继电保护距离保护特性原理说明

合集下载

继电保护 第3章 电网的距离保护

继电保护 第3章 电网的距离保护

图3-4 全阻抗继电器的动作特性
第3章 电网距离保护
比较两电压量幅值的全阻抗继电器的电压形成回路:
B
TA TX
.
TV
Im
& I m Zset = A
.
TM Um
&B
图3—5 全阻抗继电器幅值比较电压形成回路
第3章 电网距离保护
(2)相位比较 相位比较的动作特性如图3-6 所示,继电器的动作与边界条件为 Z set − Z m与 Z set + Z m 的夹角小于等于 90o ,即 Z − Zm − 90o ≤ arg set = θ ≤ 90o Z set + Z m & & & 两边同乘以电流量得 U set − U m D o − 90 ≤ arg = arg = θ ≤ 90o & & & U set + U m C
第3章 电网距离保护
二、测量阻抗与故障距离
正常运行时保护安装处测量到的阻抗为负荷阻抗,即
Z
m
U& m = = Z I& m
L
& 式中U m ——被保护线路母线的相电压,测量电压; & I m ——被保护线路的电流,测量电流; Z m ——测量电压与测量电流之比,测量阻抗。
在被保护线路任一点发生故障时,保护安装处的测量电压为 U m = U k , & 测量电流为故障电流 I k ,这时的测量阻抗为保护安装处到短路点的 短路阻抗 Z k , & & Um Uk Zm = = = Zk & & Im Ik
m
方向阻抗继电器相位比较的电压形成回路,如图3-10所示。

电力系统继电保护——3.1-3.2电网的距离保护-阻抗继电器原理和动作特性

电力系统继电保护——3.1-3.2电网的距离保护-阻抗继电器原理和动作特性

Z m Z set
Zm
O
m
R
Z m Z set
R
(a)
(b)
| Zm | Zset
| U m | I m Z set
幅值比较方式
Z m Z set 270 arg 90o Z m Z set
o
相位比较方式
2. 全阻抗继电器—实际实现
jX
Z set
jX
Z m Z set
Z0 Zm Z0
jX
A
Z0
k
O
Zm
k
R
O

Zm Z0
Z0
(a)
Zm
A
R
A
Z0
(b)
| Zm Z0 | Zm Z0
Um 270 Arg 90 I m Z set
U P Um
U = I m Z0
6. 具有直线特性的继电器-电抗继电器
jX
jX set
o
相位比较方式
3. 方向阻抗继电器—实际实现
jX
Z set
jX
Z set
Zm
1 Z set 2
Z
m
1 2 Zset
Z set
Zm
O
Zm
O

R
(a)
(b)
Um 270 Arg 90 U m I m Z set
动作方程
U P Um
U =Um I m Zset
3. 方向阻抗继电器-几个概念的说明 起动阻抗随着测量阻抗 相角的变化而改变;
Zk (nTA / nTV )
动作特性扩大为一个圆
(a)

继电保护原理距离保护原理

继电保护原理距离保护原理

继电保护原理距离保护原理系统在正常运行时,不可能总工作于最大运行方式下,因此当运行方式变小时,电流保护的保护范围将缩短,灵敏度降低;而距离保护,顾名思义它测量的是短路点至保护安装处的距离,受系统运行方式影响较小,保护范围稳定。

常用于线路保护。

距离保护的具体实现方法是通过测量短路点至保护安装处的阻抗实现的,因为线路的阻抗成正比于线路长度。

在前面的分析中大家已经知道:保护安装处的电压等于故障点电压加上线路压降,即U KM=U K+△U;其中线路压降△U并不单纯是线路阻抗乘以相电流,它等于正、负、零序电流在各序阻抗上的压降之和,即△U=IK1*X1+ IK2*X2+ IK0*X0 。

接下来我们先以A相接地短路故障将保护安装处母线电压重新推导一下。

因为在发生单相接地短路时,3IO等于故障相电流IKA;同时考虑线路X1=X2 则有:U KAM=U KA+I KA1* X LM1+ I KA2* X LM2+ I KA0* X LM0=U KA+I KA1*X LM1+ I KA2*X LM1+ I KA0*X LM0+ (I KA0* X LM1-I KA0* X LM1)=U KA+ X LM1(I KA1+ I KA2+ I KA0)+ I KA0(X LM0-X LM1)=U KA+X LM1*I KA+ 3I KA0(X LM0-X LM1)*X LM1/3X LM1=U KA+X LM1*I KA[1+(X LM0-X LM1)/3X LM1]令K=(X LM0-X LM1)/3X LM1则有U KAM=U KA+I KA*X LM1(1+K)或U KAM=U KA+I KA*X LM1(1+K)=U KA+X LM1(I KA+KI KA)=U KA+X LM1(I KA+K3I KA0)同理可得U KBM=U KB+ X LM1(I KB+K3I KB0)U KCM=U KC+ X LM1(I KC+K3I KC0)这样我们就可得到母线电压计算得一般公式:U KΦM=U KΦ+ X LM1(I KΦ+K3I0)该公式适用于任何母线电压的计算,对于相间电压,只不过因两相相减将同相位的零序分量K3I KC0减去了而已。

电力系统继电保护-距离保护概述

电力系统继电保护-距离保护概述
在结构复杂的高压电网中,应 采用性能更加完善的保护,距离 保护就是其中的一种。
2、距离保护的基本原理
距离保护是反应保护安装处至 短路点之间的距离,并根据短路点 至保护安装处的距离确定动作时限 的一种保护。
故障点离保护安装处越近,保 护动作时间越短;反之越长。
故障点总是由离故障点近的 保护首先动作切除故障,从而保 证了保护动作的选择性。
Im
K
ZUmຫໍສະໝຸດ Z set当在保护区末端短路时,测量阻 抗为 Um Im Zset
工作电压为
Uop ImZm ImZset 0
Im
K2 Z
K1
Um
Zm
保护区外K1点短路,有
Zm > Zset
Uop Im (Zm Zset ) >0 保护区内K2点短路,有
Zm < Zset
Uop Im (Zm Zset ) <0
教学内容:输电线路距离保护
4.1 距离保护概述 1、距离保护的作用 2、距离保护的基本原理 3、距离保护时限特性 4、距离保护的构成
教学要求:通过学习要求 理解距离保护的作用、距 离基本工作原理、距离保 护的时限特性及距离保护 的构成。
1、距离保护的作用
原因:电流、电压保护其保护范 围随系统运行方式的变化影响很 大,很难满足长距离、重负荷线 路灵敏性常常不能满足要求。
距离保护的核心元件:阻抗继 电器。
要求:测量元件应能正确测量 故障点至保护安装处的距离。 方向阻抗继电器还应具有测量 故障点方向。
测量故障点至保护安装处的 阻抗,实际上也测量故障点至 保护安装处的距离。
Im
K1
Um
测量阻抗为:Zm
Um Im
(设变比为1)
设阻抗继电器工作电压为:

1. 介绍线路微机继电保护中三段式距离保护原理

1. 介绍线路微机继电保护中三段式距离保护原理

线路微机继电保护是电力系统中非常重要的一环,它能够在电力系统出现故障时快速准确地对故障进行定位和保护,保证系统的安全运行。

上线路微机继电保护中,三段式距离保护是其中一种常见的保护方式。

下面我们将介绍三段式距离保护的原理。

1. 三段式距离保护的概念三段式距离保护是指在电力系统中的保护装置对距离保护进行划分,通常分为近、中、远三个保护段。

这三段保护分别对应不同的距离范围,可以满足系统不同位置的保护需求。

三段式距离保护通常应用于输电线路,能够快速准确地定位故障并切除故障段,保护电力系统的安全稳定运行。

2. 三段式距离保护的原理三段式距离保护的原理是基于电力系统中故障发生时的电压和电流的变化规律来进行保护。

具体原理如下:第一段保护:近端距离保护近端距离保护主要是针对距离线路较近的故障进行保护。

当故障发生时,由于电压和电流的变化,距离保护装置会通过比较故障点处的电压和电流来判断故障的位置,并根据之前设定的保护范围来切除故障段落,保护系统的安全。

第二段保护:中段距离保护中段距离保护是针对线路中段的故障进行保护。

当故障距离超过近端距离保护的范围时,中段距离保护会根据故障点处的电压和电流变化情况来判断故障位置,并进行相应的保护动作。

第三段保护:远端距离保护远端距离保护主要是对线路远端的故障进行保护。

当故障发生上线路远端时,距离保护装置会根据故障点处的电压和电流变化情况来判断故障位置,并进行适当的保护动作。

3. 三段式距离保护的优势三段式距禿保护具有以下优势:(1) 定位精准:三段式距禿保护能够根据故障的位置,快速精确地对故障进行定位,保护系统的稳定运行。

(2) 保护范围广:三段式距禿保护能够覆盖线路不同位置的故障,保护范围广,能够适应不同的系统需求。

(3) 动作可靠:三段式距禿保护基于电压和电流的变化来进行保护,动作可靠。

三段式距禿保护的原理清晰、动作灵敏,能够有效地保护电力系统。

三段式距禿保护是线路微机继电保护中的重要组成部分,它通过对电力系统中距禿保护范围进行划分,依据电压和电流的变化来进行保护,能够快速精确地定位故障,并进行保护动作,保证电力系统的安全稳定运行。

电力系统继电保护--距离保护的基本原理、阻抗继电器及其动作特性 ppt课件

电力系统继电保护--距离保护的基本原理、阻抗继电器及其动作特性  ppt课件

PPT课件
8
三、三相系统中测量电压和测量电流的选取
K:零序电流补偿系数 PPT课件
9
三、三相系统中测量电压和测量电流的选取
单相接地短路(以A相接地为例)
PPT课件
10
三、三相系统中测量电压和测量电流的选取
两相接地短路1(以B,C两相接地为例)
PPT课件
11
三、三相系统中测量电压和测量电流的选取
两相短路、三相短路和两相短路接地:两故障相的电压差
和电流差。
PPT课件
15
四、距离保护的延时特性
距离保护的动作延时t与故障点到保护安装处的距离Lk 之间的关系称为距离保护的延时特性
PPT课件
16
五、距离保护的构成
1.启动部分:模拟式距离保护中,由硬件电路元
件实现,大多反应负序电流、零序电流或负序与 零序复合电流的判断原理;数字式保护中,由实 时逐点检测电流突变量或零序电流的变化的软件 来实现。
PPT课件
7
三、三相系统中测量电压和测量电流的选取
U A UkA I A1z1Lk I A2 z2Lk I A0 z0Lk
UkA

(I A1

I A2

I A0 ) 3I A0
z0 z1 3z1

z1Lk
UkA (I A K 3I0 )z1Lk
电气工程及其自动化专业课程
电力系统继电保护
PPT课件
1
距离保护的基本原理与构成
一、距离保护的概念 二、测量阻抗及其与故障距离的关系 三、三相系统中测量电压和测量电流的选取 四、距离保护的延时特性 五、距离保护的构成PPTຫໍສະໝຸດ 件2一、距离保护的概念

继电保护(距离保护)

继电保护(距离保护)

对于相间短路,故障环路为相—相故障环路,取测量电 压为保护安装处两故障相的电压差,测量电流为两故障相的 电流差,称为相间距离保护接线方式,能够准确反应两相短 路、三相短路和两相接地短路情况下的故障距离。
LINYI UNIVERSITY
LINYI UNIVERSITY
LINYI UNIVERSITY
UB = z1 l k B 、 C 相 测 量 I B + K3I 0
LINYI UNIVERSITY
三、三相系统中测量电压和测量电流的选取
U A = U kA + (I A + K3I 0 )z1 l k U B = U kB + (I B + K3I 0 )z1 lk U = U + (I + K3I )z l kC C 0 1 k C
增大,短路阻抗比正常时测量到的阻抗大大降低。
LINYI UNIVERSITY
二、测量阻抗及其与故障距离的关系
Um Zm = = z1 l k Im Z set = z1 l set
♣ 距离保护反应的信息量测量阻抗在故障前后变化比电流变 化大,因而比反应单一物理量的电流保护灵敏度高。 ♣ 距离保护的实质是用整定阻抗 Zset 与被保护线路的测量阻 抗 Zm 比较: 当短路点在保护范围以内时,Zm<Zset,保护动作; 当短路点在保护范围以外时,Zm>Zset时,保护不动作。 因此,距离保护又称低阻抗保护。
U kA = 0
LINYI UNIVERSITY
三、三相系统中测量电压和测量电流的选取
U A = U kA + (I A + K3I 0 )z1 l k U B = U kB + (I B + K3I 0 )z1 lk U = U + (I + K3I )z l kC C 0 1 k C

6继保-距离(3-123原理、特性、实现)

6继保-距离(3-123原理、特性、实现)

第 3 章电网的距离保护一、距离保护基本原理二、阻抗继电器动作特性及其实现方法三、距离保护的整定计算及对距离保护的评价四、距离保护的振荡闭锁五、故障类型判别及故障选相六、距离保护特殊问题的分析七、工频故障分量距离保护第3.1节距离保护基本原理及构成电流保护:反映故障电流大小。

简单、经济、工作可靠,但是,受系统运行方式变化的影响较大,难以满足高压和超高压电网快速、有选择性地切除故障的要求。

一般适用于35kV及以下电网。

因此,还需要研究其他方式的保护,以便克服电流保护的不足。

——过电流保护——低电压保护——阻抗(距离)保护——纵联差动保护(高频、微波、光纤)——零序或负序分量保护——瓦斯保护、过热保护等短路的主要特征归纳:1)电流增大2)电压降低3)阻抗减小4)两侧电流大小和相位的差别5)不对称分量出现6)非电气量所以,还能反映短路点到保护安装处的距离l m ,因此,也称为:距离保护。

对于输电线路,由于3.1.1 距离保护基本原理与构成利用保护安装处测量电压和测量电流的比值所构成的继电保护方式称为阻抗保护,m m I U m 1m m m l z Z I U == 。

短路点的距离—抗;线路单位长度的正序阻—其中,)km (l z m 1。

即:m m m Z IU = 如果计算出具体的数值,还具有测距的功能。

K 212K 1依据测量阻抗在不同情况下的“差异”,保护就能够区分出系统是否发生故障,以及故障发生的范围——正向及范围,或反向。

11K m l z Z =21K m l z Z =K 3保护范围正比关系(三个短路点位置的例子)31K m l z Z -=距离保护的保护范围和灵敏度受运行方式的影响较小,尤其是距离保护Ⅰ段的保护范围比较稳定,同时,还具备判别短路点方向的功能。

,称为距离保护。

反映距离—护;反映阻抗,称为阻抗保—m m 1m m m m l l z Z IU Z == 二者几乎反映了同一个性质。

电力系统继电保护电网距离保护原理

电力系统继电保护电网距离保护原理
9
三相系统中测量电压和测量电流的选取
. 两相接地短路故障

或者
. 两相不接地短路故障 有
. 三相对称短路 此时故障点处的各相电压相等,且三相系统对称 时均为0。这种情况下,选用任意一相的电压、电 流或任意两相间的电压、电流差作为距离保护的 测量电压和电流均可。
10
故障环路的概念及测量电压、电流的选取
. 一种是首先精确地测量出Zm ,然后再将它与事先确 定的动作特性进行比较。当Zm落在动作区域之内 时,判为区内故障,给出动作信号;当Zm落在动作 区域之外时,继电器不动作。
. 另一种方法无需精确地测出Zm ,只需间接地判断 它是处在动作边界之内还是处在动作边界之外,即 可确定继电器动作或不动作。
18
偏移圆特性
正向整定阻抗与反向整定阻抗相量末端的连线,就是 圆特性的直径,它将圆分成两部分,即右下部分和左 上部分,当测量阻抗落在右下部分圆周的任一点上 时,有
当测量阻抗落在左上部分 圆周的任一点上时,有
测量元件的动作条件可表示为
19
偏移圆特性
• 使阻抗元件处于临界动作状态对应的阻抗称为动作阻 抗,通常用Zop 表示。对于具有偏移圆特性的阻抗继 电器而言,当测量阻抗Zm 的阻抗角不同时,对应的动 作阻抗是不同的。
. 在系统中性点直接接地系统中,发生单相接地时, 故障电流在故障相与大地之间流通;两相接地短路 时,故障电流既可在两故障相与大地间流通,也可 在两故障相间流通;两相不接地短路时,故障电流 在果把故障电流可以流通的通路称为故障环路,则
在单相接地短路时,存在一个故障相与大地之间的
20
方向圆特性
. 在偏移圆特性中,令Zset2 = 0, Zset1 = Zset ,则动作 特性就变成方向圆特性,特性圆经过坐标原点。

继电保护距离保护

继电保护距离保护

距离保护核心元件
阻抗继电器 测量故障点至保护 安装处的距离。
方向阻抗继电器不仅能测量阻抗的大小, 而且还应能测量出故障点的方向。 原理:护安装处的线路距离。
假设:电压、电流互感器变比等于1。 I 加入继电器电压、电流为 U m 、 。
2、距离保护的基本原理
工作原理:距离保护是反应故障点至保护安 装处之间的距离,并根据该距离的大小确定 动作时限的一种继电保护装置。 特点:故障点距保护安装处越近时,保护的 动作时限就越短;反之,故障点距保护安装 处越远时,保护的动作时限就越长。 故障点总是由离故障点近的保护首先动作切 除,从而保证了在任何形状的电网中,故障 线路都能有选择性的被切除。
3.1 距离保护概述
1、距离保护的作用
电流保护区随系统运行方式而变化,有时 电流速断保护或限时电流速断保护的保护 范围将变得很小,甚至没有保护区。 原 因 对长距离、重负荷线路,线路的最大负荷 电流可能与线路末端短路时的短路电流相 差甚微,采用过电流保护,其灵敏性也常 常不能满足要求。 在高电压、结构复杂的电网中,自适应电 流保护的优点还不能得到充分发挥。
Um
同相位,以
U op
U pol
90
U op
270
90
270
结论:极化电压只作相位参考量,不参 与阻抗测量,任何时候其值不能为零。
U op 90 arg 270 U
pol
动作 方程

U op 90 arg 90 U
pol
极化电压是按相位比较原理工作 的方向阻抗继电器工作所必须 。 数值过大或过小都是不适宜的。 极化 电压 作用 可保证方向阻抗继电器正、反向出 口短路故障时有明确的方向性 。 根据比相原理的阻抗继电器性能特 点的要求,极化电压有不同的构成 方式,可获得阻抗继电器的不同功 能,改善阻抗继电器性能。

继电保护技术培训(距离保护)

继电保护技术培训(距离保护)
Z AB
要求≥1.3~1.5
远后备时: K III sen
Z AB
Z III op.1
Kb.maxZ BC
要求≥1.2
注意:
以上动作阻抗为一次侧计算值,工程实践中还应换算成二次侧的整定值:
Z set.k
nTA nTV
Z set
四川能投集团继保培训
三、相间距离保护的整定计算举例
距离保护整定计算
在图示网络中,各线路均装有距离保护,试对其中保护1的相间短路保护Ⅰ、Ⅱ、Ⅲ段进行整
3 k0 m E1 1 1/ 53k V N
9 6 k0 m
X x1m X x1m
2a Ω5x 2i Ω0n
E2 1 X x2m
1/ 53k VSB 3 .51M 3a Ω0x Ud % 1 .50
X x2m 2i Ω5n
10
V tA1 00.5s
图3-52 网络接线图
四川能投集团继保培训
定计算。已知线路AB的最大负荷电流Ifh.max=350A,功率因数COSΦfh=0.9,各线路每公里阻抗
Z1=0.4Ω/km,阻抗角ψ1=70°,电动机的自起动系数Kss=1,正常时母线最低工作电压0.9Ue。
B
C
3
4
M
A
Z 1
If .m n
2a x 5
6 k0 m 6
t8 0.5s
78
解: 1.有关各元件阻抗值的计算
距离保护整定计算
三、相间距离保护的整定计算举例
2.距离Ⅰ段的整定
(1)动作阻抗:
B
C
(2)动作时间:
ZI op.1
KrIesZ AB
0.8512
10.2Ω
C、助增分支、汲出分支同时存在时 总分支系数为助增系数与汲出系数相乘

继电保护 原理 第三章 距离保护

继电保护 原理 第三章 距离保护

IC − IA
IC
IC
结论:接于故障环路的阻抗继电器可以正确反映保护安装处到故障点之间的线路正序阻 抗。其余两只阻抗继电器的测量阻抗很大,不会动作。这也就是为什么要用三个阻抗继电器 并分别接于不同相间的原因。
3. 中性点直接接地电网的两相接地短路 仍然以 BC 两相接地短路为例
.
.
U Bd = U Cd = 0
.
3I0 ≠ 0
.
.
.
.
.
.
ZJ2
=
U B −UC
..
= (I B − IC )Z1ld
+ k3 I 0 Z1ld
.
.
− k3 I0 Z1ld
= Z1ld
IB− IC
IB − IC
.
.
Z J1
= UA−UB
.
.
> Z1ld
IA− IB
结论:同两相短路。 (三) 接地短路阻抗继电器的接线方式
以 A 相接地短路为例
三﹑阻抗继电器的构成
主要由两大基本部分组成:电压形成路和幅值比较或相位比较回路。
UJ 电


IJ

UA 比 幅

UB 路
执行 (输出)
UJ 电
UC





IJ 成
UD

执行 (输出)
交流回路
交流回路
UA﹑UB﹑UC﹑UD 基本上是由 UJ 和 IJZzd 组合而成。而 UJ 可直接从 PT 二次侧取得,必 要时经 YB 变换。而 IJZzd 则经过 DKB 获得。 (一) 方向阻抗继电器交流回路的原理接线
.

浅谈220KV输电线路距离保护

浅谈220KV输电线路距离保护

浅谈220KV输电线路距离保护摘要:随着国家西电东送,电网的方向趋向电压等级越来越高发展。

同时对电网输电线路安全可靠运行提出了更高要求。

为了使输电线路快速切除故障,这就要求线路保护可靠动作。

本文就从220KV输电系统线路保护距离保护原理、影响因素、可靠性方面进行了进行探讨。

关键词:保护;影响因素;可靠性1、线路距离保护1.1距离保护作用原理在线路发生短路时阻抗继电器测到的阻抗Zk=Uk/Ik=Zd等于保护安装点到故障点的(正序)阻抗。

显然该阻抗和故障点的距离是成比例的。

因此习惯地将用于线路上的阻抗继电器称距离继电器。

三段式距离保护的原理和电流保护是相似的,其差别在于距离保护反应的是电力系统故障时测量阻抗的下降,而电流保护反应是电流的升高。

距离保护I段:距离保护I段保护范围不伸出本线路,即保护线路全长的80%~85%,瞬时动作。

距离保护II段:距离保护II段保护范围不伸出下回线路I段的保护区。

为保证选择性,延时△f动作。

距离保护Ⅲ段:按躲开正常运行时负荷阻抗来整定。

图1 三段式距离保护2.影响距离保护正确工作的因素及防止方法2.1短路点过渡电阻的影响电力系统中短路一般都不是纯金属性的,而是在短路点存在过渡电阻,此过渡电阻一般是由电弧电阻引起的。

它的存在,使得距离保护的测量阻抗发生变化。

一般情况下,会使保护范围缩短。

但有时候也能引起保护超范围动作或反方向动作(误动)。

在单电源网络中,过渡电阻的存在,将使保护区缩短;而在双电源网络中,使得线路两侧所感受到的过渡电阻不再是纯电阻,通常是线路一侧感受到的为感性,另一侧感受到的为容性,这就使得在感受到感性一侧的阻抗继电器测量范围缩短,而感受到容性一侧的阻抗继电器测量范围可能会超越。

解决过渡电阻影响的办法有许多。

例如:采用躲过渡电阻能力较强的阻抗继电器:用瞬时测量的技术,因为过渡电阻(电弧性)在故障刚开始时比较小,而时间长了以后反而增加,根据这一特点采用在故障开始瞬间测量的技术可以使过渡电阻的影响减少到最小。

继电保护原理第3章电网距离保护

继电保护原理第3章电网距离保护

U
U Uk (I K 3I0 ) Z1 l



U A U kA (I A K 3I0 ) Z1l


Zm
Um Im
UA

I A K 3I0
Z1l
U kA

I A K 3I0

U kA 0
Zm Z1l l
4) 两相相间短路
M 1 Ik
k
2N
假设AB 相间短路:
U
1)测量阻抗正比于短路点到保护安装点之间的距离;
Zm l ,l 是故障距离。 Zm z1 l
2)测量阻抗应该与故障类型无关,即在故障位置确定 情况下,测量阻抗不随故障类型的变化而变化。
三相系统中测量电压和测量电流的选取(距离保护的接线方式)
阻抗继电器的接线方式主要有两种: 1、相间距离继电器接线( 0° 接线方式),反应相间故障; 2、接地距离继电器接线方式(相电压和具有K3I0补偿的相电 流接线),反应接地短路故障。
5. 动作角度范围变化对继电器特性的影响
橄榄形(透镜型)继电器: arg Zset Zm
90 Zm
苹果型继电器: arg Zset Zm
Zm
折线型继电器:
60
arg
U J IJ Z0
60
, 90
第三节 阻抗继电器的实现方法
阻抗继电器的两种实现方法:
(1)精确测量出测量阻抗Zm,然后把它与事先确定的动作 特性进行比较。如果Zm在动作区域内,判为内部故障,发出 动作信号。
jX
Z0 Zset2
2N
Zset1 Zm
R
圆的半径:
R1 2
Zset1 Zset2

电力系统继电保护-3 电网距离保护

电力系统继电保护-3 电网距离保护
( Z set1 Z set 2 ) 处,半径为 ( Z set1 Z set 2 ) 。 特性圆不包括坐标原点,圆心位于 Z Zm 2 (3-22) 2 90o arg set 90o Z set Z m 偏移圆特性阻抗继电器的绝对值比较动作方程 Z set 2 0 , Z set1 Z set 代入式(3-18) 将 ,可得到方 偏移圆特性阻抗继电器的相位比较动作方程 1 1 (3-13) Z m ( Z set1 Z set ( Z set1全阻抗圆特性 Z set 2 ) 2) 阻抗元件本身不具方向性 —— Z set 抛圆阻抗特性的动作方程与偏移圆阻抗特性 o o 1 Z m 向园特性的相位比较动作方程: 2 2 (3-18) 90 arg 90 Z m Z set 2 在各个方向上的动作阻抗都相同,它在正向
3.1.5 距离保护的构成
• 启动部分要求——当作为远后备保护范围末端发生故障时,启动部分 应灵敏、快速(几毫秒)动作,使整套保护迅速投入工作。 • 测量部分要求--在系统故障的情况下,快速、准确地测定出故障方向 和距离,并与预先设定的方向和距离相比较,区内故障时给出动作信 号,区外故障时不动作。
3.2.2 动作特性和动作方程
• 动作特性——阻抗继电器动作区域的 形状,称为动作特性。 • 圆特性——动作区域为圆形; • 四边形特性——动作区域为四边形。 • 动作方程——描述动作特性的复数的 数学方程。 • 绝对值(或幅值)比较动作方程—— 比较两个量大小的绝对值比较原理表 达式。 • 相位比较动作方程:比较两个量相位 的相位比较原理表达式。
电力系统继电保护
3 电网距离保护
3.1 距离保护的基本原理与构成
ቤተ መጻሕፍቲ ባይዱ

电网的距离保护

电网的距离保护
1. 全阻抗继电器特性 2. 方向阻抗继电器特性 3. 偏移阻抗继电器特性
(1)复平面分析圆或直线特性的阻抗继电器
1. 全阻抗继电器
动作特性:阻抗动作区是一个以原点为圆心、Z zd 为半径
的圆。即唯一取决于短路点到保护安装处的阻抗大小(幅
值),与测量阻抗的阻抗角无关,也与短路发生在保护安
装处的正向或反向无关。
2、电抗互感器次级W3侧接有电阻性负载时的原理分析
通过在电抗互感器DKB二次侧绕组W3上接入不同的电阻, 实现调整模拟阻抗角Z 的不同。
式中Z 取决于DKB本身的励磁阻抗 Z m和次级绕组外接电阻R。 U2 IJ Zm IJ (Rm jX m )
2. 阻抗继电器的交流回路原理接线
实现电压动作方程中各电压的加和减。
阻抗继电器的测量阻抗可以在 阻抗复平面图上进行表示。
测量阻抗 Z J 是阻抗复平面图
上的一个向量。
阻抗继电器的动作特性
阻抗继电器的动作特性由阻抗复平面图上的阻抗 动作区来表示。
阻抗动作区:是阻抗复平面图 上的一个区域,当测量阻抗落 在区域内,则阻抗继电器认为 是内部故障,继电器动作
三种阻抗动作区:
测量阻抗:Z J
U J IJ
R
jX
U
Байду номын сангаас
:输入阻抗继电器的相电压或线电压
J
IJ :输入阻抗继电器的相电流或相电流之差
反映的短路类型:接地或相间短路
阻抗是复数,是向量,既有大小(幅值),也有方向(相位)
ZJ
U J IJ
U B / ny IBC / nl
Zd
nl ny
;
nl 是电流互感器TA的变比;
ny 是电压互感器TV的变比;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三电网距离保护
1距离保护基本原理与构成
1.距离保护的概念
短路时,电压电流同时变化,测量到电压与电流的比值就反映了故障点到保护安装处的距离,
短路时:电流增大、电压变小、
阻抗与电流的关系:故障点与保护安装处越近,阻抗越小,短路电流越大。

阻抗与距离的关系:阻抗与距离成正比,阻抗的单位是欧姆/公里。

距离保护与电流保护的关系:电流保护的范围与距离保护的范围大致相同,电流保护的范围就是用距离来衡量的,电流的保护范围实际反映的是距离的范围。

距离与电流是统一的。

但是,电流保护只用电流值来判断是否故障,距离保护使用电压、电流2个物理量来判断,因此,距离保护更准确。

2.测量阻抗、负荷阻抗、短路阻抗、整定阻抗、动作阻抗概念辨析?
负荷阻抗:正常运行条件下,额定电压与负荷电流的比值;
短路阻抗:短路发生后,保护安装处的残压与流过保护的短路电流的比值(线路的阻抗值);短路阻抗总小于负荷阻抗。

测量阻抗:继电器测量到的电压除以电流,得到的阻抗值;正常运行时,测量阻抗就是负荷阻抗,短路时,测量阻抗就是短路阻抗。

测量阻抗能反应出运行状态。

整定阻抗:能使继电器动作的最大阻抗,是一个定值。

测量阻抗小于整定阻抗,继电器就动作。

阻抗继电器是一个欠量继电器,电流继电器是过量继电器,测量电流大于整定电流时动作。

这是一对对偶关系。

动作阻抗:阻抗继电器动作时,测量到的阻抗值。

比如:人为设置整定阻抗是20Ω,只要测量到的阻抗值小于20就可以动作,今天动作了一次,一查故障记录,动作阻抗是10Ω,说明动作准确无误。

3.一次阻抗、二次阻抗区别?
这里要对比一次电流和二次电流的概念,道理是一样的。

一次阻抗:一次电压与一次电流的比值,
二次阻抗:二次电压与二次电流的比值,
4.测量阻抗角、负荷阻抗角、短路阻抗角、整定阻抗角、动作阻抗角概念辨析测量阻抗角:测量电压与测量电流的夹角
负荷阻抗角:负荷电压与负荷电流的夹角
短路阻抗角:短路电压与短路电流的夹角
动作阻抗角:继电器动作时,加入继电器的电压与电流的夹角。

整定阻抗角:能够使保护动作的最大灵敏角,这是人为设置的,其余都是测量到的。

5.距离保护的原理
与电流保护一样,需要满足选择性要求,分正方向动作和反方向不动作,
正方向的时候,还判断测量阻抗值,区内动作,区外不动作。

6.测量阻抗怎么表示?
测量阻抗是保护安装处测量的电压与测量电流之比。

电压和电流都是向量,带方向的。

阻抗是一个复数,可以用极坐标表示或者用直角坐标表示。

7.测量阻抗在短路前后的差别
短路前:测量到的为负荷阻抗,Z=U/I,负荷电流比短路电流小,额定电压比短路残压高,所以,负荷阻抗值很大,阻抗角较小,功率因数不低于0.9,对应阻抗角不大于25.8度,以电阻性质为主。

短路后:测量到的为电源到短路点之间线路的阻抗,与距离成正比,数值比较小,阻抗角为线路的阻抗角,角度较大,不低于75度,以电感性为主。

总之,测量阻抗在短路后变小,因此是欠量保护,阻抗值变小而动作的一种保护。

8.测量阻抗在直角坐标中的情况
由图可见,正常情况下的测量阻抗是负荷阻抗,角度很小
故障时测量到的是线路阻抗,阻抗角度很大,有正反两个方向。

正方向上,也分为区内和区外故障。

由阻抗值确定故障的范围。

9.距离保护的时限特性
距离保护动作时间与故障点距保护安装处距离之间的关系,叫做时限特性。

跟电流三段式保护一样,这里也是距离三段式保护。

距离I段瞬时动作,距离II段固定时限动作,一般为0.3-0.6秒;距离III段要与相邻下级线路II段或III段保护配合,比他们再多一个时间阶梯。

10.距离保护的构成
测量部分、启动部分、振荡闭锁、电压回路断线(电压回路断线时,将会造成保护测量电压消失,从而可能使距离保护的测量部分出现误判断,这时应该闭锁防
止误动作。

)、配合逻辑、出口动作(发信号或跳闸)
2阻抗继电器动作特性
11.临界动作边界
在实际情况下,由于互感器误差、故障点过渡电阻等因素,继电器实际测量到的阻抗一般并不能严格地落在与整定值同向的直线上,而是落在直线附近的一个区域中。

为保证区内故障情况下,阻抗继电器都能可靠动作,在阻抗复平面上,其动作范围应该是一个区域,这个区域的边界就是这个阻抗继电器的临界动作边界。

12.特性圆是什么?
看看这么多圆,晕吗?这些都是什么东西?圆怎么画出来的?
其实,这些圆是测量阻抗的轨迹,阻抗就有实部、虚部,是一个复数概念,阻抗圆就是在复平面上的一个范围,测量到的复数值在范围内就动作,区域外就不动作。

3距离保护整定计算
13.距离保护与电流保护有什么异同?
相同点:
都是三段式保护,时限都是阶梯原则。

都是由主保护后备保护构成,都有相间保护和接地保护两种类型。

不同点:
应用的电压等级不同,距离保护用于110kV及以上电压等级,电流保护用于35kV 及以下电压等级。

I、II段距离保护需要具有明确的方向性,通常采用方向性测量元件。

III段保护作为后备段,不仅要对本线路的I、II段近后备,相邻下一级线路保护的远后备,还要作为反相母线保护的后备。

这是与电流保护不同的地方,通常采用带有偏移特性的测量元件,用较大延时保证选择性。

电流保护无法判断方向,只能增加方向元件来判断。

14.距离保护I段
整定按躲开本线路末端短路时的测量阻抗。

,Z1是正序单位阻抗。

欠量保护中,可靠系数小于1;电流保护中是过量保护,可靠系数大于1。

对偶关系。

与系统运行方式无关,比电流保护要好。

最里面的小圈1是距离保护I段的保护范围,只在本线路内,圆圈表示方向性,测量到的阻抗角度在一个范围内,就可以动作。

中间的圈2表示距离保护II段的保护范围,在下级线路的I段以内,没越权。

最外边的圈3表示距离保护III段的保护范围,既能保护下级线路全长,还能反方向保护母线。

距离保护范围用圆表示,电流保护范围用电流曲线来表示,我们可以对照学习,更加明白透彻。

15.分支系数对测量阻抗的影响
k点发生三相短路时,A保护安装处的测量阻抗为:;
这里跟电流保护时候一样,分支系数,没啥新东西。

测量电压从接地点(电势为0)开始,累加电压降,一直到保护安装处,得到母线残压,
助增电流:于是,测量阻抗变大
外汲电流:于是,测量阻抗变小
16.距离II段保护
1)与相邻线路I段配合:可靠系数取0.8,分支系数取各种情况下的最小值(确保管辖范围不越权)。

保护与谁配合,就采用与谁配合的分支系数。

2)与相邻变压器快速保护配合:可靠系数考虑变压器阻抗误差大,取0.7-0.75。

这里分支系数是变化的,保护与谁配合,就采用与谁配合的分支系数。

3)两者取较小值,(电流保护用两个整定原则时,取较大值。

都是确保管辖范围小)
4)距离保护II段能保护线路全长,本线路末端短路时,应该有足够的灵敏度。

这里整定值放在分子,跟电流保护不一样了。

5)如果灵敏系数不满足要求,就跟相邻II段配合,这里与电流保护一样。

然后重新校验灵敏度。

6)动作时限:跟谁配合,就比谁大一个时间阶梯,在谁后面动作就可以了。

17.距离III段保护
1)原则一:与下级线路距离保护II段配合,如不满足灵敏系数,则与III段配合。

2)原则二:与相邻下级变压器的电流、电压保护配合
,Zmin是电流电压保护对应保护范围的阻抗值。

3)原则三:躲开正常运行的最小负荷阻抗,(最大负荷电流)。

负荷最大时,母线电压最低,阻抗最小。


4)三个原则都计算出来了,我们选哪个作为定值?小的入选,管辖范围小。

18.距离III段的灵敏度校验
1)作为本线路I、II段保护的近后备时,灵敏度按本线路末端短路校验:
2)作为下级线路的远后备时,灵敏度按下级线路末端短路校验:
,分支系数取最大的情况。

Znext是相邻线路或变压器的阻抗。

3)动作时间:跟谁配合就比谁大一个时间阶梯。

19.整定值换算成二次值。

相关文档
最新文档