﹣3;(2)方程两边通乘以2x(x﹣3)得,x﹣3=4x,解得:x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,∴原方程的根是x=﹣1.【点评】本题考查了解分式方程,实数的运算,熟练掌握实数的运算法则是解题的关键.18.(7分)(2017?咸宁)如图,点B、E、C、F在一条直线上,AB=DF,AC=DF,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.【分析】(1)由SSS证明△ABC≌△DFE即可;(2)连接AF、BD,由全等三角形的性质得出∠ABC=∠DFE,证出AB∥DF,即可得出结论.【解答】证明:(1)∵BE=FC,∴BC=EF,在△ABC和△DFE中,,∴△ABC≌△DFE(SSS);(2)解:连接AF、BD,如图所示:由(1)知△ABC≌△DFE,∴∠ABC=∠DFE,∴AB∥DF,∵AB=DF,∴四边形ABDF是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.19.(8分)(2017?咸宁)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的两幅不完整统计图,请你根据图中信息解答下列问题:(1)补全条形统计图,“体育”对应扇形的圆心角是72 度;(2)根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有700 人;(3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或画树状图的方法求所抽取的2人来自不同班级的概率.【分析】(1)根据动画类人数及其百分比求得总人数,总人数减去其他类型人数可得体育类人数,用360度乘以体育类人数所占比例即可得;(2)用样本估计总体的思想解决问题;(3)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:(1)调查的学生总数为60÷30%=200(人),则体育类人数为200﹣(30+60+70)=40,补全条形图如下:“体育”对应扇形的圆心角是360°×=72°,故答案为:72;(2)估计该校2000名学生中喜爱“娱乐”的有:2000×=700(人),故答案为:700;(3)将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:所以P(2名学生来自不同班)==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)(2017?咸宁)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x﹣1|的自变量x的取值范围是任意实数;(2)列表,找出y与x的几组对应值.x …﹣0 1 2 3 …1y … b 1 0 1 2 …其中,b= 2 ;(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:函数的最小值为0(答案不唯一).【分析】(1)根据一次函数的性质即可得出结论;(2)把x=﹣1代入函数解析式,求出y的值即可;(3)在坐标系内描出各点,再顺次连接即可;(4)根据函数图象即可得出结论.【解答】解:(1)∵x无论为何值,函数均有意义,∴x为任意实数.故答案为:任意实数;(2)∵当x=﹣1时,y=|﹣1﹣1|=2,∴b=2.故答案为:2;(3)如图所示;(4)由函数图象可知,函数的最小值为0.故答案为:函数的最小值为0(答案不唯一).【点评】本题考查的是一次函数的性质,根据题意画出函数图象,利用数形结合求解是解答此题的关键.21.(9分)(2017?咸宁)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cosA=,求DF的长.。

湖北省咸宁市中考数学试卷

湖北省咸宁市中考数学试卷

,2017年湖北省咸宁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()景区潜山公园陆水湖隐水洞<三湖连江气温﹣1℃0℃﹣2℃2℃A.潜山公园B.陆水湖C.隐水洞D.三湖连江2.(3分)在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为()》A.121×104B.×105C.×105D.×1063.(3分)下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)34.(3分)如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥5.(3分)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%) B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)?6.(3分)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根 D.无法判断7.(3分)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.πB.C.2π D.3π8.(3分)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为(){A.(,0)B.(2,0)C.(,0)D.(3,0)二、填空题(每小题3分,共24分)9.(3分)8的立方根是.10.(3分)化简:÷= .11.(3分)分解因式:2a2﹣4a+2= .12.(3分)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.(13.(3分)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:步数(万步)天数】375123在每天所走的步数这组数据中,众数和中位数分别是.14.(3分)如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为.…15.(3分)如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2017时,顶点A的坐标为.16.(3分)如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是(把你认为正确结论的序号都填上).^三、解答题(本大题共8小题,满分72分)17.(8分)(1)计算:|﹣|﹣+20170;(2)解方程:=.18.(7分)如图,点B、E、C、F在一条直线上,AB=DF,AC=DF,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.'19.(8分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的两幅不完整统计图,请你根据图中信息解答下列问题:(1)补全条形统计图,“体育”对应扇形的圆心角是度;(2)根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有人;(3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或画树状图的方法求所抽取的2人来自不同班级的概率.20.(8分)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x﹣1|的自变量x的取值范围是;?(2)列表,找出y与x的几组对应值.x (10123)…y (1012)…其中,b= ;(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:.21.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cosA=,求DF的长.#22.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天试销售期间,日销售最大利润是多少元23.(10分)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.—理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC 为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.24.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;…(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.2017年湖北省咸宁市中考数学试卷参考答案与试题解析~一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2017•咸宁)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()景区潜山公园陆水湖隐水洞三湖连江气温¥0℃﹣2℃2℃﹣1℃A.潜山公园B.陆水湖C.隐水洞D.三湖连江【分析】将几个有理数比较后即可确定正确的选项.【解答】解:∵﹣2<﹣1<0<2,∴隐水洞的气温最低,、故选C.【点评】本题考查了有理数的大小比较的知识,解题的关键是能够了解正数大于0,负数小于0,两个负数比较绝对值大的反而小,难度不大.2.(3分)(2017•咸宁)在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为()A.121×104B.×105C.×105D.×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:1210000=×106.故选:D.】【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)(2017•咸宁)下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)3【分析】根据合并同类项对A进行判断;根据同底数幂的乘法对B进行判断;根据同底数幂的除法对C进行判断;根据幂的乘方对D进行判断.【解答】解:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;[D、原式=a6,所以D选项错误.故选B.【点评】本题考查了同底数幂的除法:底数不变,指数相减.也考查了同底数幂的乘法和幂的乘方.4.(3分)(2017•咸宁)如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】根据三棱柱的特点求解即可.!【解答】解:主视图是三角形,俯视图是两个矩形,左视图是矩形,得几何体是三棱柱,故选:A.【点评】本题考查了三视图,利用三棱柱的特点得出几何体是解题关键.5.(3分)(2017•咸宁)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%) B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.;【解答】解:∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/千克,∴2月份鸡的价格为24(1﹣a%),∵3月份比2月份下降b%,∴三月份鸡的价格为24(1﹣a%)(1﹣b%),故选D.【点评】本题主要考查了列代数式的知识,解题的关键是掌握每个月份的数量增长关系.6.(3分)(2017•咸宁)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()—A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根 D.无法判断【分析】先利用第二象限点的坐标特征得到ac<0,则判断△>0,然后根据判别式的意义判断方程根的情况.【解答】解:∵点P(a,c)在第二象限,∴a<0,c>0,∴ac<0,∴△=b2﹣4ac>0,∴方程有两个不相等的实数根.(故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•咸宁)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.πB.C.2π D.3π【分析】由圆内接四边形的性质和圆周角定理求出∠A=60°,得出∠BOD=120°,再由弧长公式即可得出答案.【解答】解:∵四边形ABCD内接于⊙O,@∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的长==2π;故选:C.【点评】本题考查了弧长公式、圆内接四边形的性质、圆周角定理;熟练掌握圆内接四边形的性质和圆周角定理,求出∠BOD=120°是解决问题的关键.《8.(3分)(2017•咸宁)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+ACO=90°,,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),|∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,;∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选(C)【点评】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.二、填空题(每小题3分,共24分)9.(3分)(2017•咸宁)8的立方根是 2 .…【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.10.(3分)(2017•咸宁)化简:÷= x﹣1 .【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=…=x﹣1故答案为:x﹣1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.11.(3分)(2017•咸宁)分解因式:2a2﹣4a+2= 2(a﹣1)2.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.@故答案为:2(a﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)(2017•咸宁)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是x<﹣1或x >4 .【分析】观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<﹣1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>4.]故答案为:x<﹣1或x>4.【点评】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.13.(3分)(2017•咸宁)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:步数(万步))天数375123》在每天所走的步数这组数据中,众数和中位数分别是,.【分析】把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数,在这组数据中出现次数最多的是,得到这组数据的众数.【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第4、5个两个数的平均数是(+)÷2=,所以中位数是,在这组数据中出现次数最多的是,即众数是.故答案为:;.%【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.14.(3分)(2017•咸宁)如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为6 .【分析】由折叠的性质及矩形的性质得到OE垂直平分AC,得到AE=EC,根据AB 为AC的一半确定出∠ACE=30°,进而得到OE等于EC的一半,求出EC的长,即为AE的长.【解答】解:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,>设AB=AO=OC=x,则有AC=2x,∠ACB=30°,在Rt△ABC中,根据勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,则AE=6,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

咸宁市2017年中考数学试题及答案
一、选择题(本大题共8小题,每小题3分,共24分)
1.(3分)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景
区是()
景区潜山公园陆水湖隐水洞三湖连江
气温﹣1℃0℃﹣2℃2℃
A.潜山公园B.陆水湖C.隐水洞D.三湖连江
2.(3分)在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为()A.121×104B.12.1×105C.1.21×105D.1.21×106
3.(3分)下列算式中,结果等于a5的是()
A.a2+a3B.a2?a3C.a5÷a D.(a2)3
4.(3分)如图是某个几何体的三视图,该几何体是()
A.三棱柱B.三棱锥C.圆柱D.圆锥
5.(3分)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()
A.m=24(1﹣a%﹣b%) B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)
6.(3分)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()
A.有两个相等的实数根B.有两个不相等的实数根
C.没有实数根 D.无法判断
7.(3分)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()
第 1 页共 1 页。

相关文档
最新文档